CÁLCULO. GRADO EN INGENIERÍA INFORMÁTICA SEGUNDA PRUEBA PARCIAL. GRUPO A.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO. GRADO EN INGENIERÍA INFORMÁTICA SEGUNDA PRUEBA PARCIAL. GRUPO A."

Transcripción

1 CÁLCULO. GRADO EN INGENIERÍA INFORMÁTICA SEGUNDA PRUEBA PARCIAL. GRUPO A.. (2.5 puntos) Se considera la función F : [0, [ R definida por F() := 0 sen(t 2 ) dt 0. Demostrar que F es derivable en [0, [ y calcular su derivada. Solución. Es obvio que F = f g, donde g : [0, [ R se define como g() = y f : R R se define por medio de f () = 0 sen(t 2 ) dt. Para analizar la derivabilidad de F distinguimos dos casos: Si > 0, entonces g es derivable en. Por otro lado, la función f es derivable en todo punto de R por el teorema fundamental del cálculo y, en particular, lo es en g() =. Entonces, la regla de la cadena implica que F = f g es derivable en. Además, la regla de la cadena también dice que F () = f (g())g () = sen(g() 2 ) 2 = 2, donde en la segunda igualdad se ha usado que f (y) = sen(y 2 ) para todo y R, identidad que se obtiene invocando al teorema fundamental del cálculo. = 0. En este caso, no podemos proceder como antes, ya que en este caso g no es derivable en y, por tanto, la regla de la cadena no puede aplicarse aquí. Para dilucidar la derivabilidad de F, analizamos directamente la definición de derivabilidad. Estudiamos, por tanto, el siguiente límite. F() F(0) 0 sen(t 2 ) dt lím = lím. () El teorema fundamental del cálculo nos dice que en el límite anterior nos encontramos una indeterminación del tipo 0 0. Dado que F es derivable en R +, trataremos de aplicar la regla de L Hôpital, para lo cual analizamos el siguiente límite: F () lím = lím De nuevo nos encontramos ante una indeterminación del tipo 0 0, y de nuevo podría pensarse en una nueva aplicación de la regla de L Hôpital. Sin embargo, vemos que 2 = 2 = 2.

2 Teniendo en cuenta que lím 0 = (puede verse usando la regla de L Hôpital, aunque ya se vió este ejemplo eplícitamente en teoría) deducimos que lím 0 2 = 0. Ahora, la regla de L Hôpital implica que F() lím = 0. 0 Por definición, F es derivable en 0 y F (0) = 0, lo que finaliza el ejercicio. 2. (2.5 puntos) Calcular razonadamente la siguiente integral: arc 2 d. Solución. Daremos dos posibles formas de resolver esta integral: a) Identificamos el integrando como una potencia de función arco, con lo cual podemos pensar que aplicar la fórmula de integración por partes puede ser de utilidad. Para ello, hacemos u() = arc 2 ; u () = 2arc, 2 v () = ; v() =. Aplicando la fórmula de integración por partes tenemos que I = arc 2 d = arc 2 2 arc d. 2 De momento nos centramos en calcular arc 2 d. (2) Para ello, volvemos a observar que, al aparecer una función arco, puede ser interesante aplicar la fórmula de integración por partes. Para ello u() = arc, de donde u () =. Ahora bien, el candidato a función a integrar es 2 v () = 2. Nos damos cuenta de que se trata de la derivada de una función elemental, a saber v() = 2. Aplicando de nuevo la fórmula de integración por partes arc d = arc 2 2 arc ( 2 ) d Notemos que no hemos añadido aquí ninguna constante de integración, pues pretendemos añadirla directamente en la epresión de I.

3 Recomponiendo la información de (2a) con la integral anterior deducimos que arc 2 = arc 2 + 2arc k, donde k es la constante de integración. b) A simple vista podemos pensar que hacer un cambio de variable arc = t nos puede ayudar. Tratemos de hacerlo. Para ello, despejando tenemos que = φ(t) = sen(t), de donde φ (t) = cos(t). De acuerdo con el teorema del cambio de variable tenemos que I = arc 2 d = t 2 cos(t) dt. Nos centraremos en resolver la integral de la derecha. Tras este cambio, quizá se aprecia más facilmente que seremos capaces de resolver la integral después de aplicar dos veces la fórmula de integración por partes. Para ello hacemos u(t) = t 2 ; u (t) = 2t, v (t) = cos(t); v(t) = sen(t). Aplicando la fórmula de integración por partes deducimos que t 2 cos(t) dt = t 2 sen(t) 2 t sen(t) dt. De nuevo observamos que es interesante aplicar la fórmula de integración por partes en la integral de la derecha. Para ello, hacemos u(t) = t; u (t) =, v (t) = sen(t); v(t) = cos(t). Aplicando de nuevo la fórmula de integración por partes tenemos que t sen(t) dt = t cos(t) + cos(t) = t cos(t) + sen(t). Recomponiéndolo todo tenemos que t 2 cos(t) dt = t 2 sen(t) + 2t cos(t) 2sen(t) + k. Para terminar necesitamos epresar la función anterior en términos de a través del cambio = φ(t) o, en otras palabras, deshacer el cambio de variable. Para ello, notemos que t = arc y que sen(t) = sen(arc ) =. De la identidad fundamental de la trigonometría es claro que 2 cos(t) = sen(t) 2 = 2. Finalmente, deshaciendo el cambio tenemos que arc 2 = arc 2 + 2arc k, donde k es la constante de integración. 2 Notemos que como t = arc entonces t [ π 2, π 2 ], luego cos(t) 0, en otras palabras, cos(t) = cos(t) = cos 2 (t) = sen 2 (t).

4 . (2.5 puntos) Se considera la siguiente sucesión: := 2 y n+ := n para cada n N. Demostrar que { n } es decreciente y converge hacia 0. Solución. Demostremos que la sucesión { n } es decreciente, es decir, que n+ n se cumple para cada n N, lo cual se demostrará por inducción en n. Esto se hará, según la teoría, en dos pasos: a) Comprobación del caso n =. Necesitamos ver que 2. Pero notemos que esto es trivial, puesto que 2 2 = 2 = =. b) Supuesto que n+ n (a lo cual llamaremos hipótesis de inducción), demostremos que n+2 n+. Ahora n+2 = (n+)+ = n+. Afirmo que la hiopótesis de inducción implica que n+ n. Veámoslo: n+ n n n+ n n+ n+ n, donde la última desigualdad es cierta por hipótesis de inducción. En conclusión, hemos demostrado que la hipótesis de inducción implica que n+2 n = n+. Lo anterior demuestra, por inducción, que la sucesión es decreciente. Para ver que es convergente, demostremos que { n } está acotada inferiormente. Para buscar un candidato a candidato a cota inferior, supongamos que { n } fuese convergente. Entonces { n } L. Entonces { n+ } L. Por otro lado, como n+ = n para todo n N, de la continuidad de la función raiz cuadrada tendríamos por teoría que { n+ } L. Como consecuencia de la unicidad de límite para una sucesión, tendríamos que L = L. Para ver quién debe ser L, despejamos L = L L = L L = ( L) 2 ( L)( L ) = L( L) = 0. De lo anterior deducimos que L sería, o bien 0, o bien. Pero el límite L = sería imposible puesto que { n } es decreciente y = /2 <. Por tanto, si { n } fuese convergente, necesariamente tendríamos que { n } 0. Este hecho junto al decrecimiento de la sucesión nos da como candidato a cota inferior el 0. Por tanto, demostremos que n 0 se cumple para todo n N. Esto lo demostraremos por inducción. Por un lado, 0 es obvio. Ahora, supongamos por hipótesis

5 de inducción que n 0, y demostremos que esto implica que n+ 0. Para ello, notemos que n+ = n. Como antes, veamos que la hipótesis de inducción implica que n 0. Para ello, argumentamos de la siguiente manera: n 0 n n 0 n, donde la segunda equivalencia se sigue del hecho de que la función 2 es creciente en R + 0. Por otra parte, notemos que la desigualdad de la derecha es cierta por hipótesis de inducción. Por tanto, hemos demostrado que la hipótesis de inducción implica que n+ 0, como queríamos. Esto prueba por inducción que la sucesión { n } está acotada inferiormente (de hecho por cero). Por ser una sucesión decreciente, tenemos que la sucesión { n } es convergente por un teorema de clase. Por lo que se ha argumentado, el único límite posible para la sucesión es el 0, de donde queda demostrado que { n } 0, lo que finaliza el ejercicio. 4. (2.5 puntos) Estudia el carácter de la serie log(n) n N n 2. Solución. Prejuzgando la serie, vemos un cociente de una potencia de log y de n 2. La escala de infinitos debería decir que la serie debe comportarse como la serie n N, con lo cual debe ser convergente y, por otro lado, nos motiva el hecho n 2 de comparar con una serie armónica n N n α para un cierto α >. Sin embargo, notemos que la comparación con la serie n N no funciona porque la sucesión n 2 resultante es la {log(n) }, que diverge. Parece natural, por tanto, comparar con la serie n N n α para < α < 2, para que al comparar nos quede un cierto cociente del tipo { log(n) }, para β > 0, lo cual sí que converge a cero por escala de infinitos. n β Esto motiva a comparar, por ejemplo, con la serie n N, la cual es una serie convergente. Para aplicar el criterio de comparación por paso al límite, estudiamos la siguiente sucesión: log(n) { n 2 log(n) } { (log(n) ) } = = n 6. n n 2 Notemos que la sucesión anterior converge a cero por escala de infinitos. Entonces, como la serie n N es convergente, el criterio de comparación por paso al límite implica que la serie n 2 es convergente, como queríamos. log(n) n N n 2 n 2

Examen de Cálculo infinitesimal PROBLEMAS. 1 + a + a a n a n+1

Examen de Cálculo infinitesimal PROBLEMAS. 1 + a + a a n a n+1 Examen de Cálculo infinitesimal. 4-2-203. PROBLEMAS. Calcular el límite de la sucesión definida por donde a >. + a + a 2 + + a n a n+ Solución. Sea x n = + a + a 2 + + a n, y n = a n+. Es claro que y n

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua Apellidos y nombre: Análisis Matemático. Convocatoria de enero. 9--26. Prueba Global. Evaluación Continua Instrucciones: No abandonar el examen durante los primeros 3 minutos. Tiempo para esta parte del

Más detalles

PROYECTO MATEM. Formas indeterminadas y la regla de L`Hôpital. En secciones anteriores se calcularon límites de algunas formas indeterminadas del tipo

PROYECTO MATEM. Formas indeterminadas y la regla de L`Hôpital. En secciones anteriores se calcularon límites de algunas formas indeterminadas del tipo Formas indeterminadas y la regla de L`Hôpital En secciones anteriores se calcularon ites de algunas formas indeterminadas del tipo, y, recurriendo a procesos algebraicos de factorización y racionalización.

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números Capítulo 4 Sucesiones y series numéricas 4.1. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s 1,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación

Más detalles

Práctica 1. Continuidad Ejercicios resueltos

Práctica 1. Continuidad Ejercicios resueltos Práctica 1. Continuidad Ejercicios resueltos 1. Estudiar la continuidad de los campos escalares definidos por f(x, y) = x y x 2 + y 2 g(x, y) = x2 y x 2 + y 4 h(x, y) = x y2 x 2 + y 4 para todo (x, y)

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida

Más detalles

EJERCICIOS ADICIONALES.

EJERCICIOS ADICIONALES. UNIVERSIDAD SIMON BOLIVAR PREPARADURIA DE MATEMATICAS MATEMATICAS 4 (MA-5) Miguel Guzmán (magt_3@hotmail.com) Tema: SUCESIONES EJERCICIOS ADICIONALES..- Considere la sucesión establecida por la relación

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Series numéricas y de potencias. 24 de Noviembre de 2014

Series numéricas y de potencias. 24 de Noviembre de 2014 Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios

Más detalles

Soluciones del Segundo Parcial 22 de diciembre de 2015

Soluciones del Segundo Parcial 22 de diciembre de 2015 Grado M+I Curso 2015-2016 Apellidos: Nombre: Cálculo I Soluciones del Segundo Parcial 22 de diciembre de 2015 Matemática Aplicada ETSIINF-UPM Nota: /10 Parte 1. Teoría (2 puntos). 1. Enuncia el teorema

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas Capítulo 4 Sucesiones y series numéricas 4.. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación

Más detalles

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia Cálculo Integral Criterios de convergencia Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 205 Criterios de convergencia Cuando estudiamos las

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas Sucesión Se llama sucesión a una función f : N R que a cada natural n asocia un número real a n. Se denota por {a n } o (a n), o {a 1,a 2,...,a n,...}. Ejemplos 1, 4 3, 9 7, 16 15,..., n 2 2 n 1,... {0.3,0.33,0.333,...}

Más detalles

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos Convergencia y divergencia Series numéricas (I Definición Sea { } una sucesión de reales y sea la sucesión asociada {S n } de sumas parciales, S n = a + a 2 + a 3 + +. LLamaremos serie a la pareja formada

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de septiembre de sena + 4sen(a/2) + 9sen(a/3) + + n 2 sen(a/n) n 2.

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de septiembre de sena + 4sen(a/2) + 9sen(a/3) + + n 2 sen(a/n) n 2. Licenciatura en Matemáticas Soluciones del examen final de de septiembre de 00 Ejercicio 1. (a) Calcular: lím n sena + 4sen(a/) + 9sen(a/3) + + n sen(a/n) n (a + 1)(a + ) (a + n) (b) Estudiar la convergencia

Más detalles

Funciones continuas e inyectivas

Funciones continuas e inyectivas Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma:

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma: TEMA 9. DERIVADAS. DEFINICIÓN DE DERIVADA. Se define la derivada de una función f() en un punto 0 como la pendiente de la recta tangente a f en dico punto, y se designa por f ( 0 ). Veamos cómo podemos

Más detalles

Matemática Aplicada - Licenciatura de Farmacia- Hoja 2 4

Matemática Aplicada - Licenciatura de Farmacia- Hoja 2 4 Matemática Aplicada - Licenciatura de Farmacia- Hoja 2 4 7 a) La función f(x) = x 4 2x 2 tiene por dominio todo R, es continua y derivable en todo su dominio. Se trata de una función con simetría par ya

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Febrero 27 de Enero de 26 Nombre y Apellidos: DNI: 6.25 p.) ) Se considera la función f : [, ) R definida

Más detalles

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x = ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 7 7.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7.2 FUNCIÓN DERIVADA 7.3 REGLAS DE DERIVACIÓN 7.4 ESTUDIO DE LA DERIVABILIDAD DE UNA FUNCIÓN DEFINIDA D A TROZOS APLICACIONES DE LAS DERIVADAS 7.5 RECTA TANGENTE

Más detalles

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0.

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre de Septiembre de 008 Nombre y Apellidos: DNI: (6.5 p.) ) Se considera la función f : [0,

Más detalles

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real.

DERIVADAS. Dada una función y =f(x), llamamos derivada de la función f en el punto x = a, f (a), al límite f '( y es un número real. .-Deinición DERIVADAS Dada una unción y (), llamamos derivada de la unción en el punto a, (, ( a + ) al límite '( y es un número real. 0 Cuando eiste este límite, decimos que la unción es derivable en

Más detalles

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0 Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Diciembre 2 de Diciembre de 25 Nombre y Apellidos: DNI: (2.5 p.) ) Se considera la función f : R R definida

Más detalles

Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García. UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior

Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García. UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior INGENIERÍAS TÉCNICAS INDUSTRIALES TEORIA DE CÁLCULO I Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 2 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 2

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 2 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 2 Matemática Aplicada - Licenciatura de Farmacia - Curso 5/6 - HOJA SOLUCIONES DE LOS EJERCICIOS DE LA HOJA Para ver que las ecuaciones dadas poseen una única raíz real, intentaremos aplicar el teorema de

Más detalles

IMPORTANTE: Entregar las soluciones de las preguntas 1 y 2 (teoría) en el mismo folio del examen

IMPORTANTE: Entregar las soluciones de las preguntas 1 y 2 (teoría) en el mismo folio del examen Apellidos, Nombre: 1 a PRUEBA DE CÁLCULO INFINITESIMAL, GRUPO D, GRADO EN MATEMÁTICAS IMPORTANTE: Entregar las soluciones de las preguntas 1 y 2 (teoría) en el mismo folio del examen 1. (2 ptos) Demuestra

Más detalles

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0.

ax + b (x 1)(x 4). c) (2.0 pto.) Sabiendo que f(0) = 2, escriba el desarrollo de Taylor de orden 3 para f en torno a x 0 = 0. Pauta Control 1 MA1002 Cálculo Diferencial e Integral Fecha: 21 de Abril de 2017 Problema 1. Considere la función f : R \ {1, 4} R, tal que su derivada es f (x) = ax + b (x 1)(x 4). a) (1.0 ptos.) Sabiendo

Más detalles

presentan las definiciones básicas, se analizan los resultados más importantes y se discuten

presentan las definiciones básicas, se analizan los resultados más importantes y se discuten 1 Conceptos Básicos 1.1 Introducción En este capítulo hacemos una revisión del método de epansiones asintóticas. Se presentan las definiciones básicas, se analizan los resultados más importantes y se discuten

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones Variable Compleja I (205-6) Ejercicios resueltos Las convergencias puntual y uniforme de sucesiones y series de funciones Recordemos la definición de la convergencia uniforme: f n (z) f (z) en un conjunto

Más detalles

Sucesiones y Series Sucesiones

Sucesiones y Series Sucesiones Capítulo 6 Sucesiones y Series 6.. Sucesiones En particular estudiaremos las sucesiones de números reales, es decir, las que verifican la siguiente definición. Definición 6... Llamaremos sucesión a la

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

4. Resolución de indeterminaciones: la regla de L Hôpital.

4. Resolución de indeterminaciones: la regla de L Hôpital. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Funciones y derivada. 4. Resolución de indeterminaciones: la regla de L Hôpital. Sean f y g dos funciones derivables en un intervalo abierto I R y sea

Más detalles

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que:

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que: Métodos de integración: 1) Método de descomposición Para calcular una integral indefinida, usamos las propiedades de las integrales y las igualdades que conozcamos para descomponer la integral en otras

Más detalles

Series. Diremos que una serie de números complejos

Series. Diremos que una serie de números complejos Series Una sucesión de números complejos a, a 2, a 3,..., a n,... en C converge al número complejo a (a n a) si para cada ɛ > 0, existe un N tal que a n a < ɛ siempre que n N. Diremos que una serie de

Más detalles

PROBLEMAS DE CÁLCULO I

PROBLEMAS DE CÁLCULO I INGENIERÍAS TÉCNICAS INDUSTRIALES PROBLEMAS DE CÁLCULO I UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas ING. TEC. IND. MECANICA, ELECTRICIDAD Y ELECTRÓNICA 24

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x. Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

Reglas para el cálculo de límites

Reglas para el cálculo de límites Reglas para el cálculo de ites Pedro González Ruiz Sevilla, diciembre 9. Introducción El objetivo de éste artículo es ofrecer al alumno un conjunto de reglas para tener éito en el cálculo de ites. El profesor,

Más detalles

Las funciones sen 1 x, cos 1 x y otros ejemplos relacionados c

Las funciones sen 1 x, cos 1 x y otros ejemplos relacionados c Las funciones sen 1 x, cos 1 x y otros ejemplos relacionados c Juan Carlos Ponce Campuzano j.ponce@uq.edu.au UQ 13 de abril de 2015 1 Contenido 1. Introducción 5 2. Análisis 7 3. Ejemplos 11 3.1. Ejemplos

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Mariano Suárez-Alvarez. 7 de mayo, Límites superiores y límites inferiores

Mariano Suárez-Alvarez. 7 de mayo, Límites superiores y límites inferiores ĺımsup y ĺıminf Mariano Suárez-Alvarez 7 de mayo, 2013 1.1. Definiciones 1. Límites superiores y límites inferiores 1.1. Sea (a n ) n 1 una sucesión de números reales que es acotada superiormente. Si para

Más detalles

8. Consecuencias de la Teoría de Cauchy.

8. Consecuencias de la Teoría de Cauchy. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 2006. 77 8. Consecuencias de la Teoría de Cauchy. 8.1. Principio del módulo máximo. Definición 8.1.1. Sea f una función continua en Ω. Se dice

Más detalles

A continuación daremos algunos teoremas de unicidad para un problema de valores iniciales de la siguiente forma x = f (t, x) (3.1)

A continuación daremos algunos teoremas de unicidad para un problema de valores iniciales de la siguiente forma x = f (t, x) (3.1) 3 Teoremas de Unicidad A continuación daremos algunos teoremas de unicidad para un problema de valores iniciales de la siguiente forma x = f (t, x) (3.1) x(t ) = x. 3.1 Teorema de Unicidad de Peano Teorem

Más detalles

Múltiple Opción. Respuestas. Sean {a n } y {b n } dos sucesiones A A D C E. Para cada a R +, el área encerrada A D B C D

Múltiple Opción. Respuestas. Sean {a n } y {b n } dos sucesiones A A D C E. Para cada a R +, el área encerrada A D B C D Universidad de la República - Facultad de Ingeniería - IMERL Cálculo Solución - Examen 2 de julio de 206 Múltiple Opción Respuestas Sean {a n } y {b n } dos sucesiones... 2 3 4 5 A A D C E Para cada a

Más detalles

5. Funciones analíticas y teoría del índice.

5. Funciones analíticas y teoría del índice. Funciones de variable compleja. Eleonora Catsigeras. 25 Abril 2006. 47 5. Funciones analíticas y teoría del índice. 5.1. Definición y derivabilidad infinita de las funciones analíticas. Sea Ω un abierto

Más detalles

1 x. y = en los puntos de intersección con la recta. La ecuación de una recta en forma punto pendiente es y y = m x x, entonces las rectas pedidas son

1 x. y = en los puntos de intersección con la recta. La ecuación de una recta en forma punto pendiente es y y = m x x, entonces las rectas pedidas son Eamen de Cálculo Dierencial Curso / Opción A Ejercicio. (Puntuación máima: puntos) Halla las ecuaciones de las rectas tangentes a la curva y. e y en los puntos de intersección con la recta Calculemos los

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles

Ecuaciones Diferenciales Ordinarias. Método Iterativo Teorema de Picard

Ecuaciones Diferenciales Ordinarias. Método Iterativo Teorema de Picard Apuntes de Ecuaciones Diferenciales Ordinarias II Método Iterativo Teorema de Picard Octavio Miloni 1 Soluciones por Iteración Vamos a resolver ecuaciones diferenciales a partir de un esquema iterativo,

Más detalles

f n (x), donde N N n=1 f n(x), donde x A R,

f n (x), donde N N n=1 f n(x), donde x A R, ANÁLISIS MATEMÁTICO BÁSICO. SERIES DE FUNCIONES Las series de funciones son un caso particular, especialmente importante, de sucesiones de funciones. Ya hemos estudiamos las series de Taylor. Si consideramos

Más detalles

Apuntes. Apuntes. fâvxá ÉÇxá wx aøåxüéá extäxáa. Sucesiones. cüéuäxåtá ÜxáâxÄàÉá. Universidad

Apuntes. Apuntes. fâvxá ÉÇxá wx aøåxüéá extäxáa. Sucesiones. cüéuäxåtá ÜxáâxÄàÉá. Universidad fâvxá ÉÇxá wx aøåxüéá extäxá cüéuäxåtá ÜxáâxÄàÉá Universidad fâvxá ÉÇxá wx aøåxüéá extäxáa ctz Çt D PROBLEMAS RESUELTOS 1.- Dada la sucesión de números reales con 1.1 Estudiar su monotonía 1.2 Probar que

Más detalles

+ 1. La función del tercer tramo es un polinomio (una constante) que tampoco da problemas en ningún punto.

+ 1. La función del tercer tramo es un polinomio (una constante) que tampoco da problemas en ningún punto. 1.- Considerad la función: x + 4 x para x 0 + 1 f(x) = 12x 36 x para 0 < x < 3 9 2 para x 3 a) Estudiar, en todos los puntos del dominio, la continuidad de f. b) Estudiar, en todos los puntos donde sea

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta

Más detalles

Tema 7: Funciones de una variable. Límites y continuidad.

Tema 7: Funciones de una variable. Límites y continuidad. Tema 7: Funciones de una variable. Límites y continuidad. José M. Salazar Noviembre de 2016 Tema 7: Funciones de una variable. Límites y continuidad. Lección 8. Funciones de una variable. Límites y continuidad.

Más detalles

10. Función inversa Introducción. Cuando se habla sobre el aprendizaje y las ciencias, la gente no piensa en las mujeres.

10. Función inversa Introducción. Cuando se habla sobre el aprendizaje y las ciencias, la gente no piensa en las mujeres. 0. Función inversa Cuando se habla sobre el aprendizaje las ciencias, la gente no piensa en las mujeres. Wang Zheni (768-797) 0. Introducción Pensamos en una función numérica f como proceso que a cada

Más detalles

Para qué tantas hipótesis en el Criterio de la Integral. Luis Alejandro Acuña P. Escuela de Matemática Instituto Tecnológico de Costa Rica.

Para qué tantas hipótesis en el Criterio de la Integral. Luis Alejandro Acuña P. Escuela de Matemática Instituto Tecnológico de Costa Rica. Para qué tantas hipótesis en el Criterio de la Integral. Luis Alejandro Acuña P. Escuela de Matemática Instituto Tecnológico de Costa Rica Resumen: Se repasa el planteo tradicional del Criterio de la Integral

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

Cálculo Infinitesimal: grupo piloto

Cálculo Infinitesimal: grupo piloto Tema : La derivada. Cálculo Infinitesimal: grupo piloto Curso 6/7 A. Objetivos. Al finalizar el tema, los estudiantes deberán ser capaces de: Calcular la derivada de una función utilizando la definición

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función.

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función. 1.- Dada la función: f(x) = x + 1 a) Calculad el dominio de f(x). Encontrar también sus asíntotas verticales, horizontales y oblicuas. b) Encontrad la recta tangente a f(x) en el punto x= 0. c) Calculad

Más detalles

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f.

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f. Opción A 1 Ejercicio 1. [ 5 puntos] Sea f la función definida, para 0, por f e. Determina las asíntotas de la gráfica de f. La recta = a es una asíntota vertical (A.V.) de la función f si lim f Veamos

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

2.2.1 Límites y continuidad

2.2.1 Límites y continuidad . Listas de ejercicios de Cálculo Diferencial. Listas de ejercicios de Cálculo Diferencial.. Límites y continuidad 3. Hallar el dominio de las funciones reales de variable real dadas por: a) f () = b)

Más detalles

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i.

Tema 5. Ejemplos. Sucesiones y series. Marisa Serrano, José Ángel Huidobro. Ejemplo 5.1. n(1 + i) n + 1. converge a 1 + i. Índice Tema 5 Marisa Serrano, José Ángel Huidobro Universidad de Oviedo 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Definición 5. Sea {z n }, n N, una sucesión de números complejos. Se dice

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: CÁLCULO I (Examen Final) CONVOCATORIA: FEBRERO FECHA: de Enero de 3 Duración del examen: 3 horas Fecha publicación notas: 8--3

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

REGLAS DE DERIVACIÓN

REGLAS DE DERIVACIÓN REGLAS DE DERIVACIÓN.- DERIVADA DE UNA FUNCIÓN REAL DE VARIABLE REAL. Consideremos una función f definida en un conjunto abierto D un punto 0 Se dice que f es derivable en el punto 0 si el cociente f (

Más detalles

TEMA 3: Sucesiones y Series

TEMA 3: Sucesiones y Series TEMA 3: Sucesiones y Series Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 De niciones Sucesión Una sucesión de números reales es una aplicación a : N! R. Si para cada n 2 N, a(n)

Más detalles

Unidad 12 Aplicaciones de las derivadas

Unidad 12 Aplicaciones de las derivadas Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

Sea f una función numérica cualquiera, definida en un intervalo abierto (a,b) que contiene al punto x. y x, se define como

Sea f una función numérica cualquiera, definida en un intervalo abierto (a,b) que contiene al punto x. y x, se define como Modulo 3 La derivada 1. Variación promedio Sea f una función numérica cualquiera, definida en un intervalo abierto (a,b) que contiene al punto. Consideremos un pequeño incremento,, de la variable independiente,

Más detalles

3er Concurso Unversitario de Matemáticas Galois-Noether 2013 Segunda Etapa

3er Concurso Unversitario de Matemáticas Galois-Noether 2013 Segunda Etapa 3er Concurso Unversitario de Matemáticas Galois-Noether 013 Segunda Etapa Sábado 17 de agosto 013 Bienvenido a la Segunda Etapa del Concurso Universitario de Matemáticas Galois-Noether Responde a las preguntas

Más detalles

Reglas de derivación Sumas, productos y cocientes. Tema 4

Reglas de derivación Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, su significado analítico y sus interpretaciones geométrica y física, pasamos a desarrollar las reglas básicas para el cálculo de derivadas

Más detalles

CUESTIONES RESUELTAS 3. INTEGRACIÓN FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 3. INTEGRACIÓN FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTAS INTEGRACIÓN FUNDAMENTOS DE MATEMÁTICAS º GRADO GESTIÓN AERONAÚTICA INTEGRAL DEFINIDA REGLA DE BARROW Sea f() una función discontinua en = y continua en el resto de puntos del intervalo

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2 MATEMÁTICA APLICADA CÁLCULO E.T.S.I. INFORMÁTICOS UPM o G.I.I. SOLUCIONES EXAMEN FINAL 6/6/04 er EXAMEN PARCIAL. Calcule los siguientes ites, si existen: a n + n 3n. b n n + 3 n +n a El ite presenta una

Más detalles

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO: CÁLCULO DIFERENCIAL Una función f(x) tiene por límite L en el número real x = c, si para toda sucesión de valores x n c del dominio que tenga por límite c, la sucesión

Más detalles

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min.

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min. Nota Prueba 3.04 º Bach C Análisis Nombre:... 7/05/0 Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible h. 30 min. OPCIÓN A. a) Calcula los siguientes límites: ln( + ) sen

Más detalles

MODELO DE RESPUESTAS Objetivos del 01 al 08

MODELO DE RESPUESTAS Objetivos del 01 al 08 Prueba Integral Lapso 0-749 /5 Universidad Nacional Abierta Cálculo I (Cód. 749) Vicerrectorado Académico Cód. Carrera: 508 Fecha: 0-0-04 MODELO DE RESPUESTAS Objetivos del 0 al 08 OBJ PTA Sea :(,) IR

Más detalles

Olimpiada Iberoamericana de Matemática Universitaria 2012 Problemas, soluciones y criterios

Olimpiada Iberoamericana de Matemática Universitaria 2012 Problemas, soluciones y criterios Olimpiada Iberoamericana de Matemática Universitaria 202 Problemas, soluciones y criterios. Problemas. (3 puntos) Sea Z el anillo de los enteros. Los conjuntos Z, 2Z y 3Z son semigrupos con respecto a

Más detalles

Dpto. Matemática Aplicada Universidad de Málaga

Dpto. Matemática Aplicada Universidad de Málaga Dpto. Matemática Aplicada Universidad de Málaga M. Atencia & I. P. Cabrera Sucesiones numéricas y ejemplos Convergencia Una sucesión numérica es una lista infinita de números reales a 1,a 2,a 3,...,a n,

Más detalles

Límites y Continuidad

Límites y Continuidad Tema 2 Límites y Continuidad Introducción En este tema se trata el concepto de límite de una función real de variable real y sus propiedades, así como algunas de las técnicas fundamentales para el cálculo

Más detalles