Práctica 3 (Resolución)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 3 (Resolución)"

Transcripción

1 Operaciones y funciones con Derive: A ROW [n,...] A COL [n,...] APPEND(A, B) CHARPOLY(A, λ) EIGENVALUES(A) Submariz formada por las filas de A indicadas. Submariz formada por las columnas de A indicadas. Añade bajo A las filas de B (A y B marices con el mismo n o de columnas). Polinomio caracerísico de A en la variable λ. Auovalores de A.. Sean T : IR 6 IR 6 una ransformación lineal, B w, w, w, w 4, w, w 6 una base de IR 6 y A la mariz de T respeco de la base B A : a) y b) Obener el polinomio caracerísico de A, y los auovalores de A indicando su muliplicidad. El polinomio caracerísico de A es P(λ) : CHARPOLY(A, λ) λ(λ 4λ 4 + λ + λ 4λ 8) y los auovalores EIGENVALUES(A) [,, ] La muliplicidad de λ es m y, para obener la del reso, basa con facorizar el polinomio FACTOR(P(λ), λ, Real) λ(λ + ) (λ ) luego λ con m y λ con m. (También puede obenerse dividiendo el polinomio por facores λ + y λ.) c) Denoemos por λ el auovalor de A con mayor valor absoluo. Alguno de los vecores de abajo verifica que T (v ) λ v? v w + w + w w w 4 w 6 v w + w w + w 6 λ y, para comprobar la igualdad, basa hacerlo con las coordenadas en una base, es decir, si [T (v )] B [v ] B. Como [T (v )] B A[v ] B se reduce a comprobar si A[v ] B [v ] B : 7 A[v] B A 7 Luego NO es ciero en el primer caso y SÍ en el segundo. 4 A[v] B A Maemáicas I [xxv]

2 d) Para cada uno de los espacios caracerísicos asociados a los auovalores, V (λ), obener las coordenadas, en la base B, de los vecores de una base. Los espacios caracerísicos V (λ) se definen como V (λ) v IR 6 : T (v) λv v IR 6 : A[v] B λ[v] B v IR 6 : [T (v)] B λ[v] B v IR 6 : (A λi)[v] B luego las soluciones del sisema (A λi)x son las coordenadas, en la base B, de los vecores de V (λ). Tomando una base del espacio de soluciones, endremos lo pedido. Para faciliar las cosas consruimos la función: En V (): soluciones de (A I)x, luego de Am()x ROW REDUCE(Am()) Am(λ) : A λ IDENTITY MATRIX(6) x x x x4 x Compleando con la ecuación, el vecor [,,,,, ] es base del espacio de soluciones. En V (): soluciones de Am()x ROW REDUCE(Am()) x x x x4 [ ] x Compleando con las ecuaciones x x y, los vecores [,,,,, ] y [,,,,, ] forman una base del espacio de soluciones. En V (): soluciones de Am()x ROW REDUCE(Am()) x x x x4 x Compleando con x4 x4, ] x [ x y ], la base del espacio ] de soluciones la forman los vecores [,,,,,,,,,,, y [,,,,,. e) Se cumplen odas las condiciones del eorema de diagonalización? Diagonaliza? Si se cumplen, pues m + m + m 6 y luego SÍ diagonaliza la mariz A. dim V () m dim V () m dim V () m f) Si A es diagonalizable obener la mariz P y la mariz diagonal D, ales que P AP D. Maemáicas I [xxvi]

3 Para enconrar P basa con colocar como columnas las coordenadas, en la base B, de los vecores de las bases de los espacios caracerísicos halladas en el aparado anerior: P : D : P A P g) Si A es diagonalizable y B es la base formada por los vecores de abajo B (,,,,, ), (,,,,, ), (,,,,, ), (,,,,, ), (,,,,, ), (,,,,, ) Respeco a que base B la mariz de T es la diagonal D? la mariz P es la mariz del cambio de base, de la base B en la base B. Conocida B, la mariz Q del cambio de base de B a la base canónica es: Q : luego P : Q P 7 es la mariz del cambio de base de B en la base canónica. Como, por columnas, esá formada por las coordenadas de los vecores de B en la base canónica, las columnas de P son los vecores de la base B.. Sea V un espacio vecorial, B u, u,..., u n una base de V y, un produco inerno definido en V. Enonces, si v λ u + λ u + + λ n u n y w µ u + µ u + + µ n u n, u, u u, u u, u n µ ( ) u, u u, u u, u n µ v, w λ λ λ n [v ] B M [w] B u n, u u n, u u n, u n µ n La mariz M se denomina mariz del produco inerno asociada a la base B. a) Qué caracerísica reseñable debe de ener M? Como el produco inerior es conmuaivo, v, w w, v, lo más reseñable es que la mariz M debe ser simérica. También, como w, w > si w, los elemenos de la diagonal deben ser posiivos. b) Si B es una base oronormal para ese produco, cómo es M? Si B es oronormal, u i, u i y, si j k, u j, u k. Luego M se reduce a la idenidad (M I ). c) La mariz M de la derecha, no puede ser la mariz de un produco inerno en IR. Por qué? En la diagonal aparecen ceros. Luego sería u, u con lo que u pero el no puede formar pare de una base. M Maemáicas I [xxvii]

4 d) Consideremos la forma cuadráica en IR, dada por Q(x) x M x en la base canónica. Obener una mariz diagonal para Q y la base a la que esá asociada. Mediane operaciones elemenales en las filas y columnas de M conseguiremos una mariz diagonal. Repiiendo esas mismas operaciones sólo sobre las columnas de la idenidad conseguiremos la mariz del cambio de base. Hacer operaciones en las columnas de la mariz es lo mismo que hacer operaciones en las filas de la mariz raspuesa y, como la mariz es simérica, hay que hacer las mismas operaciones por filas que por columnas para conseguir ceros. Luego podemos usar la orden PIVOT para hacer operaciones en las filas y volver a usar PIVOT sobre la raspuesa de la obenida, ya que las operaciones a realizar son las mismas. En efeco, M:PIVOT(M,,) 4 y como M al hacer PIVOT(M,,) se realizarán las mismas operaciones que anes (la primera columna de M es igual a la primera columna de M ). Junando ambas operaciones en una sola, haríamos PIVOT( PIVOT(M,,),,) es decir, usando M fc para indicar operaciones en fila o columnas: M PIVOT M f Mf PIVOT (Mf ) f M fc En nuesro caso, ambién deseamos hacer sobre la idenidad las mismas operaciones que en las columnas de M. Para ello, debemos junar I con M después de hacer las operaciones en las filas, pero anes de hacer las operaciones en las columnas; el proceso sería algo como eso: [ ] M PIVOT APPEND Mf M f I [ Mf I ] ] PIVOT [(Mf ) f (I ) f Expresado con operaciones: ( ( ) ) Gr : PIVOT APPEND PIVOT(M,, ), I,, de donde se obienen las nuevas marices M fc : Gr ROW [,,, 4, ] I c : Gr ROW [6, 7, 8, 9, ] [ Mfc I c ] ROW M fc ROW I c Si la operación no es pivoar sino inercambiar filas, las operaciones a realizar serán ( ( ) ) Gr : SWAP ELEMENTS APPEND SWAP ELEMENTS(M,, ), I,, Realizando odo el proceso compleo (las operaciones se deallan después), obendremos: M I () M () I M I Maemáicas I [xxviii]

5 () 8 7 Donde M (4) I M4 () I D P () Gr : PIVOT(APPEND(PIVOT(M,, ), I),, ) M : Gr ROW [,,, 4, ] I : Gr ROW [6, 7, 8, 9, ] () Gr : SWAP ELEMENTS(APPEND(SWAP ELEMENTS(M,, ), I),, ) M : Gr ROW [,,, 4, ] I : Gr ROW [6, 7, 8, 9, ] () Gr : PIVOT(APPEND(PIVOT(M,, ), I),, ) M : Gr ROW [,,, 4, ] I : Gr ROW [6, 7, 8, 9, ] (4) Gr4 : PIVOT(APPEND(PIVOT(M,, ), I),, ) M4 : Gr4 ROW [,,, 4, ] I4 : Gr4 ROW [6, 7, 8, 9, ] () Gr : PIVOT(APPEND(PIVOT(M4, 4, 4), I4), 4, 4) D : Gr ROW [,,, 4, ] P : Gr ROW [6, 7, 8, 9, ] Obenemos la mariz diagonal D y la mariz P del cambio de base de la nueva a la canónica (la fijada previamene). Como la base inicial es la canónica, los vecores de la nueva base son las columnas de P. e) Q se clasifica como: Indefinida, pues iene elemenos posiivos y negaivos en D. Maemáicas I [xxix]

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es Álgebra Manuel Hervás Curso - EJERCICIOS DE AUTOVALORES Y AUTOVECTORES EJERCICIO. MATRIZ DIAGONAL La mariz de un endomorfismo en R es A. Calcular los auovalores su muliplicidad algebraica. Calcular los

Más detalles

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x ÁLGEBRA MANUEL HERVÁS CURSO - Enunciado Se considera el espacio vecorial SOLUCIONES ESPACIO EUCLÍDEO referido a la base B e, e, e coordenadas en la base dual B* f, f, f. Hallar las de la forma lineal que

Más detalles

Unidad 4 Espacios vectoriales. Aplicaciones lineales

Unidad 4 Espacios vectoriales. Aplicaciones lineales Unidad 4 Espacios vecoriales. Aplicaciones lineales 5 6 SOLUCIONES. Las propiedades asociaiva y conmuaiva se verifican ya que la suma de números reales que se esablecen en los elemenos de las marices cumple

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n:

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n: EJERCICIOS. PLICCIONES DE LOS DETERMINNTES.. Calcular el siguiene deerminane de orden n: n n n n n n n n n n n n n. Demosrar que si es una mariz al que n n, se verifica lo anerior? =, enonces. Y si es

Más detalles

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante MATEMÁTICAS II Examen del /09/006 Soluciones Imporane Las calificaciones se harán públicas en la página web de la asignaura y en el ablón de anuncios del Dpo. de Méodos Cuaniaivos en Economía y Gesión,

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D.

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D. MTEMÁTICS II NDLUCÍ Pruebas de acceso a la Universidad ÁLGEBR SOLUCIONES. (--) Tienen inversa las marices y D. = y D =. (-B-) a) Rango de. Si a y Si a = o Sisema = B a, ( ) R = a =, ( ) R = Si a y a, S.C.D.

Más detalles

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Universidad Simón Bolívar Deparameno de Maemáicas Puras y Aplicadas Maemáicas IV (MA-5 Sepiembre-Diciembre 8 4 ra Auoevaluación Maerial Cubiero: La presene auoevaluación versa sobre el maerial cubiero

Más detalles

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante MATEMÁTICAS II Examen del 8/05/0 Solución Imporane Las calificaciones se harán públicas en el aula virual el 08/06/0. La revisión será el /06/0 y el /06/0 de -3 horas en la sala D-4-. MATEMÁTICAS II 8/05/0

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos:

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos: Unidad 1 Marices 5 SOLUCIONES 1. Realizando las operaciones indicadas y aplicando la igualdad de marices, obenemos: Resolviendo el sisema, a = 5, b = 12, c = 6, d= 4. 2. La solución en cada caso queda:

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz Elemenos de álculo Numérico Trabajo Prácico N o Elemenos de álculo Numérico (iencias Biológicas) Trabajo Prácico N Subespacios, Rango de una mariz Deerminar cuáles de los siguienes subconjunos son subespacios

Más detalles

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1 1. Sea V ALGEBRA II Ejemplo 1 a) Probar que W a, b,0 a, b y U aaa,, a son subespacios de V, b) Deerminar una base de W y una base de U, c) Probar que cada vecor en V se puede expresar de manera única como

Más detalles

Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez

Sistemas y Señales I. Ecuaciones de Estado. Autor: Dr. Juan Carlos Gómez Sisemas y Señales I Ecuaciones de Esado Auor: Dr. Juan Carlos Gómez Variables de Esado Definición: Las Variables de Esado son variables inernas del sisema, cuyo conocimieno para odo iempo, juno con el

Más detalles

Funciones construidas para realizar de manera automática algunas operaciones: #1: RESTA_COL(M_, i_, j_, r_) SUBTRACT_ELEMENTS(M_`, i_, j_, r_)`

Funciones construidas para realizar de manera automática algunas operaciones: #1: RESTA_COL(M_, i_, j_, r_) SUBTRACT_ELEMENTS(M_`, i_, j_, r_)` Funciones construidas para realizar de manera automática algunas operaciones: #1: RESTA_COL(M_, i_, j_, r_) SUBTRACT_ELEMENTS(M_`, i_, j_, r_)` La función RESTA_COL(M,i,j,r) resta a la columna i de la

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio, Opción Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

IV.1. DEFINICIÓN DE APLICACION LINEAL. PROPIEDADES. f : E F. La condición I) indica que la imagen de la suma de dos vectores es la suma de las

IV.1. DEFINICIÓN DE APLICACION LINEAL. PROPIEDADES. f : E F. La condición I) indica que la imagen de la suma de dos vectores es la suma de las Tema IV APLIICACIIONES LIINEALES Objeivos Conocer el concepo de aplicación lineal enre dos espacios vecoriales. Saber comprobar si una deerminada ransformación es lineal. Saber calcular las imágenes mediane

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

Reducción de matrices. Caso no diagonalizable

Reducción de matrices. Caso no diagonalizable Tema 5 Reducción de marices. Caso no diagonaliable Ejemplo inroducorio. El siguiene es un ejemplo de lo que se llama una recurrencia vecorial. Un curso de Algebra Ecuaciones Diferenciales se impare en

Más detalles

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3.

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3. DETERMINNTES DETERMINNTES DE ORDEN 1, 2 y 3 El deerminane de una mariz cuadrada es un número real asociado a dicha mariz que se obiene a parir de sus elemenos. Lo denoamos como de () o. Llamamos orden

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS Sea f : V V un endomorfismo de V, f End(V, con V un K-espacio vectorial de dimensión n, y sean B = {e 1,..., e n } B = {e 1,..., e n} bases de V. La matriz de f

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva

Más detalles

XA + A B = A, siendo 0 0 1

XA + A B = A, siendo 0 0 1 MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA Ejercicio. (Examen Junio 202 Específico Opción A) 2 0 [2'5 punos] Considera las marices AA = 0 2, BB = 0 2 0 y CC = 0 2. 2 Deermina, si exise, la mariz

Más detalles

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4 Marices ANTES DE COMENZAR RECUERDA resuelve esos sisemas. a) x + y + z x y z x y + z b) y + z x + y z x y z 7 a) x + y + z x x y z y z ( yz) y z x y + z yz y+ z y 7z y 7z 6z z z y z y x + y + z y, z x

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 217

10Soluciones a los ejercicios y problemas PÁGINA 217 PÁGIN 217 Pág 1 P RCTIC 1 a) Represena en papel cuadriculado la figura H 1 obenida a parir de H mediane la raslación del vecor 1 (3, 2) b) Dibuja la figura H 2 ransformada de H 1 mediane la raslación 2

Más detalles

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis.

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis. Marices Mariz: Es el ordenamieno recangular de escalares en filas y columnas, encerradas en un corchee ó parénesis. Las marices se designan así: æa11 a1 a13 a1 n ö a1 a a3 an a31 a3 a33 a 3n am 1 am am3

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Tema 2 Algebra de matrices

Tema 2 Algebra de matrices Tema lgebra de marices. Efecúa odos los posibles producos enre las siguienes marices: 8 8 7 7 7 C D ; C ; D 7 ; 8 C ; 8 8 D C 7 DD hora resolveremos el problema con Wiris:. Lo primero que debemos hacer

Más detalles

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz

Más detalles

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS 0- y 0 - Ejercicio. (Examen Junio 0 Específico Opción A) ['5 punos] Considera las marices 0 A = 0 B = 0 0 y C = 0 Deermina, si exise, la mariz X

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

4.- Dualidad. Método Dual del Símplex.

4.- Dualidad. Método Dual del Símplex. Programación Maemáica para Economisas 132 4.- Dualidad. Méodo Dual del Símplex. Como ya vimos en el capíulo primero, dado un problema de programación no lineal, donde su lagrangiana oma la forma: se denomina

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

1. DIAGONALIZACIÓN DE ENDOMORFISMOS

1. DIAGONALIZACIÓN DE ENDOMORFISMOS . DIAGONALIZACIÓN DE ENDOMORFISMOS. Se considera la matriz: A ( 2 3 4 3 con coecientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de A. Calcular

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el

Más detalles

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m . Primeras definiciones Una mariz es un conjuno de elemenos (números) ordenado en filas y columnas. En general una mariz se nombra con una lera mayúscula y a sus elemenos con leras minúsculas indicando

Más detalles

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz.

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz. Métodos Numéricos: soluciones Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Mayo 8 Versión. Ejercicio Dada

Más detalles

APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN

APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN kf Propósio Al finalizar esa sección, quien impare el curso habrá logrado que los esudianes: Reconozcan que para obener la función F que modela el problema,

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1. Se considera la matriz: A = ( 2 3 4 13 con coeficientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de

Más detalles

Examen Final de Ecuaciones Diferenciales Septiembre 2007

Examen Final de Ecuaciones Diferenciales Septiembre 2007 Eamen Final de Ecuaciones Diferenciales Sepiembre 007 Problema La siguiene ecuación diferencial de primer orden se puede resolver por diferenes méodos según cómo se planee. d d = + () Conesar las siguienes

Más detalles

( ) ( 15 50) 0

( ) ( 15 50) 0 PRUE DE CCESO L UNIVERSIDD JUNIO 7 OPCION ) Deermina dos números reales posiivos sabiendo que su suma es y que el produco de sus cuadrados es máximo. Sean x e y los números reales que suman y P x y odos

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006 EXAMEN DE MATEMÁTICAS I 8 de febrero de 006 MATEMÁTICAS I Eamen del º PARCIAL 8 de febrero de 006 Sólo una respuesa a cada cuesión es correca. Respuesa correca: 0. punos. Respuesa incorreca: -0. punos

Más detalles

Solución 3.- OPERACIONES CON MATRICES y 1 1 0

Solución 3.- OPERACIONES CON MATRICES y 1 1 0 .- CONCEPTO DE MATRIZ 3 7 Escriba la mariz 2 x 3 en la que a ij = 5i 4j Solución : 6 2 2 2 Calcule, si es posible, los valores de a y b para que sean iguales las marices 3a b 9 b a 7 2b a 7 A= B= a+ b

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C.

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C. EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. Para resolverla planeamos la susiución, de la que se sigue que d. Por ano,. 5 5.986 d d d C C. 5 5.986 Ln 5.986 C.. arcg C.. 5 5. 5 6 5 5 6 5 5 arcg5 C.

Más detalles

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Soluciones modelo (Sepiembre de 009) Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f( ) -+. Deermina la asínoa de la gráfica Evidenemene, la función no iene asínoas vericales,

Más detalles

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables.

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables. Capítulo 7 Formas cuadráticas. Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado de la norma de un vector

Más detalles

Métodos de Regresión

Métodos de Regresión Méodos de Regresión Ciencias y Técnicas Esadísicas Soluciones ejercicios: Regresión Lineal Múliple Versión 3 Emilio León P. Demosrar que la suma de cuadrados de los residuos n i viene dada por i n i y

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

CAPÍTULO 2 TRANSFORMACIONES LINEALES

CAPÍTULO 2 TRANSFORMACIONES LINEALES CAPÍULO RANSFORMACIONES LINEALES ransformación Sean V W espacios vectoriales. La función : V W recibe el nombre de transformación, los espacios V W se llaman dominio codominio de la transformación, respectivamente.

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Colegio Lux Mundi (Cajar-Granada) Examen Sepiembre de 009 Javier Cosillo Iciarra Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f ( x ) x -x+x. Deermina la asínoa de la

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1 º BACHILLERATO B MATEMÁTICAS II RESOLUCIÓN EJERCICIOS DE ÁLGEBRA SELECTIVIDAD 5 (Profesor: Rafael Núñez) Considera el sisema dado por AX = B α x A = B = α y X = y 3 4 α 3 z a) [ 75 punos] Deermina, si

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC TP3 Cáedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO Trabajo Prácico Nº 3: Esfuerzos inernos Diagramas

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Respuestas Guía de ejercicios N 7 parte Complemento Valores y Vectores Propios. λ 7 λ λ λ λ + 3λ. Sea v el vector propio asociado al valor propio λ 3 y v el vector propio asociado al valor propio λ. Para

Más detalles

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian

130 Matemáticas I. Parte IV. I.T.I. en Electricidad. Prof: Jos Antonio Abia Vian 30 Maemáicas I Pare IV Cálculo inegral en IR 3 Maemáicas I : Cálculo inegral en IR Tema Cálculo de primiivas. Primiiva de una función Definición 55.- Diremos ue la función F coninua en [a, b], es una primiiva

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Escribe una mariz A de orden 4 al que: i + j si i > j aij ij si i j i ( j) si i < j Haciendo los cálculos correspondienes enemos 6 9 8 A 5 4. Los

Más detalles

Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion.

Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion. Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion. Ejercicios 1.- Sea f End V. Demostrar que la suma de subespacios f-invariantes es f-invariante. Solución. Sean U, W dos subespacios f-invariantes

Más detalles

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva Asignatura: ÁLGEBRA LINEAL Fecha: 6 de Julio de Fecha publicación notas: 6 de Julio de Fecha revisión examen: de Julio de Duración del examen: horas y media APELLIDOS Y NOMBRE: DNI: Titulación:. ( punto:,

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

Solución de la ecuación homogénea

Solución de la ecuación homogénea Solución de la ecuación de esado en modelos lineales Solución de la ecuación homogénea Mariz de ransición Propiedades de la mariz de ransición Solución de la ecuación complea Cálculo de la mariz de ransición

Más detalles

Espacios vectoriales reales

Espacios vectoriales reales 140 Fundamentos de Matemáticas : Álgebra Lineal 9.1 Espacios vectoriales Capítulo 9 Espacios vectoriales reales Los conjuntos de vectores del plano, R 2, y del espacio, R 3, son conocidos y estamos acostumbrados

Más detalles

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al

Más detalles

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Suplene Junio de 07 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio opción A, Suplene Junio 07 (modelo 4) x+ si x < 0 Se sabe que la función f : R R dada por f(x) = x + acos(x)

Más detalles