ANUALIDADES VENCIDAS
|
|
|
- Magdalena Martín de la Fuente
- hace 9 años
- Vistas:
Transcripción
1 SESION Anualidades 5.4. Amortización ANUALIDADES VENCIDAS Al comprar ciertos artículos no siempres se pueden pagar de contado, por lo que es muy común rel uso de créditos, ya sea mediante bancos o directamente con el vendedor. Cuando se contrae una deudas muy grande, como ocurrirá en la compra de un automovil, una cada o equipo industrial, no es posible liquidarla con un solo pago; por lo que se acuerda una serie de pagos iguales den determinado tiempo; pagos que incluyen una parte de la deuda y el interés que se cobra por el financiamiento. Este tipo de formas de pago en matemáticas financieras son conocidos como anualidades. Actualmente la situación económica ha convertido el uso de las anualidades en algo cotidiano para la compra de artículos de uso particular, como son las computadoras, televisores, estufas, refrigeradores, por mencionar algunos. A lo largo de esta unidad se describe a las anualidades, clasificandolas de acuerdo con sus caráctererísticas. Aquí analizaremos de modo particular las anualidades vencidas, que tienen la carácter sitica de liquidarlas al final del periodo de pago, como el pago de salarios, el cual se realiza al final de la quincena o semana y no al inicio de ésta. Se describirá cómo calcular el monto, el valor presente y la renta de una anualidad vencida; la forma para determinar la aproximación de la tasa de interés, así como el número de pagos para estas anualidades. La anualidad es el conjunto de pagos iguales, realizados a intervalos iguales, independientemente del tiempo transcurrido entre cada pago. Aunos ejemplos de anualidades son el pagomensual por la renta de un inmueble, lasprimas anuales que se paganpor las polizas de seguroy los depósitos constates en un fondode ahorro, como las afores. Con frecuencia se considerael términoanualidad como sinónimo de pagos anualeslo cual no es cierto. En realidad una anualidad puede representarse pagos quincenales, mensuales, semenstrales o de cualquier otra forma periódica.
2 Cuando se estudian anualidades es importante conocer las definiciones de renta y periodo de pago. A cada uno de los pagos que se realizan en forma periódica se les llama renta, la cual representaremos con la letra R Al tiempo transcurrido entre un pago y otro se le denomina intervalo o periodo de pago. Monto y valor presente de una anualidad vencida Como ya se menciono una anualidad es una serie de pagos iguales realizados en tiempos iguales. Veamos en una gráfica de tiempo (recuerda que estamos tratando anualidades vencidas) Imagina que realizas una serie de cinco pagos periódicos al final de cada semestre, con una R renta, donde al número de pagos lo representaremos con la letra n que en este caso son 5 GRAFICA DE TIEMPO R R R R R SEMESTRES Como puedes observar, matemáticamente una anualidad es una ecuación de valor, donde las rentas representan los pagos. En una anualidad se puede obtener el valor presente de los pagos y el valor futuro o monto de los mismos. Iniciaremos calculando el monto de una anualidad vencida. El monto de una anualidad vencida se puede definir como el valor acumulado de una serie de rentas, cubiertas al final de cada periodo de pago tomando como fecha de evaluación (fecha focal) el término de la anualidad, es decir, la fecha del último pago.
3 Veamos esta definición representada en una gráfica de tiempo. Gráfica de tiempo Fecha focal o de evaluación Monto = R1 R2 R3 R4 R Todo valor que se quiera conocer a valor futuro es monto, cuando el problema diga cual es el valor futuro o acumulado o ahorrado o generado se tratara de calcular monto y en la líneas de tiempo va de derecha a izquierda es monto. La formula que nos permite calcular el monto de una anualidad vencida. M= monto i= tasa nominal por periodo de capitalización R= renta n= número de pagos Ejemplo Una persona paga un televisor con $ al final de cada semestre durante cinco años, con una tasa de interés del 12% capitalizable semestralmente. Cuál será el precio del televisor si se comprara en el momento del último pago? Como los pagos se realizan al final de cada semestre, significa que son pagos vencidos, por lo tanto se trata de una anualidad vencida.
4 Donde: R= 1000 n= 5(2)= 10 pagos, ya que los pagos son semestrales. Como la pregunta es cuál es el precio del televisor a los cinco años, veamos que lo que se busca es el monto de los pagos (rentas); por lo tanto, al sustituir los datos en la fórmula para el monto de una anualidad vencida tenemos. Al realizar las operaciones:
5 Significa que el precio del televisor al momento del último pago es de $ De la misma manera, como es necesario determinar el monto de una anualidad, también es necesario en algunos casos calcular el valor actual de la misma. La fórmula para calcular el valor actual de una anualidad vencida es: Donde: C= Capital i= tasa nominal por periodo de capitalización R= renta n= número de pagos Nota: Una forma de identificar que se trata de un ejercicio donde hay que calcular capital y no monto es que dentro de la redacción dirá cual será el valor presente o actual o inicial o de contado. En la línea de tiempo el dinero se regresará de derecha a izquierda. Ejemplo Una compañía vende computadoras mediante pagos mensuales vencidos de $ durante dos años. Si en estos casos se está cargando una tasa de interés del 18% anual capitalizable mensualmente, cuál es el precio de contado de cada computadora? R= $500 n= 2(12)= 24pagos mensuales durante dos años Como se desea saber cuál es el precio de contado de cada computadora, y el precio de contado representa el valor actual, significa que se busca el valor presente de los pagos (rentas), por lo tanto, al sustituir los datos en la fórmula para el valor presente de una anualidad vencida se tiene:
6 El precio de contado de cada computadora es de $ Ejemplo Se ofrecen en venta departamentos de interés social con un anticipo que la inmobiliaria acepta recibir en 15 mensualidades ordinarias de $ a partir de la entrega de la vivienda. Cuál es el valor presente del enganche al momento de la compra y qué costo de contado tienen los departamentos, si dicho enganche corresponde al 30% del costo y el tipo de interés es del 34.2% capitalizable mensualmente? Solución. n= 15 pagos R= 1700 i= 34.2% capitalizable mensualmente Como queremos saber el valor presente del enganche, tenemos:
7 = El valor presente del enganche es de $ Como el valor presente del enganche es de $ equivale al 30% del costo del departamento, el costo de contado será: 30% % x El costo del departamento es de $
8 Renta Como se mencionó anteriormente, a cada uno de los pagos que se realizan en forma periódicamente, se les llama rentas Es común que se requiera conocer el valor de la renta de una anualidad cencida, ya que normalmente se conocen los precios de contado, y lo que se busca es establecer de cuánto deben ser los pagos periódicos con los que se pagará la compra. El valor de la renta de una anualidad se puede despejar de la fórmula para calcular el monto de una anualidad vencida, o de la que permite calcular el valor presente de una anualidad vencida, dependiendo de los dos con los que se cuenten. Ejemplo Una compañía planea comprar una máquina dentro de cuatro años, la cual tendrá un costo de $ La compañía puede disponer de pequeñas cantidades al corte mensual, sin deposita estas cantidades en una cuenta bancaria que paga el 6% de interés con capitalización mensual. De cuánto se debe disponer en el cierre mensual para el depósito en el banco? Solución M= Se trata de un problema de monto ya que es el ahorro al final de cuatro años n= 4(12)= 48 pagos mensuales durante cuatro años. El valor que se va a buscar es la letra, y como uno de los datos con los que se cuenta es el monto de la anualidad, la renta se puede despejar de la fórmula para el cálculo del monto:
9 Ejemplo Una persona adquiere un refrigerador cuyo precio es de $7,200.00, y la tienda le da la posibilidad de pagarlo en 12 mensualidades vencidas. De cuanto será cada mensualidad si le cargan el 18% de interés capitalizable mensualmente? C= $ Se trata de un problema de valor actual, ya que se tiene precio de contado n= 12 pagos mensuales
10 El valor que se va a buscar es la renta, y debido a que uno de los datos con los que se cuenta es el precio de contado, la renta se puede despejar de la fórmula para el cálculo del valor presente de una anualidad vencida: Cada abono debe ser de $660.10, cada mes.
11 Aproximación del plazo de anualidades vencidas Para determinar el número de pagos o plazo de una anualidad vencida, ocurre lo mismo para el cálculo de la renta, se cuenta con dos fórmulas, la del monto y la del valor presente, pudiéndose despejar de ambas el número de pagos y dependerá de los datos con que se cuenten cuál se utilizará. Ejemplos Calcula el número de pagos semestrales vencidos de $ pesos que deberán realizarse para cancelar un adeuda de $ y una tasa de interés acordada del 6% capitalizable semestralmente. R= $ C= $ Se sustituyen los datos en la fórmula para el cálculo del valor presente de una anualidad vencida, ya que uno de ellos es el valor presente: 4 A continuación te enumero los despejes. 1 2 Se realizan las operaciones
12 0.15= = = Se multiplica por (-1) en ambos lados para eliminar el signo negativo (-1) = (-1) 0.85 = Aplicando logaritmos en ambos lados de la longitud y aprovechando sus propiedades: log 0.85 = log log 0.85 = - n log 1.03 Se multiplica por (-1) en ambos lados para eliminar el signo negativo
13 Se requiere aproximadamente 6 pagos (el número de rentas por lo general se aproxima al número entero inmediato. En este texto se considerará siempre este criterio) Ejercicio Una persona desea adquirir una automóvil al contado, para lo cual requiere reunir $ , depositando $ mensuales en un fondo de inversión que paga el 15% de interés convertible mensualmente. Cuántos depósitos necesita efectuar para reunir esa cantidad? Es importante identificar ya que te mencionan un fondo, por lo tanto se trata de un monto ya que se quiere acumular en dicho fondo R= $ M= $ Se sustituye en la fórmula de monto de una anualidad vencida, ya que uno de ellos es el monto: A continuación te enumero los despejes Realizando las operaciones:
14 = Aplicando logaritmos a ambos lados de la igualdad = Despejamos a n Se requieren aproximadamente 22 pagos AMORTIZACION Y FONDO DE AMORTIZACIÓN En ocasiones se contraen deudas tan grandes que no se puede liquidar con un solo pago, por lo que se hace necesario pagarlas paulatinamente. A este proceso, en matemáticas financieras se le conoce como amortización.
15 A lo largo de esta unidad se revisará uno de los principales métodos de amortización, en el cual los pagos son iguales, se calcularán la renta, la tasa de interés y el plazo necesario para cubrir una deuda por medio de amortizaciones. Por otro lado existen cuentas que se utilizan cono fondos de ahorro, tal es el o tasa de interés y el plazo necesario para una cantidad especifica. Importe de los pagos de una amortización La amortización es un proceso con el cual se cancela una deuda de forma gradual mediante pagos iguales. Existen diferentes tipos de amortizaciones, dos de ellas son la amortización gradual y la amortización constante. Amortización constante. En este caso los pagos son decrecientes, mientras que el abono al capital es constante y e interés sobre saldos insolutos disminuye en cada pago. En este capítulo se hace únicamente a las amortizaciones graduales, donde los pagos son constantes y el abono al capital es creciente, ya que es la más generalizada y con más aplicación en las matemáticas financieras. Con la amortización es un sistema de pagos periódicos y las amortizaciones que se analizarán son las graduales con pagos contantes, podríamos decir que son una aplicación de las anualidades. Al igual que para las anualidades anticipadas y las anualidades diferidas se utilizaron como las fórmulas de anualidades vencidas. Uno de los principales valores a determinar en una amortización es el valor de cada uno de los pagos a realizar para cubrir una deuda; éste se puede determinar despejándolo de la fórmula para calcular el valor actual de una anualidad vencida: Se utiliza la fórmula de valor presente, ya que una deuda representa un valor presente. Ejemplo
16 El Sr. Ramírez tiene una deuda de $ que debe amortizar en 6 años con pagos bimestrales iguales, con un interés del 12.6% anual capitalizable bimestralmente. Cuál es el monto de cada uno de los pagos C = $ n = 6 años = 6 (6) = 36 años bimestrales. Se sustituyen los datos en la fórmula para el valor actual y se despeja R.
17 Número de pagos de una amortización Hay ocasiones en las que una persona que contrae una deuda no puede disponer más que de una cantidad determinada para los pagos, entonces lo que requiere cono en cuántos pagos tendrá que realizar para saldar la deuda. Para determinar el número de pagos iguales que se requiere para amortizar una deuda, se utiliza el mismo método que en las anualidades vencidas, despejando n de la fórmula para el cálculo de un valor presente. Ejemplo Cuántos pagos bimestrales de $ se tendría que realizar para amortizar una deuda de $ si se aplica una tasa de interés del 9.8% anual compuesto semestralmente? C = $ R = $ Se sustituye los datos en la fórmula para el valor actual y se despeja n:
18 Se aplican los logaritmos en ambos lados de la igualdad y utilizando sus propiedades se tiene: Multiplicando por (-1)
El interés simple es el que se calcula sobre el capital inicial, el cual permanecerá invariable durante todo el tiempo que dure la inversión:
El interés es la cantidad que se paga o se cobra (según sea el caso) por el uso del dinero; cuando se calcula el interés se deben considerar tres factores: Capital, tasa de interés y tiempo. El capital
MATEMATICAS APLICADAS CLASE 6
MATEMATICAS APLICADAS CLASE 6 COMENTARIOS DE AMENAZA DE GUERRA EUA NORCOREA IMPACTOS FINANCIEROS ANUALIDADES VENCIDAS VALOR PRESENTE Ejemplo: Una empresa desea construir una fábrica, por lo cual adquiere
ECUACIONES DE VALOR $2.00 $2.50 $3.00 $3.50 DIC.98 ABRIL 99 OCT. 99 MAR.2000
5. INTERÉS COMPUESTO 5.1. Ecuación del monto 5.2. Fecha de vencimiento promedio o equivalente ECUACIONES DE VALOR Para poder entender lo que son las ecuaciones de valor, para que nos sirven y cómo entenderlas,
El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero
Anualidades Vencidas, Anticipadas y Diferidas. El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero Neil Simon. Objetivo de la sesión: Conocer
MATEMATICAS FINANCIERAS 2
GUIA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO MATEMATICAS FINANCIERAS ACADEMIA ECONOMICO ADMINISTRATIVA INDICE Página Introducción Objetivo de la asignatura.. Unidad I. Unidad II. 5 Unidad III... 7 INTRODUCCIÓN
Curso MATEMÁTICAS FINANCIERAS Capitulo 5. Carlos Mario Morales C 2009
Curso MATEMÁTICAS FINANCIERAS Capitulo 5 Contenido Capitulo 5 Anualidades ordinarias y anticipadas Anualidad Valor final de una anualidad Valor presente de una anualidad Anualidades anticipadas Amortización;
Matemáticas financieras
Matemáticas financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 5 Nombre: Anualidades simples, ciertas, vencidas e inmediatas Contextualización En esta sesión veremos las anualidades su estudio es de mucha
Sea A el pago anual uniforme; P = $ 100,000 o el valor presente que tiene la casa n = 10 pagos; i = 10%.
UNIVERSIDAD NACIONAL DE INGENIERÍA. UNI NORTE. Sede Estelí. Líder en Ciencia y Tecnología Asignatura : Ingeniería económica. Carrera : Ingeniería agroindustrial. Año Académico : IV Año. Unidad No. III
UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46
UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46 NOMBRE:... FECHA: NIVEL:... PROF. René Quezada C. INSTRUCCIONES
Matemáticas Financieras
Matemáticas Financieras Notas de Clase -2011 Carlos Mario Morales C 2 Unidad de Aprendizaje Interés Compuesto Contenido Introducción 1. Concepto de interés compuesto 2. Modelo de Interés compuesto 3. Tasa
Matemáticas Financieras Avanzadas
Matemáticas Financieras Avanzadas 1 Sesión No. 10 Nombre: Amortización Objetivo Al término de la sesión el estudiante solucionaría problemas reales a través de la aplicación del cálculo básico de amortización,
UNIDAD V. AMORTIZACIÓN DE CRÉDITOS Definiciones y sistemas de amortización
UNIDAD V. AMORTIZACIÓN DE CRÉDITOS Definiciones y sistemas de amortización El término amortización significa saldar una deuda gradualmente por medio de pagos periódicos, generalmente iguales, y que se
Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento
MÉTODOS MATEMÁTICOS DE LA ECONOMÍA (2008 2009) LICENCIATURAS EN ECONOMÍA Y ADE - DERECHO Lista de problemas de Matemática Financiera (Temas 1 y 2) Leyes de interés y descuento 1. Se considera la ley de
El interés y el dinero
El interés y el dinero El concepto de interés tiene que ver con el precio del dinero. Si alguien pide un préstamo debe pagar un cierto interés por ese dinero. Y si alguien deposita dinero en un banco,
EJERCICIOS INTERES COMPUESTO
EJERCICIOS INTERES COMPUESTO Nº1.- Una persona pide prestada la cantidad de $800. Cinco años después devuelve $1.020. Determine la tasa de interés nominal anual que se le aplicó, si el interés es: a) Simple
JORGE LUIS GONZÁLEZ ESCOBAR
1. Una persona compra un terreno cuyo valor al contado es de 2.000.000 de pesos. Si le dan la facilidad de pagarlo en cuatro cuotas trimestrales de A cada una, que se efectuaran al final de cada trimestre
MATEMATICAS APLICADAS CLASE 4
MATEMATICAS APLICADAS CLASE 4 DISCUSIÓN DEL CASO PREGUNTA Si fueras un alto ejecutivo de una empresa en la cual existen evidencias que la relacionan a otra compañía o persona para que esta última obtenga
Glosario de términos. Introducción a las Matemáticas Financieras
Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Anualidades y gradientes UNIDAD 3: ANUALIDADES Y GRADIENTES OBJETIVO Al finalizar la unidad los estudiantes estarán en capacidad
TEMA 12: OPERACIONES FINANCIERAS
TEMA 12: OPERACIONES FINANCIERAS 1. OPERACIONES FINANCIERAS Son aquellas operaciones en las que inversores y ahorradores se ponen de acuerdo y pactan un tipo de interés y un plazo que cubran sus necesidades
Matemáticas financieras
Matemáticas financieras ASIGNATURA 1 Sesión No. 8 Nombre: Amortización y fondos de amortización Contextualización En esta sesión continuaremos con el tema de las amortizaciones, el importe adeudado o saldo
Unidad 4. Capitalización compuesta y descuento compuesto
Unidad 4. Capitalización compuesta y descuento compuesto 0. ÍNDICE. 1. CAPITALIZACIÓN COMPUESTA. 1.1. Concepto. 1.2. Cálculo de los intereses totales y del interés de un período s. 1.3. Cálculo del capital
S = R ( 1+ j/m) mn -1 ( 1+ j/m) m/p -1 S = 7, ( /12) 12*1-1 ( /12) 12/12-1 S = 100,000.06
1. Con el fin de acumular cierta cantidad de dinero se harán 12 depósitos mensuales por Q7,812.05 cada uno, en una institución que reconoce el 14% anual de interés, capitalizable mensualmente, Cuál será
Unidad 10. Depreciación por el método de la línea recta. Objetivos. Al finalizar la unidad, el alumno:
Unidad 10 Depreciación por el método de la línea recta Objetivos Al finalizar la unidad, el alumno: Comprenderá el concepto de depreciación. Calculará la vida útil de un activo, sin inflación. Calculará
MATEMATICA COMERCIAL
Profesor: Ezequiel Roque David Ramírez MATEMATICA COMERCIAL Descripción y objetivos del curso Este tema está dedicado al estudio de conceptos que, con formulación matemática y carácter marcadamente económico,
MATEMATICAS FINANCIERAS LECCION 1
MATEMATICAS FINANCIERAS LECCION 1 1. EL INTERES El diccionario de la Real Academia Española, define el interés como lucro producido por el capital. Algunos autores lo definen de diversas maneras como:
Facultad de Contaduría y Administración
Facultad de Contaduría y Administración Matemáticas Financieras II Tema VIII. Fondo de amortización Dr. José Alfonso Álvarez Terrazas Objetivo Explicar qué es fondo de amortización. Aplicar las anualidades
1 Unidad de Aprendizaje Interés Simple
1 Unidad de Aprendizaje Interés Simple Contenido Introducción 1. Concepto del interés simple 2. Formula de interés simple 3. Clases de interés simple 4. Capital Final Valor futuro 5. Capital inicial Valor
Matemáticas. Sesión #12 Tipos de anualidades y amortización.
Matemáticas Sesión #12 Tipos de anualidades y amortización. Contextualización En esta sesión se identificará, definirá y explicarán los diferentes tipos de anualidades tales como las vencidas, anticipadas
TEMA N 1. INTERES SIMPLE Y COMPUESTO. Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos:
TEMA N 1. INTERES SIMPLE Y COMPUESTO Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos: Capitalización: Es aquella entidad financiera mediante la cual los intereses
Nombre: Intereses, anualidades y amortizaciones. Parte II.
Álgebra ÁLGEBRA 1 Sesión No. 12 Nombre: Intereses, anualidades y amortizaciones. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá la diferencia entre anualidades vencidas, anticipadas
ITSS. Matemáticas financieras Unidad 3 Anualidades Material para la evaluación. Versión Completa 2.0. M.F. Jorge Velasco Castellanos
ITSS Matemáticas financieras Unidad 3 Anualidades Material para la evaluación Versión Completa 2.0 Anualidades 1 qué cantidad se acumularía en un semestre si se depositaran $100,000.00 al finalizar cada
Problemas propuestos Capítulo No. 4 Tasas de interés y amortización de deudas
Problemas propuestos Capítulo No. 4 Tasas de interés y amortización de deudas Tasas de interés efectivas o reales 1. Si una persona deposita la suma de $us. 500 al 8% mensual compuesto trimestralmente,
... 8. INTERES SIMPLE
1 8. INTERES SIMPLE 8.1 Conceptos Básicos Interés El interés es el rédito o excedente generado, por una colocación de dinero, a una tasa de interés y un determinado periodo de tiempo y este puede ser simple
UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1
IDENTIFICACIÓN UNIDAD ACADÉMICA TECNOLOGIA EN CONTABILIDAD FINANCIERA ASIGNATURA: ELECTIVA DE PROFUNDIZACION-TALLER FINANCIERO UNIDAD TEMÁTICA COSTO DEL DINERO COMPETENCIA El estudiante: RESULTADOS DE
Matemáticas Financieras Avanzadas
Matemáticas Financieras Avanzadas 1 Sesión No. 7 Nombre: Anualidades diferidas Objetivo Al término de la sesión el estudiante aplicará los cálculos básicos de anualidades con anualidades diferidas y perpetuidad,
LECCIÓN Nº 05 y 06 COMPÀRACION DE TASAS: EL EFECTO DE LOS PERIODO DE COMPOSICION.
LECCIÓN Nº 05 y 06 COMPÀRACION DE TASAS: EL EFECTO DE LOS PERIODO DE COMPOSICION. OBJETIVO: Definir el periodo de capitalización, la tasa de interés nominal, tasa de interés efectiva y el periodo de pago.
Análisis y evaluación de proyectos
Análisis y evaluación de proyectos UNIDAD 5.- MÉTODOS DE EVALUACIÓN DEL PROYECTO José Luis Esparza A. Métodos de Evaluación MÉTODOS DE EVALUACIÓN QUE TOMAN EN CUENTA EL VALOR DEL DINERO A TRAVÉS DEL TIEMPO.
UNIDAD IV. ANUALIDADES 4.1. Definición y clasificación de las anualidades. Criterio Tipo Descripción Tiempo (fecha de inicio y fin) Ciertas
UNIDAD IV. ANUALIDADES 4.1. Definición y clasificación de las anualidades Anualidad: conjunto de pagos iguales realizados a intervalos iguales de tiempo. No necesariamente se refiere a periodos anuales,
Matemáticas Financieras Avanzadas
Matemáticas Financieras Avanzadas 1 Sesión No. 5 Nombre: Anualidades Simples Objetivo Al término de la sesión el estudiante aplicará los cálculos básicos de anualidades con anualidades simples, ciertas,
( )( ) UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos. Periodo de capitalización
UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos Si un capital C al terminar un periodo de inversión (por ejemplo un año) genera un monto M; no se retira entonces al segundo periodo
UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1
fe UNIDAD ACADÉMICA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: MATEMATICAS FINANCIERAS COSTO DEL DINERO COMPETENCIA 1. Analizar las teorías y conceptos del valor del dinero en el tiempo,
Matemáticas Financieras
Matemáticas Financieras 1 Sesión No. 5 Nombre: Anualidades simples, ciertas, vencidas e inmediatas. Objetivo: Al finalizar la sesión, los estudiantes conocerán los elementos de las anualidades. Distinguirán
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: CONTADURÍA
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: CONTADURÍA PROGRAMA DE LA ASIGNATURA DE: MATEMÁTICAS FINANCIERAS IDENTIFICACIÓN DE LA ASIGNATURA MODALIDAD:
MATEMÁTICAS APLICADA EN LA GERENCIA FINANCIERAS
MATEMÁTICAS APLICADA EN LA GERENCIA FINANCIERAS Instructor: M.Sc. Silvino Rodríguez Investigador CIGEG Ciudad Bolívar, abril 2017 Porcentajes 1.- El costo de cierto artículo es de Bs. 5.340, Cuál es el
Unidad 4. Ecuaciones de valor. Objetivos. Al finalizar la unidad, el alumno:
Unidad 4 Ecuaciones de valor Objetivos Al finalizar la unidad, el alumno: Calculará el valor actual (capital) y valor futuro (monto) de cierta cantidad en problemas prácticos. Representará gráficamente
Matemáticas financieras. SESIÓN 5 Anualidades simples, ciertas, vencidas e inmediatas
Matemáticas financieras SESIÓN 5 Anualidades simples, ciertas, vencidas e inmediatas Contextualización de la Sesión 5 En esta sesión veremos las anualidades su estudio es de mucha importancia para las
DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID
EXAMEN MATEMATICAS FINANCIERAS ICADE SEPTIEMBRE 2007 PRIMERA PREGUNTA (1 punto) Razonar qué sería preferible para una operación de inversión: - Un tanto nominal del 6%, capitalizable por meses - Un tanto
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: ADMINISTRACIÓN
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: ADMINISTRACIÓN PROGRAMA DE LA ASIGNATURA DE: MATEMÁTICAS FINANCIERAS IDENTIFICACIÓN DE LA ASIGNATURA MODALIDAD:
DIPLOMADO EN FINANZAS CORPORATIVAS MÓDULO II MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS
DIPLOMADO EN FINANZAS CORPORATIVAS MÓDULO II MATEMÁTICAS FINANCIERAS Y PORTAFOLIOS Por: Gelacio Martín Sánchez OCTUBRE 22, 2011 1. VALOR DEL DINERO EN EL TIEMPO CONTENIDO 1.1 DEFINICIÓN DE MATEMÁTICAS
Matemáticas Financieras
Matemáticas Financieras 1 Sesión No. 6 Nombre: Anualidad simple Contextualización El estudio de las anualidades es básica para las finanzas, ya que es el sistema de amortización más común en créditos bancarios,
Matemá<cas Financieras y Evaluación de Proyectos ICS 2613 M.E. Lisboa M. Ariz6a 1er. Semestre 2013
CONTABILIDAD ICS2613 Matemá
Tarea Final. Valor del dinero a través del tiempo Ejercicios
Materia: Economía División Ingeniería Maestro: Lic. César Octavio Contreras Tovías Tarea Final Valor del dinero a través del tiempo Ejercicios 1. El señor Martínez pide prestado al Banco la cantidad de
LECCIÓN Nº 05 y 06 INTERES COMPUESTO
LECCIÓN Nº 05 y 06 INTERES COMPUESTO OBJETIVO: El objetivo de este capitulo es enseñar el manejo de los factores que intervienen en las operaciones de interés compuesto junto con los análisis matemáticos.
( )( ) Ejemplo 1. Se depositan $100,000 en una cuenta que paga 10% de interés semestral. Determine: a) Cuál es el interés ganado a los 6 meses?
Ingeniería Económica Tema 1.. Diagramas de flujo de efectivo UNIDAD I. FUNDAMENTOS ECONÓMICOS DE EVALUACIÓN DE PROYECTOS. Tema 1.. Diagramas de flujo de efectivo Saber: Identificar los elementos de los
Unidad 11. Anualidades Simples Anticipadas
Unidad 11 Anualidades Simples Anticipadas INTRODUCCION Una anualidad anticipada es aquella en la cual los pagos se llevan a cabo al inicio del periodo de renta. Son ejemplos de anualidades anticipadas
Matemáticas financieras. Sesión 6 Anualidades
Matemáticas financieras Sesión 6 Anualidades Contextualización de la Sesión 6 En esta sesión profundizaremos en el tema de las anualidades anticipadas y diferidas el pago se debe de hacer a inicio del
MATEMÁTICAS FINANCIERAS II
MATEMÁTICAS FINANCIERAS II 2 INDÍCE Introduccion... 5 Mapa conceptual... 7 Unidad 1. Anualidades ordinarias en relación con el monto... 8 Mapa conceptual... 9 Introducción... 10 1.1 Formula del monto y
ARITMÉTICA MERCANTIL
2 ARITMÉTICA MERCANTIL Página 48 PARA EMPEZAR, REFLEXIONA Y RESUELVE Problema 1 En cuánto se transforman 250 euros si aumentan el 12? 250 1,12 = 280 Calcula en cuánto se transforma un capital C si sufre
Matemáticas Financieras
Matemáticas Financieras 1 Sesión No. 5 Nombre: Interés Compuesto Contextualización En las estrategias del ahorro o solicitud de crédito, cada cliente puede decidir entre hacer un trato con interés simple
CAPITALIZACIÓN SIMPLE
CAPITALIZACIÓN SIMPLE 1. Calculénse el interés y el capital final resultantes de invertir 10.000 euros durante tres años a un tipo de interés anual del 5% en capitalización simple. Interés: I = C i n Capital
Los ejercicios marcados con * son de una dificultad mayor al resto del práctico, por lo que se sugiere hacerlos como culminación de estudio del tema
EJERCICIOS DE CAPÍTULO 2 Los ejercicios marcados con * son de una dificultad mayor al resto del práctico, por lo que se sugiere hacerlos como culminación de estudio del tema Ejercicio 1 Considérese una
FAMILIA DE ACTIVOS Préstamos Personales
Préstamos Personales Productos Divisa Soles Dólares Euros Condiciones Préstamo de Consumo (Libre Disponibilidad, Estudios, Auto Segunda) X Préstamo Vehicular (Contiauto) X 1. Capitalización diaria de interés
Capítulo 4 Ecuación de valor
Capítulo 4 Ecuación de valor Introducción En la práctica no es común que las transacciones financieras se pacten con sólo dos desembolsos: uno al inicio de la operación y otro al final del plazo convenido.
a) El interés se paga una sola vez a fin de año. = (1+ ) =$10000(1+0.24) = $12400
Interés nominal e interés efectivo En los negocios se habla de declaraciones anuales, utilidad anual, etc., y aunque las declaraciones financieras pueden calcularse en tiempos menores de un año, la referencia
MATEMÁTICAS FINANCIERAS FEBRERO
DEFINICIÓN Una anualidad o renta es una serie de pagos iguales a intervalos iguales de tiempo, para reunir un capital o amortizar una deuda. DIAGRAMA TEMPORAL R R R R 0 1 2 n-1 n VA VF R: Cuota Periódica
Los ejercicios marcados con * son de una dificultad mayor al resto del práctico, por lo que se sugiere hacerlos como culminación de estudio del tema
EJERCICIOS DE CAPÍTULO 2 Los ejercicios marcados con * son de una dificultad mayor al resto del práctico, por lo que se sugiere hacerlos como culminación de estudio del tema Ejercicio 1 Considérese una
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 05/06 PRIMERA SEMANA Día 2/01/06 a las 9 horas MATERIAL AUXILIAR: Calculadora financiera DURACIÓN: 2 horas 1. a) Comparación de capitales: Equivalencia
Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves
INTERES SIMPLE OBJETIVOS: Al finalizar el estudio del presente capítulo, el estudiante será capaz de: 1. Explicar los conceptos de interés simple, monto o valor futuro, valor presente o valor actual, tiempo.
MATEMÁTICAS FINANCIERAS Y ADMINISTRACIÓN DEL RIESGO TAREA 4. ATENCIÓN: Si encuentras alguna diferencia con tu resultado, por favor pregunta en clase
MATEMÁTICAS FINANCIERAS Y ADMINISTRACIÓN DEL RIESGO TAREA 4 ATENCIÓN: Si encuentras alguna diferencia con tu resultado, por favor pregunta en clase 4.1 Una empresa se ha propuesto acumular un fondo con
Matemáticas Financieras
Matemáticas Financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 6 Nombre: Anualidades Contextualización En esta sesión profundizaremos en el tema de las anualidades anticipadas y diferidas el pago se debe
MATEMÁTICAS I SUCESIONES Y SERIES
MATEMÁTICAS I SUCESIONES Y SERIES. Sucesiones En casi cualquier situación de la vida real es muy frecuente encontrar magnitudes que varían cada cierto tiempo. Por ejemplo, el saldo de una cuenta bancaria
CRÉDITO MEDIANA EMPRESA FÓRMULAS Y EJEMPLOS
CRÉDITO MEDIANA EMPRESA FÓRMULAS Y EJEMPLOS La empresa tiene la obligación de difundir información de conformidad con la Ley N 29888 y el Reglamento de Transparencia de Información y Contratación con Usuarios
Gestión Financiera. El Valor del Dinero en el tiempo
Gestión Financiera El Valor del Dinero en el tiempo El Valor del Dinero en el Tiempo Este concepto se basa en el sentido común siguiente: Un dólar pagado a Ud. en un año más, tiene menos valor que un dólar
PLANIFICACIÓN DE LA UNIDAD DIDÁCTICA 3 Grado: 4to - Secundaria Área: MATEMÁTICA
PLANIFICACIÓN DE LA UNIDAD DIDÁCTICA 3 Grado: 4to - Secundaria Área: MATEMÁTICA I. TÍTULO DE LA UNIDAD Nos informamos para la mejor forma de ahorro II. SITUACIÓN SIGNIFICATIVA El valor del dinero en el
5.3. Interés simple. El interés
UNIDAD 5 5.3. Interés simple En la actualidad el uso del dinero tiene diferentes vertientes, ya sea para gastar en bienes y servicios o para invertir en un negocio, en una propiedad, etc., sin embargo,
ANUALIDADES ORDINARIAS
ANUALIDADES ORDINARIAS MARCO TEORICO: 1. ANUALIDAD. Una anualidad es una serie de pagos hechos a intervalos iguales de tiempo, cada uno de esos intervalos puede ser un mes, un semestre, un número de años
PROBLEMAS DE REPASO DE MATEMÁTICA FINANCIERA
1 PROBLEMAS DE REPASO DE MATEMÁTICA FINANCIERA 1.1 El día 15 de julio de 2008 se hizo una operación de préstamo de $ 4,000 a una tasa de interés anual de 25% con vencimiento el día 29 de agosto del mismo
Colegio Franciscano del Virrey Solís Bogotá D.C. Educar para la Justicia, la Paz y las Nuevas Relaciones
PORCENTAJE El concepto de porcentaje se aplica en diversas situaciones de economía, estadística, medicina entre otros, el porcentaje o el tanto por ciento es la razón que indica la cantidad que se toma
4. Matemática financiera.
4. Matemática financiera. Autora: Maite Seco Benedicto MATEMÁTICAS FINANCIERAS BÁSICAS Las Matemáticas financieras son una herramienta imprescindible para poder valorar las operaciones financieras, tanto
MATEMATICAS FINANCIERAS CAPITULO 4 ANUALIDADES EJERCICIOS RESUELTOS
1. Cuando su hijo cumple 12 años, un padre hace un deposito de $X en una fiduciaria con el objeto de asegurar sus estudios universitarios, los cuales iniciará cuando cumpla 20 años. Suponiendo que para
EJERCICIOS DE REPASO BLOQUE INTERÉS SIMPLE
1.- Un contribuyente es requerido por Hacienda para pagar una deuda de 1.800. Si han transcurrido 7 meses desde que debía pagar y le exigen un interés de demora del 5% simple anual, averigua el importe
FÓRMULAS TARJETA DE CRÉDITO
FÓRMULAS TARJETA DE CRÉDITO CONCEPTOS PREVIOS PARA REALIZAR EL CÁLCULO DE INTERESES: 1. Tipos de Tarjeta de Crédito BANCO GNB (persona natural): a) VISA Clásica. b) VISA Oro. c) VISA Platinum. 2. Crédito:
TEMA 2: EL INTERÉS SIMPLE
TEMA 2: EL INTERÉS SIMPLE 1.- CAPITALIZACIÓN SIMPLE 1.1.- CÁLCULO DEL INTERÉS: Recibe el nombre de capitalización simple la ley financiera según la cual los intereses de cada periodo de capitalización
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CAMPUS VILLA NUEVA CURSO MATEMATICA FINANCIERA Lic. Manuel de Jesús Campos Boc
Unidad 12. Anualidades Diferidas
Unidad 12 Anualidades Diferidas Una anualidad diferida es aquella cuyo plazo no comienza sino hasta después de haber transcurrido cierto número de periodos de pago; este intervalo de aplazamiento puede
Facultad de Contaduría y Administración
Facultad de Contaduría y Administración Matemáticas Financieras II Tema VI: Anualidades Diferidas Dr. José Alfonso Álvarez Terrazas Objetivos Identificar las anualidades diferidas. Resolver problemas calculando
Módulo III LECTURA. Amortización
Módulo III LECTURA Amortización Módulo I Módulo Módulo III II ÍNDICE Introducción:... 3 1. Amortización... 4 1.1. Amortización de una deuda... 4 2. Tablas de amortización (cronograma de pagos)... 7 2.1.
PAGOS PARA ESTAR AL DÍA SOLES
Conceptos previos para realizar el cálculo de intereses 1. Tipos de Tarjeta de Crédito BANCO GNB (persona natural) a) BANCO GNB Visa Clásica. b) BANCO GNB Visa Oro. c) BANCO GNB Visa Platinum. FÓRMULAS
Matemáticas Financieras Taller de Clase No 7- Interés Compuesto Ecuaciones de valor
1. Una persona tiene dos deudas una de $25.000 pagadera en 3 meses y otra de $40.000 pagadero en 7 meses. Si desea cambiar la forma de cancelarlas mediante dos pagos iguales de $X c/u con vencimiento en
Unidad 14. Anualidades Generales
Unidad 14 Anualidades Generales INTRODUCCION Los problemas de anualidades estudiados hasta este momento han sido únicamente del tipo de anualidades ciertas simples; esto es, aquellas anualidades donde
1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.
. Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.
PROGRAMA INSTRUCCIONAL MATEMÁTICA FINANCIERA
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN PROGRAMA INSTRUCCIONAL MATEMÁTICA FINANCIERA CÓDIGO ASIGNADO SEMESTRE U.C DENSIDAD
TEMA 5 FUNCIONES ELEMENTALES II
Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas
Matemáticas Financieras
Matemáticas Financieras 1 Sesión No. 7 Nombre: Anualidad General Contextualización Es muy común que en las transacciones comerciales o financieras, en vez de hacer un solo pago al final de un plazo se
ORIENTACIONES ACADÉMICAS PARA EL CURSO MATEMÁTICA COMERCIAL CÓDIGO: 03025 SEMANA A
UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA ESCUELA CIENCIAS SOCIALES Y HUMANIDADES PROGRAMA DE SECRETARIADO ADMINISTRATIVO ORIENTACIONES ACADÉMICAS PARA EL CURSO MATEMÁTICA COMERCIAL CÓDIGO:
ECONOMIA APLICADA PRQ 3257 A SEM I/10 EJEMPLOS RESUELTOS DE ECONOMIA APLICADA PRQ A
EJEMPLOS RESUELTOS DE ECONOMIA APLICADA PRQ 3257 - A 1. Cuál es el capital de un depósito de $ 500 realizada a principio de cada mes durante 15 en una cuenta de ahorros que gana el 9% nominal capitalizada
Ejercicios y Talleres. puedes enviarlos a
Ejercicios y Talleres puedes enviarlos a [email protected] Taller de Anualidades 1. Tres personas A, B y C deciden ahorrar dinero durante tres años; determinar cuál tiene la mayor cantidad
GRADIENTES GRADIENTE LINEAL O ARITMÉTICO GRADIENTE LINEAL CRECIENTE VENCIDO
GRADIENTES Se llama gradientes a una serie de pagos periódicos que tienen una ley de formación. Esta ley de formación hace referencia a que los pagos pueden aumentar o disminuir, con relación al pago anterior,
