MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS. Posgrado en Nanotecnología. Dr. Roberto Pedro Duarte Zamorano 2016 Departamento de Física"

Transcripción

1 MAEMÁICAS Posgrado e Naoecología Dr. Robero Pedro Duare Zamorao 16 Deparameo de Física

2 EMARIO. Series de Fourier 1. Iroducció.. Desarrollo de Fourier. 3. Expasioes de Fourier de medio rago.

3 Iroducció. Se dice que ua ució () es periódica, co periodo, si el domiio de () coiee ao a como a + ; y si ( + ) = ( ) Auque ambié saisace las codicioes aeriores, el valor míimo de será el que usaremos e lo que sigue.

4 Ua deiició. Ua serie de Fourier es ua expasió de ua ució periódica (), co periodo, e érmios de ua suma iiia de seos y coseos que oma la orma ( ) a ( a cos b si ) 1 E oras palabras, cualquier ució periódica se puede reescribir como ua suma de ucioes armóicas muliplicadas por cosaes por deermiar. E el desarrollo aerior, se cosidera que la ució () iee ua periodicidad deiida; si embargo, más adelae veremos que auque la ució o sea periódica podremos hacer u aálisis de Fourier mediae la rasormada iegral de Fourier.

5 U ejemplo gráico. () Fució periódica a a cos 1 = b si a cos b si + + +

6

7 Ua deiició... Regresado al desarrollo de Fourier para la ució periódica () co periodo, a saber ( ) a ( a cos b si ) 1 se ecuera que los coeiciees a y b esá dados por a ( )cos d y b ( )si d Co a ( ) d

8 Ua deiició... A la caidad que aparece e las expresioes aeriores se le cooce como recuecia udameal y esá dada por dode es el periodo de la ució (). El cálculo y esudio de las series de Fourier se cooce como aálisis armóico y es exremadamee úil al esudiar ucioes periódicas arbirarias y hacer u aálisis de la misma e érmios de su coeido recuecial o especro de recuecias.

9 U ejemplo. Deermia la represeació e series de Fourier de la siguiee ució ()

10 Solució. Primero deermiemos el periodo, y escribamos la expresió maemáica de la ució () = ( ) 1,, 1 1 ( ) ( )

11 Solució. A coiuació calculemos los coeiciees del desarrollo de Fourier a () d a ( )cos d ( ) d 1d d si si 1cos d d Como es u eero, el seo se aulará, por lo que a 1

12 Solució. Por oro lado, el coeiciee b esá dado por cos 1 cos 1si d d 1 de uevo, como es u eero, podemos adverir que o b ( )si d 1 cos cos3 cos5 1 cos cos4 cos6 1 cos ( 1) 1

13 Solució. co lo que b 1 ( 1) /, impar, par Fialmee, la serie de Fourier resula ser a a b ( ) ( 1 cos si ) 1 1 ( 1) si 1 1 ( ) si si 3 si 5 3 5

14 Uas aoacioes exras. Es imporae mecioar que la serie obeida aeriormee, e pricipio, es ua serie iiia; si embargo, e muchas siuacioes será suiciee cosiderar u úmero iio de érmios para obeer la aproximació deseada, oda vez que coorme sumamos érmios el resulado va covergiedo a la ució origial (). Alguas ideidades úiles (para eero): si( x) si x cos( x) si si cos 1 cos cos ( 1) x

15 Uas aoacioes exras. Para el ejemplo aerior, e las siguiees gráica vemos que la suma de érmios se va aproximado a la ució origial. 1 ( ) si si 3 si si si si 3 3

16 7 si 7 si 5 5 si 3 3 si si 5 5 si 3 3 si

17 si si 7 si 5 5 si 3 3 si 3 si 3 si 3 3 si 1

18 Oro ejemplo. Dada () = deiida e el iervalo [-1,1] y co periodo =, bosqueje la gráica ere = -3 y = 3 y calcule los coeiciees de la serie de Fourier correspodiee. La gráica de la ució iee la orma = así que

19 A coiuació calculamos los coeiciees del desarrollo 1 a ( ) d ( ) d d a

20 Para calcular esa iegral, usamos el méodo de iegració por pares, así que y sucesivamee 1 1 a ( )cos d cos d a si si 1 1 d a si [ si( )] cos 1 1

21 usado que si(-x) = -si(x), a cos cos( ) y dado que cos(-x) = cos(x) eemos que a Para ermiar, calculemos el coeiciee b 1 1 b ( )si d si d 1 1

22 es decir b Lo que lleva a que b 1 1 cos cos 1 1 cos [ cos( )] si 1 ( 1) 1 d cos si si( ) cos ( 1) 1

23 SERIES E INEGRALES DE FOURIER Co lo aerior, para la ució () = deiida e el iervalo [-1,1] y co periodo =, la serie de Fourier resula ser a a b ( ) ( 1 cos si ) ó 1 ( 1) ( ) si 1 ( ) si si si 3 3

24 U ejercicio Dada () = e el iervalo [,], () = e el iervalo [,4] y co periodo = 4, bosqueje la gráica ere = y = 1 y calcule los coeiciees de la serie de Fourier correspodiee. La gráica es v () = 4

25 U ejercicio Los coeiciees a 4 ( ) 1 4 d 4 [1 ( 1) ] a ( )cos d 4 b ( )si d

26 U ejercicio Así que la serie es a a b ( ) ( 1 cos si ) 1 [1 ( 1) ] cos si 1

27 Alguas cosideracioes de simería. Ua ució () es par si su gráica es simérica respeco al eje verical, es decir ( ) ( ) ( ) Alguos ejemplos de ucioes pares so los siguiees ( ) ( ) cos

28 Alguas cosideracioes de simería. La iegral de ua ució par de A a +A () par A +A es el doble de la iegral de a +A, es decir A A A ( ) d ( ) d par par

29 Alguas cosideracioes de simería. Ua ució () es impar si su gráica es aisimérica respeco al eje verical, es decir ( ) ( ) ( ) Alguos ejemplos de ucioes impares so los siguiees ( ) 3 ( ) si

30 Alguas cosideracioes de simería. La iegral de ua ució impar de A a +A impar () A +A se aula, es decir A A ( ) impar d

31 Produco de ucioes pares e impares. De acuerdo a la clasiicació preseada aeriormee, el produco de ucioes saisace las siguiees propiedades: (par) x (par) = par (impar) x (impar) = par (par) x (impar) = impar (impar) x (par) = impar

32 La simería e los coeiciees de Fourier. De las propiedades de las ucioes pares e impares, se puede demosrar que: 1. para ucioes pares: / 4 a ( )cos d b. para ucioes impares: a a b / 4 ( )si d

33 La simería e los coeiciees de Fourier. Fució () par () a / / ( )cos d 4 / ( )cos d b / / ( )si d (par) (par) (par) (par) (impar) (impar)

34 (impar) SERIES DE FOURIER a La simería e los coeiciees de Fourier. Fució () impar a / / / / ( ) d (impar) ( )cos d b () / / ( )si d (impar) (impar) 4 / ( )si d (impar) (par) (par)

35 Hasa ese puo hemos cosiderado ucioes periódicas, por lo que aplicar la eoría de Fourier para hacer u desarrollo ha sido direco. Si embargo, e muchas siuacioes ísicas lo que se iee so ucioes o periódicas, pero eso o debe represear mayor problema ya que (casi) siempre se puede deiir sobre u iervalo dado y = y = 1 y = 1

36 Por lo aerior, resula muy úil exeder la ució o periódica e ua ució periódica aes de calcular su represeació e serie de Fourier. Para ello, ormalmee preerimos usar algua de las simerías visas aeriormee (par o impar) para la exesió periódica, e lugar de ua exesió periódica ormal, ya que el uso de ua ució co ciera simería (par o impar) os proporcioará coeiciees cero de cualquiera de las a o b de la expasió lo que puede proporcioar ua expasió más secilla de la serie de Fourier correspodiee.

37 y() l () l l l l l 3 3l () par l l l l l 3 3l () impar l l l l l 3 3l l y, ) ( ) ( ) ( ) ( l l Exesió periódica, ) (, ) ( ) ( l y l y ) ( ) ( l l Exesió periódica par Fució o periódica, ) (, ) ( ) ( l y l y ) ( ) ( l l Exesió periódica impar

38 Expasió de Fourier de medio rago. La serie de Fourier de ua exesió periódica par o impar de ua ució o periódica se le llama serie de Fourier de medio rago. Lo aerior se debe a que la ució o periódica se cosidera como la miad de la ució expadida, ya sea por ua ució par o ua ució impar. par () impar () 3l l l l l 3l 3l l l l l 3l

39 Expasió de Fourier de medio rago. Si la ució o periódica se exiede mediae ua ució par eoces los coeiciees b se aula y, por lo ao, el desarrollo de la ució se reduce a ( ) a a cos 1 que sólo coiee el desarrollo e érmios de coseos, por lo que se le cooce como Serie coseo de Fourier de medio rago.

40 Expasió de Fourier de medio rago. Si la ució o periódica se exiede mediae ua ució impar eoces los coeiciees a se aula y, por lo ao, el desarrollo de la ució se reduce a ( ) 1 si que sólo coiee el desarrollo e érmios de seos, por lo que se le cooce como Serie seo de Fourier de medio rago. b

41 Ejercicios. 1. Usado cosideracioes de simería, cosruya ua serie de medio rago para las siguiees ucioes: a) = para < <. b) = para 1 < < 1. Cosruya la serie de Fourier complea para cada ua de las ucioes aeriores y compare sus resulados.

42 MAEMÁICAS Posgrado e Naoecología Dr. Robero Pedro Duare Zamorao 16 Deparameo de Física

La Serie de Fourier Trigonométrica

La Serie de Fourier Trigonométrica La Serie de Fourier Trigoomérica Dr. Luis Javier Morales Medoza FIEC Uiversidad Veracruzaa Poza Rica Tuxpa Ídice 5.. Iroducció 5.. La serie rigoomérica de Fourier 5.3. Relació ere los coeiciees de Fourier

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

PROPUESTA A. b ) Coordenadas de los máximos y mínimos relativos de f(x). dx. b )

PROPUESTA A. b ) Coordenadas de los máximos y mínimos relativos de f(x). dx. b ) ES CSTELR DJOZ Eame Juio de (Geeral) Euciado oio Megiao Corbacho PRUE DE CCESO (LOGSE) UNVERSDD DE CSTLL L MNCH JUNO (GENERL) MTEMÁTCS Tiempo máimo: horas miuos Elija ua de las dos opcioes, o, coese a

Más detalles

Circuitos Eléctricos II Series de Fourier

Circuitos Eléctricos II Series de Fourier Circuios Elécricos II Series de Fourier Coeido. Fucioes Periódicas. Serie rigoomérica de Fourier 3. Compoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. Cálculo de los coeficiees

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

Fourier. Series de Fourier

Fourier. Series de Fourier Series de Fourier. Fucioes Periódicas oeido. Serie rigoomérica de Fourier 3. ompoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. álculo de los coeficiees de la Serie de Fourier

Más detalles

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos Méodos y écicas de iegració El siguiee ema sugerido para raar e clases es el méodo de iegració por pares veamos de dode surge y alguos ejemplos propuesos ( º ) Méodo de Iegració por pares:. dv u. v u =

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

Decimocuarta clase. Respuesta al impulso y convolución

Decimocuarta clase. Respuesta al impulso y convolución Uiversidad Disrial Fracisco José de Caldas - Aálisis de Señales y Sisemas - Marco A. Alzae Decimocuara clase. Respuesa al impulso y covolució E esa clase repasamos y esedemos la clase 3, ya que se raó

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 8 7 - - - - - Méodos Numéricos - Cap 7 cuacioes Diereciales Ordiarias PVI 8 cuacioes Diereciales Ordiarias DO Ua cuació Dierecial es aquella ecuació que coiee diereciales o derivadas de ua o más ucioes

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3 Pruebas de Acceso a Eseñazas Uiverarias Oiciales de Grado Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá coesar a ua de las dos opcioes propuesas A ób. Se podrá uilizar cualquier

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO DECRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació a u

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULTAD DE ECONOMÍA ECONOMETRIA. Proceso Estocástico. Mtro. Horacio Catalán Alonso

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULTAD DE ECONOMÍA ECONOMETRIA. Proceso Estocástico. Mtro. Horacio Catalán Alonso UNIVERSIDAD NACIONAL AUÓNOMA DE MÉXICO POSGRADO EN ECONOMIA UNAM FACULAD DE ECONOMÍA ECONOMERIA Proceso Esocásico Mro. Horacio Caalá Aloso Proceso esocásico Defiició.- U Proceso Esocásico (PE es ua secuecia

Más detalles

Qué es la Cinética Química?

Qué es la Cinética Química? Tema 4. La velocidad de Cambio Químico I. Velocidad de reacció.. Ecuació de velocidad y orde de reacció. 3. álisis de los daos ciéicos: ecuacioes iegradas de ciéicas secillas. 4. Ciéicas complejas.. Velocidad

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

Curvas MOISES VILLENA

Curvas MOISES VILLENA 6 6.1. 6.. 6.. 6.4. 6.1. FUNCIÓN VECTORIAL DE UNA VARIABLE REAL 6.1.1 DOMINIO 6.1. LIMITE 6.1. CONTINUIDAD 6.. TRAYECTORIA (CAMINO) 6.. GRAFICA. DEFINICIÓN 6.4. TRAZA 6.5. CURVA 6.6. DERIVADA 6.7. CONCEPTOS

Más detalles

Capitulo II. II.2 Teoría de curvatura. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo II. II.2 Teoría de curvatura. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Capiulo II II.2 Teoría de curvaura 1 Capiulo II Movimieo Plao II.1 Aspecos geerales del movimieo plao. II.2 Teoría de la curvaura. 1. Teorema de Harma. 2. Euler-Savary. 3. Circuferecia de iflexioes y circuferecia

Más detalles

CONCEPTOS BÁSICOS DE ESTADISTICA INFERENCIAL

CONCEPTOS BÁSICOS DE ESTADISTICA INFERENCIAL CONCEPTO BÁCO DE ETADTCA NFERENCAL Població N Muesra Parámeros Esadísico µ Esimador dividuo Cada parámero poblacioal le correspoderá u esadísico de la muesra que cosiuirá ua esimació del primero. Defiició

Más detalles

1.3.- Señal aleatoria: caso particular de señal permanente, no tiene expresión matemática explícita, x(t 1 ) =?

1.3.- Señal aleatoria: caso particular de señal permanente, no tiene expresión matemática explícita, x(t 1 ) =? EAL - # -.- Señales elécricas e domiio de iempo SEÑALES ELECRICAS Clasiicació de señales elécricas e domiio de iempo: De acuerdo a su duració emporal: rasiorias (Eergía iia o Permaees (Poecia iia. De acuerdo

Más detalles

Series de Fourier. "Series de Fourier, Transformadas de Fourier y Aplicaciones", Genaro González

Series de Fourier. Series de Fourier, Transformadas de Fourier y Aplicaciones, Genaro González Series de Fourier "Series de Fourier, rsormds de Fourier y Apliccioes", Gero Gozález L primer serie de Fourier de l hisori Euler 744 escribe e u cr u migo: se se se3 se... 3 Es ciero? Observemos que e

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()

Más detalles

V.- CONDICIÓN DE CONTORNO ISOTÉRMICA EN SÓLIDOS INFINITOS

V.- CONDICIÓN DE CONTORNO ISOTÉRMICA EN SÓLIDOS INFINITOS V.- CONDICIÓN DE CONTONO ISOTÉMICA EN SÓIDOS INFINITOS V.1.- CONDUCCIÓN TANSITOIA EN PACA INFINITA CON CONDICIÓN DE CONTO- NO ISOTÉMICA a coducció a ravés de ua placa plaa de espesor fiio e la direcció

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores

Capítulo 1 Introducción a la Electrónica de Potencia. 1. Introducción a la Electrónica de Potencia. 1.1 Clasificación de los Convertidores Capíulo Iroducció a la Elecróica de oecia. Iroducció a la Elecróica de oecia. Clasificació de los Coeridores Como su ombre lo idica su fució es coerir ua fuee de ua esió y frecuecia dada a ora de diferees

Más detalles

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X Jorge E. Heráez, Eih C. e Heráez Uiversia e Paamá, Cero Regioal Uiversiario De Veraguas, Deparameo e Maemáica. RESUMEN E el presee rabajo esuiamos la ecuació

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO

TEORÍA DE CONTROL MODELO DE ESTADO TEORÍA DE ONTROL MODELO DE ESTADO Defiicioes: (Ogaa) Esado. El esado de u sisema diámico es el cojuo más pequeño de variables (deomiadas variables de esado) de modo que el coocimieo de esas variables e

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013 El Marge de Riesgo México Por: Pedro Aguilar B. paguilar@csf.gob.mx paguilar@ifiium.com.mx Sepiembre 2013 Coeido 1. Aspecos Geerales sobre Marge de Riesgo 2. La Problemáica 3. Plaeamieo de ua Posible Solució

Más detalles

Universidad Tecnológica Nacional Facultad Regional Rosario Cátedra de Ing. De las Reacciones

Universidad Tecnológica Nacional Facultad Regional Rosario Cátedra de Ing. De las Reacciones Uiversidad Tecológica Nacioal Faculad Regioal Rosario Cáedra de Ig. e las Reaccioes Trabajo pracico Nº 3: Flujo o ideal: isribució de iempos de residecia e u reacor flujo pisó AÑO 14 Ig. Roque Masciarelli

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Tema 2 Señales y espectros.

Tema 2 Señales y espectros. ema Señales y especros. El esudio de las señales y sus especros es u aspeco fudameal e el campo de las comuicacioes. Ua señal se defie como cualquier sigo, geso, marca, ecéera, que sirve para comuicar

Más detalles

APÉNDICE: ANÁLISIS DE REGRESIÓN

APÉNDICE: ANÁLISIS DE REGRESIÓN Fud. Físicos de la Iformáica / Fud. Tecológicos de los Compuadores APÉDICE: AÁLISIS DE REGRESIÓ ITRODUCCIÓ El aálisis de regresió es ua herramiea esadísica que permie hacer u ajuse de daos eperimeales

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

03) Rapidez de Cambio. 0301) Cambio

03) Rapidez de Cambio. 0301) Cambio Págia 1 03) Rapidez de Cambio 0301) Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Págia 2 A) Iroducció Uo de los aspecos más desacables de la auraleza es su carácer variable. La Tierra y odos

Más detalles

UNIVERSIDAD DE LA COSTA DEPARTAMENTO DE CIENCIAS NATURALES Y EXACTAS CONCEPTOS PREVIOS

UNIVERSIDAD DE LA COSTA DEPARTAMENTO DE CIENCIAS NATURALES Y EXACTAS CONCEPTOS PREVIOS UNIVERSIDAD DE LA COSTA DEPARTAMENTO DE CIENCIAS NATURALES Y EXACTAS CONCEPTOS PREVIOS Movimieo recilíeo Iroducció El esudio de los movimieos de los cuerpos es de vial imporacia para coocer el comporamieo

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN FCULTS DE INGENIERÍ PÁGIN: 5-1 de 16 INTRODUCCIÓN El esudio de las aceleracioes e los mecaismos ariculados coplaares se puede abordar ya sea por méodos aalíicos o por méodos gráficos. Ese capíulo se deermiará

Más detalles

MMII_c4_MSV: Ecuación de Laplace en un rectángulo. Problemas no homogéneos

MMII_c4_MSV: Ecuación de Laplace en un rectángulo. Problemas no homogéneos MMII_c4_MSV: Ecuació de Lapace e u recáguo. Probemas o homogéeos Guió: E esa case os ocuparemos de a apicació de Méodo de Separació de Variabes (MSV) a a ecuació de Lapace, o que podremos hacer mediae

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

6. Intervalos de confianza

6. Intervalos de confianza 6. Iervalos de cofiaa Curso 0-0 Esadísica Coceo de iervalo de cofiaa Se ha realiado ua ecuesa a 400 ersoas elegidas al aar ara esimar la roorció de voaes de u arido olíico.? Resulado Ecuesa Sí 0 ooros

Más detalles

Simulación de sistemas continuos y a tramos

Simulación de sistemas continuos y a tramos Simulació de sisemas coiuos a ramos Uiversidad Nacioal Eperimeal oliécica de la Fuerza Armada Miguel Rodríguez Celi mirodriguez@usb.ve Modelos e el Espacio del Esado Los modelos diámicos co parámeros cocerados

Más detalles

Material didáctico. Bibliografía básica. Aula global

Material didáctico. Bibliografía básica.   Aula global Fracisco J. Gozález, UC3M Maerial didácico Bibliografía básica Señales y Sisemas Ala V. Oppeheim, Ala S. Willsky, S. Hamid Nawab, ª edició (998) Preice Hall; ISBN: 97897764 Circuios Elécricos, James W.

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Instituto Tecnológico de San Luís Potosí

Instituto Tecnológico de San Luís Potosí Isiuo ecológico de Sa Luís Poosí Cero de elecomuicacioes eleproceso y Redes de Compuadoras Señales Elécricas Fís. Jorge Humbero Olivares Vázquez Cero de elecomuicacioes Eero 7 Isiuo ecológico de Sa Luís

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

Precálculo Quinta edición Matemáticas para el cálculo

Precálculo Quinta edición Matemáticas para el cálculo Precálculo Quia edició Maemáicas para el cálculo Límies JAMES STEWART, LOTHAR REDLIN, SALEEMWATSON Pag. 88-94 . Cocepo iuiivo de ie de ua fució. Limies Esquema del capiulo E ese capiulo se esudia la idea

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee f, mosrd e l figur. señl () e, SOLUCION. L señl es f () e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 7 Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Dadas las marices A y B idica, si es posible. A 0 0 4 B 5 0 a) Los elemeos a 4 y b 4 b) La dimesió de cada ua de ellas c) La mariz raspuesa de cada

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

OSCILACIONES AMORTIGUADAS. PENDULO DE POHL

OSCILACIONES AMORTIGUADAS. PENDULO DE POHL OSCILACIONES AMORTIGUADAS. PENDULO DE POHL.- INTRODUCCION TEÓRICA El Pédulo de Pohl de la figura permie esudiar las oscilacioes libres, amoriguadas y forzadas de baja frecuecia producidas mediae u pédulo

Más detalles

UNIDAD 3 Transformadas de Laplace

UNIDAD 3 Transformadas de Laplace Traformada de aplace 3. Defiicioe a raformada de aplace de ua fució () f, repreeada co el ímbolo, e la operació maemáica defiida mediae la iguiee iegral impropia: { ()} lim b f e f () d b Por lo geeral,

Más detalles

ECUACIONES DIFERENCIALES PARCIALES

ECUACIONES DIFERENCIALES PARCIALES TEMA 4 ECUACIONES DIFERENCIAES PARCIAES 4 INTRODUCCIÓN E ese ema se verá procedimieos para resolver ecuacioes e derivadas parciales que surge co frecuecia e prolemas dode aparece viracioes, poeciales y

Más detalles

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad Uiversidad Carlos III de Madrid 3.4 Sisemas LIT SLIT: Sisemas Lieales e Ivariaes co el Tiempo Liealidad Supogamos que la señal se puede expresar como ua combiació lieal de señales más simples ( x i ()

Más detalles

Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado

Sistemas y Señales I. Ecuaciones de Estado. Variables de Estado Sisemas y Señales I Ecuacioes de Esado Auor: Dr. Jua Carlos Gómez Variables de Esado Defiició: Las Variables de Esado so variables ieras del sisema, cuyo coocimieo para odo iempo, juo co el coocimieo de

Más detalles

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo

Laboratorio N 10, Series de Fourier. Introducción. Para funciones ( ) cos. f x está definida en la mitad del intervalo Uiversidad Diego Portales Facultad de Igeiería Istituto de Ciecias Básicas Asigatura: Ecuacioes Difereciales aboratorio N 1, Series de Fourier Itroducció Para fucioes x,, la serie de Fourier f x cotiuas

Más detalles

CONTROL DE ASISTENCIA A EXAMEN

CONTROL DE ASISTENCIA A EXAMEN Uiversidad de Las Palmas de Gra Caaria Escuela Técica Superior de Igeieros de Telecomuicació Teoría de la Señal - Eame Covocaoria Ordiaria: 3 de febrero de 2009 CONTROL DE ASISTENCIA A EXAMEN La firma

Más detalles

EXAMEN FINAL DE METODOS NUMERICOS (MB536)

EXAMEN FINAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. 7- FACULTAD DE INGENIERIA MECANICA //7 EXAMEN FINAL DE METODOS NUMERICOS (MB36) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA CIENTIFICA ESCRIBA

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

También podemos clasificar las ondas según el medio donde se propaguen:

También podemos clasificar las ondas según el medio donde se propaguen: FísicaGua MOVIMIENTO ONDULATORIO CONCEPTO DE ONDA: Ua oda es ua propagació de ua perurbació que se produce e u lugar deermiado e u momeo dado, ésa se rasmie e ua o arias direccioes e el espacio, se eiede

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

SERIES DE TIEMPO AJUSTADAS CON MODELOS DE ESPACIO DE ESTADO. Errores de proyección. Adriana Fátima Panico de Bruguera.

SERIES DE TIEMPO AJUSTADAS CON MODELOS DE ESPACIO DE ESTADO. Errores de proyección. Adriana Fátima Panico de Bruguera. Ruig head: PROPAGACIÓN DE LOS ERRORES DE PROYECCIÓN DE LAS SERIES DE TIEMPO AJUSTADAS CON MODELOS DE ESPACIO DE ESTADO Errores de proecció Adriaa Fáima Paico de Bruguera apaico@herrera.u.edu.ar María Agélica

Más detalles

Tres Problemas que sirvieron de base a la introducción del concepto de Derivada

Tres Problemas que sirvieron de base a la introducción del concepto de Derivada Tres Problemas que sirviero de base a la iroducció del cocepo de Derivada Aily Acosa García Jua Miguel Valdés Placeres Iroducció El cocepo de derivada, ocupa u lugar poserior, e el ordeamieo de los emas

Más detalles

Unidad I Fundamentos de Algebra Matricial Parte II

Unidad I Fundamentos de Algebra Matricial Parte II Uidad I Fudameos de Algebra aricial Pare II Dra. Ruh. Aguilar Poce Faculad de Ciecias Deparameo de Elecróica Propedeuico 008 Faculad de Ciecias Propedeuico 008 Faculad de Ciecias Nocioes de Calculo aricial

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Facultad de Ingeniería División de Ingeniería Eléctrica Departamento de Control y Robótica. Laboratorio de Señales y Sistemas

Facultad de Ingeniería División de Ingeniería Eléctrica Departamento de Control y Robótica. Laboratorio de Señales y Sistemas Facula e Igeiería Divisió e Igeiería Elécrica Deparameo e Corol y Robóica Laboraorio e Señales y Sisemas P R A C T I C A Respuesa e Sisemas Lieales Ivariaes e el Tiempo SLIT Noviembre e 06 C O N T E N

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee señl f ( e,, mosrd e l figur. SOLUCION. L señl es f ( e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros

Tema 3. Series de Fourier. Análisis de Espectros Tema 3. Series de Fourier. Aálisis de Espectros Idice: Series de Fourier Serie Trigoométrica de Fourier Aálisis gráfico. Primeras compoetes de frecuecia Ejemplo Serie de Fourier e forma de Expoeciales

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

Modelos discretos de probabilidad

Modelos discretos de probabilidad UNIDAD 6 Modelos discreos de probabilidad Objeivos Al fializar la uidad, el alumo: disiguirá y resolverá ejercicios de cada uo de los modelos discreos: biomial, geomérico, biomial egaivo, hipergeomérico

Más detalles

Introducción a Métodos Numéricos. Modelización de Sistemas Biológicos (por Computadora) FIUNER

Introducción a Métodos Numéricos. Modelización de Sistemas Biológicos (por Computadora) FIUNER Iroducció a Méodos Numéricos Modeliació de Sisemas Biológicos por Compuadora FIUNER Modelo Maemáico Nos ieresa la diámica del sisema Cómo evolucioa las disias variables a lo largo del iempo Sisemas de

Más detalles

Séptima clase. Señales exponenciales. Periodicidad en tiempo continuo y en tiempo discreto

Séptima clase. Señales exponenciales. Periodicidad en tiempo continuo y en tiempo discreto Uiversidad Disrial Fracisco José de Caldas - álisis de Señales y Sisemas - Marco. lzae Sépima clase. Señales expoeciales. Periodicidad e iempo coiuo y e iempo discreo E la auraleza so comues los sisemas

Más detalles

FUNCIÓN DE ONDA Y ECUACIÓN DE ONDA EN UNA DIMENSIÓN

FUNCIÓN DE ONDA Y ECUACIÓN DE ONDA EN UNA DIMENSIÓN Departameto de Matemáticas Física FUNCIÓN DE ONDA ECUACIÓN DE ONDA EN UNA DIMENSIÓN Fís. Jorge Eardo Aguilar Rosas El movimieto olatorio e u sistema se preseta cuado ua perturbació procida e u lugar del

Más detalles

México. Benítez, Alberto La forma triangular de la matriz de Leontief Economía: Teoria y práctica, núm. 30, enero-junio, 2009, pp.

México. Benítez, Alberto La forma triangular de la matriz de Leontief Economía: Teoria y práctica, núm. 30, enero-junio, 2009, pp. Ecoomía: Teoria y prácica ISSN: 088-8250 eyp@xaum.uam.mx Uiversidad Auóoma Meropoliaa Uidad Izapalapa México Beíez, Albero La forma riagular de la mariz de Leoief Ecoomía: Teoria y prácica, úm. 30, eero-juio,

Más detalles

MODULO IV. ESTIMACIÓN POR INTERVALOS DE CONFIANZA ANÁLISIS DE CASOS DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTADÍSTICA INFERENCIAL

MODULO IV. ESTIMACIÓN POR INTERVALOS DE CONFIANZA ANÁLISIS DE CASOS DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTADÍSTICA INFERENCIAL MODULO IV. ETIMACIÓN POR INTERVALO DE CONFIANA ANÁLII DE CAO DOCENTE: JUAN CARLO VERGARA CHMALBACH ETADÍTICA INFEREIAL CAO : ETIMACIÓN DE LA MEDIA CON DEVIACIÓN POBLACIONAL CONOCIDA La rimera esimació

Más detalles

= 9 3 x (fig. 2.9.), se nota que para obligar a (9

= 9 3 x (fig. 2.9.), se nota que para obligar a (9 .. EJERCICIOS RESUELTOS... Sobre límies de ucioes:. Usdo l deiició de límie de u ució, pruébese que: (9 6 Solució: Se u úmero poivo culquier ddo. Se debe llr u δ > l que: 5 δ 9 6 ( ( ( Pr ello codérese

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

Series de Fourier Aplicación: Análisis de Señales

Series de Fourier Aplicación: Análisis de Señales Series de Fourier Aplicació: Aálisis de Señales Jua E Dombald Estudiate de Igeiería Electróica Uiversidad Nacioal del Sur, Avda Alem 53, B8CPB Bahía Blaca, Argetia Juae_ce@hotmailcom Agosto Resume: E este

Más detalles

Nucleación y crecimiento unidimensional

Nucleación y crecimiento unidimensional Nucleació y crecimieo uidimesioal Pare II. Aálisis de la ecuació de Avrami Virgilio A. Gozález G.* Carlos A. Guerrero S, Jua Aguilar G.* ABSTRACT The applicaio of he Avrami-Johso-Mehl model o he uidimesioal

Más detalles

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica.

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica. Métodos Numéricos Métodos aalíticos Solució de ecuacioes difereciales Métodos Numéricos Métodos aalíticos: La solució es ua relació fucioal etre dos variables. No todas las ecuacioes difereciales tiee

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

MATEMÁTICAS II TEMA 1 Matrices: Problemas propuestos

MATEMÁTICAS II TEMA 1 Matrices: Problemas propuestos Álger: Mrices wwwmemicsjmmmcom José Mrí Mríez Medio MTEMÁTIS II TEM Mrices: Prolems propuesos Opercioes co mrices Dds 7, 9 y, hll dos úmeros y pr que se verifique que Dds ls mrices y, hll ors dos mrices

Más detalles

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER.

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER. EJERCICIOS DE FORMAS DE ONDA DESARROLLOS EN SERIE DE FOURIER. EJERCICIO. Hallar el valor eficaz,, e las foras e oa repreaas e la figura. RESOLUCIÓN: Los valores eficaces e las res foras e oa so iguales.

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA Tema Cálculo de primiivas Maemáicas II º Bachillerao TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es ua primiiva de f() si F () = f() Ejemplos: fució:

Más detalles