EJERCICIOS RESUELTOS DE MATRICES
|
|
|
- Valentín Benítez Botella
- hace 9 años
- Vistas:
Transcripción
1 EJERCICIOS RESUELTOS DE MATRICES. Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) A + B b) AC c) CB y C t B d) (A+B)C a) A + B b) AC (-) (-).3+(-)(-).+(-) (-) c) El producto CB no se puede efectuar porque el número de columnas de C y el número de filas de B no coinciden. En cambio, el producto C t B si que se puede realizar porque el número de columnas de C t y el número de filas de B es el mismo. En primer lugar se calcula la matriz traspuesta de C intercambiando sus filas y sus columnas, C t Así, C t B t (-) 3.0+(-) 3.+(-)(-).0+..+(-) d) Para calcular (A+B)C se realiza en primer lugar la operación del paréntesis: A+B. (-) (-)+ 6+ +(-) - 0 Así, (A+B)C (-).3+(-)(-).+(-) (-) Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) ABC b) C t B-A c) A, B y C a) Para calcular ABC, se calcula primero el producto AB y el resultado se multiplica a la derecha por la matriz C. Proyecto de innovación ARAGÓN TRES
2 AB (-).+(-)(-) (-) Así, (AB)C (-).+. (-)3+(-) (-) (-) 8.3+(-)(-) 8.+(-) Por la propiedad asociativa del producto de matrices, el resultado sería el mismo si primero se calculase BC y el resultado se multiplicara a la izquierda por A. b) En primer lugar se calcula la matriz traspuesta de C intercambiando sus filas y sus columnas, C t 3 - t 3 - A continuación se calcula B-A, (-) - 3 B-A Así, C t B-A c) A AA (-)+(-) 3 +(-3) 3(-)+(-)(-) 3 3 +(-)(-3) (-)+(-) 3 +(-3).+(-)3 (-)+(-) (-) (-) B BB (-).0+(-).+(-)(-) No se puede calcular C CC, ya que C no es una matriz cuadrada. 3. Dadas las matrices A y B a) Calcular AB y BA, coinciden los resultados? , se pide: b) Calcular (A + B) y A + AB + B, coinciden los resultados?. c) Calcular A - B y (A + B)(A B), coinciden los resultados?. Proyecto de innovación ARAGÓN TRES
3 a) AB BA (-) (-) (-) (-6) (-)0+(-6).6+(-)9+..3+(-) (-6) No coinciden los resultados, es decir, AB BA, lo que significa que el producto de matrices no verifica la propiedad conmutativa. b) A + B (-) (A + B) (A + B)(A + B) (-3) (-3) (-3)3+7.+8(-3) (-3) (-3) A continuación, se calcula A + AB + B, A AA (-6) (-6) (-6) La matriz AB se ha calculado en el apartado a), así AB B BB (-7).3.33 (-).3. (-9) (-) (-)+.3.+(-)(-)+..+(-) (-) Proyecto de innovación ARAGÓN TRES 3
4 Por tanto, A + AB + B (-) (-) (-8) En conclusión, (A + B) A + AB + B La igualdad que en realidad se cumple es (A + B) (A + B)(A + B) A + AB + BA + B, y sólo en aquellos casos en los que se verifique que AB BA, se cumplirá que (A + B) A + AB + B. c) En el apartado b) se han calculado A y B, por tanto, A - B Para calcular (A + B)(A - B), se ha de calcular cada uno de los factores, el primero se ha calculado en el apartado b) y el segundo es, A - B (-) Por tanto, (A + B)(A B) (-)+(-9) (-3) (-6).+(-)+7(-9).+.3+7(-3).+.3+7(-6) (-3).+7(-)+8(-9) (-3) (-3) (-3) (-6) En conclusión, A - B (A + B) (A B) La igualdad que en realidad se cumple es (A + B) (A B) A - AB + BA - B, y al ser AB BA, como se ha comprobado en el apartado a), no se verifica (A + B) (A B) A - B.. Mediante operaciones elementales transformar A en una matriz escalonada equivalente y calcular el rango de A. a) A b) A 3 - c) A 3 d) A No existe un solo conjunto de operaciones elementales con las que escalonar una matriz. Por tanto, para cada matriz, la matriz escalonada equivalente que se obtiene no es única, aunque todas han de tener el mismo número de filas nulas ya que el rango de una matriz es único. Proyecto de innovación ARAGÓN TRES
5 a) A F F -F, F 3 F 3 -F F 3 F 3 +F La matriz escalonada equivalente a A obtenida tiene dos filas no nulas, por tanto, rg A. b) A 3 - F F 3 F F -3F, F 3 F 3 -F F 3 F 3 -F La primera operación elemental que se realiza, intercambiar la primera y segunda fila, tiene como objetivo obtener como elemento pivote el valor, lo que facilitará las posteriores operaciones elementales. La matriz escalonada equivalente a A obtenida tiene dos filas no nulas, por tanto, rg A. c) A 3 F (/)F F F -F La primera operación elemental que se realiza, multiplicar la primera fila por, tiene como objetivo obtener como elemento pivote el valor, lo que facilitará las posteriores operaciones elementales. La matriz escalonada equivalente a A obtenida tiene dos filas no nulas, por tanto, rg A. Otra manera de escalonar la matriz A es la siguiente: A 3 F F -F 0 - d) La matriz A se puede escalonar haciendo operaciones elementales por filas y por columnas, como se muestra a continuación. A C C F F +F, F 3 F 3 -F F 3 F 3 +F La matriz escalonada equivalente a A obtenida tiene tres filas no nulas, por tanto, rg A 3.. Mediante operaciones elementales, determinar el rango de las siguientes matrices según el valor del parámetro real a. a) A 3 a b) B a 6 3 c) C a 6 +a 6 d) D a a a a) Escalonamos la matriz A mediante operaciones elementales por filas: Proyecto de innovación ARAGÓN TRES
6 A 3 a F F -F 3 0 a- El número de filas no nulas de la matriz escalonada equivalente a A que se ha obtenido depende de que la expresión a - sea nula o no lo sea. Así: si a, entonces la matriz escalonada tiene una fila no nula y, por tanto, rg A si a, entonces la matriz escalonada tiene dos fila no nulas y, por tanto, rg A b) Escalonamos la matriz B mediante operaciones elementales por filas: B a 6 3 F F -3F a 0 3-3a El número de filas no nulas de la matriz escalonada equivalente a B que se ha obtenido es independientemente de lo que valga el parámetro a. Así, rg B para cualquier valor de a. c) Escalonamos la matriz C mediante operaciones elementales por filas: C a 6 +a 6 F F -3F, F 3 F 3 -F a 0 -a F 3 (-a)f 3 -(6-a)F a 0 -a 0 6-a 0 0 El número de filas no nulas de la matriz escalonada equivalente a C que se ha obtenido depende de que la expresión - a sea nula o no lo sea. Así: si a, entonces la matriz escalonada tiene una fila no nula y, por tanto, rg C si a, entonces la matriz escalonada tiene dos fila no nulas y, por tanto, rg C d) Escalonamos la matriz D mediante operaciones elementales por filas: D a a a F F 3 a a a F F -F, F 3 F 3 -af a 0 a- -a 0 0 -a-a a 0 a- -a F 3 F 3 +F 0 -a -a El número de filas no nulas de la matriz escalonada equivalente a D que se ha obtenido depende de que las expresiones - a y - a - a sean nulas o no lo sean. Teniendo en cuenta que se distinguen los siguientes casos: - a - a 0 a ± a 0 a - si a y a - entonces la matriz escalonada tiene tres filas no nulas y, por tanto, rg D 3 si a - entonces la matriz escalonada tiene dos filas no nulas y, por tanto, rg D Proyecto de innovación ARAGÓN TRES 6
7 si a entonces la matriz escalonada tiene una fila no nula y, por tanto, rg D 6. Sabiendo que las siguientes matrices tienen inversa, calcularla mediante operaciones elementales. a) A 7 6 b) B c) C 3-6 Se coloca la matriz identidad a la derecha de A obteniéndose la nueva matriz (AlI n ) sobre la que se realizan operaciones elementales por filas hasta que en el lugar de A queda la matriz identidad. a) F (/)F 0 F F -7F F (/)F F F -F Por tanto, A Se puede obtener el mismo resultado con otras operaciones elementales, por ejemplo: b) F F -7F F F -F F (/)F, F (/)F F F F (/)F F 3 (/3)F F F +F, F 3 F 3 -F -3 F F -F, F 3 F 3 +F Proyecto de innovación ARAGÓN TRES 7
8 Observar que el proceso seguido para obtener la matriz identidad en el lugar de B consiste en conseguir, mediante operaciones elementales por filas, que en cada columna sean ceros todos los elementos excepto el correspondiente a la diagonal principal que es el que se considera como elemento pivote. Así, con la primera equivalencia se consigue que el elemento pivote de la primera columna sea, lo que facilita las posteriores operaciones elementales. En la segunda se consigue hacer 0 los dos elementos de la primera columna que no están en la diagonal principal. En la tercera equivalencia se consigue que el elemento pivote de la segunda columna sea. En la cuarta se hacen 0 los dos elementos de la segunda columna que no están en la diagonal principal. Finalmente, en la quinta equivalencia se hace el elemento de la tercera columna que está en la diagonal principal y, como los otros dos elementos de esta columna ya son cero, se termina el proceso puesto que se ha obtenido la matiz identidad en el lugar que estaba B. Por tanto, B c) En este caso, en lugar de seguir el mismo proceso que en el apartado anterior, primero se triangulariza la matiz C superiormente (se hacen ceros por debajo de la diagonal principal) y después inferiormente (se hacen ceros por encima de la diagonal principal) obteniéndose la matriz identidad F F -F, F 3 F 3-3F F 3 (/)F 3 F (-/7)F Por tanto, C - F F F (/)F F 3 F 3 -F F F -3F 3, F F +F F F -F Proyecto de innovación ARAGÓN TRES
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Tema 1: Matrices y Determinantes
Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz
Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección
Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada 3 4 [email protected] 5 Qué
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones
EJERCICIOS RESUELTOS DE SISTEMAS LINEALES
EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a.
MATRICES Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas A= 2 1 5 0 3 8 A es de dimensión 2 3. a a a En general una matriz de dimensión 2 3
MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS
Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K
PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES
PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES 1. Sea una matriz A M n n (R) nilpotente de índice p. r(a) n 1 r(a) =p 1 8 4 2 2. Sea la matriz A = 2 1 1 0 5 2 1 1 r(a) =2 r(a) =3 r(a) =4 3. Sea una
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21
Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.
Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
Algebra lineal Matrices
Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en
Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la
ÁLGEBRA DE MATRICES TRASPUESTA DE UNA MATRIZ SUMA Y RESTA DE MATRICES
ÁLGEBRA DE MATRICES TRASPUESTA DE UNA MATRIZ La traspuesta de una matriz A consiste en intercambiar las filas por las columnas (o las columnas por las filas) y se denota por: A T Así, la traspuesta de
TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?.
TEMA : MATRICES Ejercicio.- 0 2 2 Dadas las matrices A = y B = -2 0 5, calcula BBt AA t. Ejercicio 2.- 0 x 2 Sean las matrices A =, B = y C =, halla x e y para que se 2 y verifique ABC = A t C. Ejercicio
Matrices y Determinantes.
Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij
TEST DE DETERMINANTES
Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula
TEMA 7: MATRICES. OPERACIONES.
TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre
Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.
UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.
2.- TIPOS DE MATRICES
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA.- MATRICES PROFESOR: RAFAEL NÚÑEZ NOGALES.- CONCEPTO DE MATRIZ. Definición de matriz Una matriz real A es un conjunto de números reales
Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.
TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...
Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.
1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5
MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz.
Concepto de matriz. Igualdad de matrices MATRICES 2º Bachillerato Concepto de matriz. Igualdad de matrices Concepto de matriz. Igualdad de matrices Se llama matriz a una disposición rectangular de números
Matrices. Primeras definiciones
Primeras definiciones Una matriz es un conjunto de elementos números ordenado en filas y columnas. En general una matriz se nombra con una letra mayúscula y a sus elementos con letras minúsculas indicando
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
Matrices, determinantes, sistemas de ecuaciones lineales.
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m
MATEMÁTICAS. TEMA 2 Matrices
MATEMÁTICAS TEMA Matrices 1 MATEMÁTICAS º BACHILLERATO ÍNDICE 1. Introducción.. Definición y Clasificación de Matrices.. Operaciones con Matrices. 4. Ejercicios Resueltos. 5. Ejercicios Propuestos. 1.
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Matrices Definición: Una matriz es un conjunto de números ordenados en filas y columnas. Para definirla se utilizan letras
Matrices. Álgebra de matrices.
Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,
Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...
MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES
CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno
ARITMÉTICA Y ÁLGEBRA
ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,
Tema 1: MATRICES. OPERACIONES CON MATRICES
Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos
Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a
Tema 1. Álgebra lineal. Matrices
1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos
TEST DE MATRICES. Dadas A = (-3 4 1/2) y B = (1/3 0-2), cuál es el resultado de multiplicar la matriz A por la traspuesta de B?
file://:\mis documentos\u6mattest\u6mattesttodo.htm Página 1 de 7 TEST E MTRIES 1 eterminar la matriz opuesta de la siguiente matriz: 2 Si y son dos matrices de orden 3x2, de qué orden es la matriz resultante
Matrices, Determinantes y Sistemas de ecuaciones lineales
Tema 1 Matrices, Determinantes y Sistemas de ecuaciones lineales 1.1. Matrices Definición: Una MATRIZ es un conjunto de números reales dispuestos en forma de rectángulo, que usualmente se delimitan por
Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina
MATRICES OPERACIONES BÁSICAS CON MATRICES
MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
Matemáticas Discretas TC1003
Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo
Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.
Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
Una matriz es un arreglo rectangular de elementos. Por ejemplo:
1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con
ELEMENTOS DE ALGEBRA LINEAL
ELEMENTOS DE ALGEBRA LINEAL Matriz Una matriz de orden o dimensión n x p es una ordenación rectangular de elementos dispuestos en n filas y p columnas de la siguiente forma: a11 a1 a1p a1 a a p A an1 an
solucionario matemáticas II
solucionario matemáticas II UNIDADES 8-4 bachillerato 8 Determinantes 4 9 Sistemas de ecuaciones lineales 46 Fin bloque II 0 Vectores 8 Rectas planos en el espacio 68 Propiedades métricas 08 Fin bloque
Matrices. Una matriz es una forma de representar un conjunto de números que guardan una relación entre sí, dando un orden mediante filas y columnas.
Matrices. Una matriz es una forma de representar un conjunto de números que guardan una relación entre sí, dando un orden mediante filas y columnas. Ejemplo: Consideremos la siguiente selección de gustos
Ejemplo 1. Ejemplo introductorio
. -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo
MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
Francisco José Vera López
Álgebra y Matemática Discreta Matrices. Sistemas de ecuaciones. Francisco José Vera López Dpto. de Matemática Aplicada Facultad de Informática 2015 1 Matrices 2 Sistemas de Ecuaciones Matrices Una matriz
Matrices. En este capítulo: matrices, determinantes. matriz inversa
Matrices En este capítulo: matrices, determinantes matriz inversa 1 1.1 Matrices De manera informal una matriz es un rectángulo de números dentro de unos paréntesis. A = a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a
En general, llamaremos matriz de dimensión mxn a un conjunto de m.n números reales distribuidos en m filas y n columnas.
TEMA : MATRICES. Matrices Numéricas La noción de matriz se introduce como "tabla de números". Sus elementos aparecen dispuestos en filas (líneas horizontales) y columnas (líneas verticales). 5 9 Por ejemplo,
Tema 5. Matrices y Determinantes
Tema 5. Matrices y Determinantes 1. Definiciones 2. Operaciones Propiedades 3. Determinantes Orden 2 Orden 3: Regla de Sarrus Orden mayor de 3 Propiedades 4. Matriz inversa Ecuaciones matriciales 5. Rango
Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...
INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas
ACTIVIDADES INICIALES
2 Determinantes ACTIVIDADES INICIALES I. Enumera las inversiones que aparecen en las siguientes permutaciones y calcula su paridad, comparándolas con la permutación principal 1234. a) 1342 b) 3412 c) 4321
Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3
1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos
NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir
1. Matrices. Operaciones con matrices
REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se
BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss:
*** OBLIGATORIOS *** 1. Efectúa todos los posibles productos: 2. Calcula la matriz inversa, si existe, usando el método de Gauss: 3. Sean y. Encuentra X para que cumpla: 3 X 2 A = 5 B 4. Encuentra dos
Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se
Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz
Septiembre 008: Sea A una matriz 3 x 3 de columnas C 1, C y C 3 (en ese orden). Sea B la matriz de columnas C 1 + C, C 1 + 3C 3 y C (en ese orden). Calcular el determinante de B en función de A. (1 punto)
Determinantes. Primera definición. Consecuencias inmediatas de la definición
Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de
Matrices 2º curso de Bachillerato Ciencias y tecnología
MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------
2 - Matrices y Determinantes
Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1
Tema 2. Sistemas de ecuaciones lineales
Tema 2 Sistemas de ecuaciones lineales Ecuaciones lineales ( x,, x n ) Una ecuación lineal tiene variables 1 término independiente (b) y coeficientes (reales o complejos) a a x a x a x b 1 1 2 2 n n,,
Matrices y sistemas lineales
15 Matemáticas I : Preliminares Tema 2 Matrices y sistemas lineales 2.1 Definiciones básicas Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números. Los números
Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz
Septiembre 2008: Sea A una matriz 3 x 3 de columnas C 1, C 2 y C 3 (en ese orden). Sea B la matriz de columnas C 1 + C 2, 2C 1 + 3C 3 y C 2 (en ese orden). Calcular el determinante de B en función de A
Matriz sobre K = R o C de dimensión m n
2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0
a a a a
JUNIO 2012 GENERAL 1. Se consideran las matrices: A = 3 1 0 1 3 0 0 0 2 e I 3 = 1 0 0 0 1 0 a) Resuelve la ecuación det (A x I 3 ) = 0. (1 punto) JUNIO 2012 ESPECÍFICA a 1 2 a 1 2. Dado el número real
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes
Algebra de Matrices 1
Algebra de Matrices Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo: Notas: A 6. Las matrices son denotadas con letras mayúsculas..
Matemáticas aplicadas a las CC.SS. II 2º Bachillerato. La igualdad de matrices 3x3 equivale a 9 ecuaciones escalares: { a 3=5.
Ejercicios resueltos 1. MATRICES 1.1. Introducción 1. Halla el valor de a, b y c para que las matrices A= 2 a 3 7 b 1 0 6 4 5 y B= 2 5 7 5 1 0 c 1 4 5 sean iguales. La igualdad de matrices 3x3 equivale
TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...
TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
A-PDF Page Cut DEMO: Purchase from to remove the watermark Ejercicios resueltos 29
wwwapuntesdematesweeblycom A-PDF Page Cut DEMO: Purchase from wwwa-pdfcom to remove the watermark Ejercicios resueltos 29 Qué coste conlleva el cálculo de la inversa de una matriz A R n n? Calculando A
MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS
Índice Presentación... 3 Operaciones con matrices... 4 Potencias de una matriz... 5 Productos notables de matrices... 6 Determinantes de una matriz... 7 Rango de matriz... 8 Inversa de una matriz... 10
Álgebra Lineal, Ejercicios
Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula
PRACTICA: MATRICES Y DETERMINANTES A = B = C =
PRACTICA: MATRICES Y DETERMINANTES 1. Sean las matrices cuadradas siguientes A = 1 2 3 B = 9 8 7 C = 1 3 5 4 5 6 6 5 4 7 9 0 7 8 9 3 2 1-3 -2-1 Se pide calcular: a. 2A -3B + C 2A = 2(1) 2 (2) 3(2) 2 4
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que
MATRICES INVERTIBLES Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que AB = BA = I siendo I la matriz identidad. Denominamos a la matriz B la inversa de A
MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS
Índice Presentación... 3 Matrices... 4 Tipos de matrices I... 5 Tipos de matrices II... 6 Suma de matrices... 7 Multiplicación por un escalar... 8 Producto de matrices... 9 Trasposición de matrices...
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.
MATRICES. Jaime Garrido Oliver
MATRICES Jaime Garrido Oliver ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS... 2 MATRICES... 3 1.1. INTRODUCCIÓN.... 3 2. TIPOS DE MATRICES... 4 2.1. Matriz Fila, Matriz Columna... 4 2.2. Matrices cuadradas...
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método
