8Soluciones a los ejercicios y problemas
|
|
|
- Natalia Domínguez Espinoza
- hace 9 años
- Vistas:
Transcripción
1 PÁGINA 38 Pág. P RACTICA Interpretación de gráficas Pepe y Susana han medido y pesado a su hijo, David, cada mes desde que nació hasta los meses. Estas son las gráficas de la longitud y del peso de David en función de la edad: LONGITUD (cm) EDAD (meses) PESO (kg) EDAD (meses) a) Cuánto medía y pesaba David cuando nació? b) Cuánto creció David los seis primeros meses? de los seis a los veintiún meses? En qué meses fue mayor su crecimiento? c) Cuánto aumentó de peso David los dos primeros meses? del mes al mes 8? d) Cuánto pesaba David cuando medía 80 cm? Qué edad tenía entonces? a) Al nacer, David medía 5 cm y pesaba 3,5 kg. b) En los seis primeros meses creció, aproximadamente, 0 cm. De los meses 6 a creció, aproximadamente, 8 cm. Su crecimiento fue mayor en los dos primeros meses. c) Los dos primersos meses aumentó su peso 3,5 kg. Del mes al mes 8 aumentó su peso, aproximadamente, 00 gramos. d) Cuando David medía 80 cm tenía meses y a esa edad pesaba 3, kg.
2 Esta es la gráfica de la evolución de la temperatura de un enfermo: 0 TEMPERATURA ( C) TIEMPO (días) a) Cuánto tiempo estuvo en observación? b) En qué día la temperatura alcanza un máximo? un mínimo? c) En qué intervalos de tiempo crece la temperatura y en cuáles decrece? d) Qué tendencia tiene la temperatura? e) Elabora un pequeño informe interpretando tus resultados. Pág. a) Estuvo en observación 7 días. b) El segundo día la temperatura alcanzó un máximo. El quinto día la temperatura alcanzó un mínimo. c) La temperatura crece en (, ) «(5; 5,5). La temperatura decrece en (;,5) «(3,5; 5). d) La temperatura tiende a estabilizarse en torno a los 36,5 C. e) Durante el primer día de observación, la temperatura del paciente se mantiene constante en 36,5 C. A lo largo del segundo día sube hasta alcanzar, al final del día, una temperatura máxima de 39,5 C. El tercer día, comienza a bajar hasta situarse en 39 C a la mitad del día. Permanece constante en esos 39 C hasta mediodía del día siguiente (cuarto día de la observación). A partir de este momento baja paulatinamente hasta que se sitúa, al final del quinto día, en una temperatura mínima de 36 C. En el inicio del día sexto, la temperatura sube medio grado y, a partir de ahí, se estabiliza en 36,5 C hasta el final del séptimo día, momento en el que finaliza la observación. 3 Hemos sacado de la nevera un vaso con agua y lo hemos dejado sobre la mesa de la cocina. Esta gráfica muestra la temperatura del agua en grados centígrados al pasar el tiempo. 6 TEMPERATURA ( C) 8 TIEMPO (min)
3 a) A qué temperatura está el interior de la nevera? b) A qué temperatura está la habitación? c) Imagina que en ese mismo momento sacamos del microondas un vaso con agua a 98 C y lo dejamos sobre la mesa. Dibuja una gráfica aproximada que muestre la temperatura del agua en este segundo vaso al pasar el tiempo. Pág. 3 a) El interior de la nevera está a C. b) La habitación está a C. c) TEMPERATURA (ºC) TIEMPO Gráficas, fórmulas y tablas Un nadador se deja caer desde un trampolín. Su entrenador ha medido el espacio que recorre cada cuatro décimas de segundo mediante un método fotográfico. Obtiene la siguiente tabla: TIEMPO ( s) 0 0, 0,8,,6, ESPACIO (m) 0 0,78 3,3 7,05,5,58 6,6 El nadador se ha detenido a los 7 metros. a) Representa la gráfica espacio-tiempo. b) Sabrías decir en qué momento entró en el agua? c) Qué velocidad estimas que llevaba en el momento de entrar en el agua? d) Qué altura tiene el trampolín? a) ESPACIO (m) , 0,8,,6, TIEMPO (s)
4 b) Entró en el agua a los,6 segundos de haber saltado. c) Estimamos la velocidad calculando la T.V.M. en el intervalo [,;,6]: T.V.M. [,;,6] =,5 7,05 = 5,5 = 3,65,6, 0, Estimamos que la velocidad era de 3,65 m/s. d) El trampolín tiene unos m de altura. Pág. PÁGINA 39 5 Representa la función y = x 3 3x + definida en [, 3]. Para ello, completa la tabla: x 0 3 y Cuál es el recorrido de la función? x 0 3 y Recorrido = [0, 0] Tres deportistas han estado nadando durante media hora. Su entrenador ha medido las distancias recorridas cada 5 minutos y ha obtenido los siguientes datos: TIEMPO ( min) DISTANCIA A (m) DISTANCIA B (m) DISTANCIA C (m) a) Dibuja la gráfica que relaciona la distancia y el tiempo de cada nadador y descríbelas.
5 b) Ha habido algún adelantamiento durante la media hora? c) Calcula la velocidad media de cada uno en todo el recorrido. d) Cuál es el dominio y el recorrido de cada una de las tres funciones? Pág. 5 a) b) No ha habido ningún adelantamiento. c) V m (A) = 00 = 36,67 m/min 30 V m (B) = V m (C) = = 50 m/min = 53,3 m/min d) Dom A = Dom B = Dom C = [0, 30] Rec A = [0, 00] Rec B = [0, 500] Rec C = [0, 600] 7 Cuando una persona sana toma 50 g de glucosa en ayunas, su glucemia (% de glucosa en la sangre) se eleva, en una hora aproximadamente, desde 90 mg/dl, que es el nivel normal, hasta 0 mg/dl. Luego, en las 3 horas siguientes, disminuye hasta valores algo por debajo del nivel normal, y vuelve a la normalidad al cabo de 5 horas. a) Representa la curva de glucemia de una persona sana. b)di cuál es su máximo, su mínimo y explica su tendencia. a) DISTANCIA (m) GLUCEMIA (mg/dl) TIEMPO (min) TIEMPO (horas) b) El máximo es de 0 mg/dl al cabo de h de iniciar la toma. El mínimo está ligeramente por debajo de 90 mg/dl y se alcanza a las h de iniciar la toma. La tendencia de la función es 90 mg/dl (tener la glucemia en un nivel normal).
6 8 La intensidad del sonido de un foco sonoro es menor a medida que nos alejamos de él. a) Representa la intensidad del sonido en función de la distancia al foco sonoro. b) Cuál es la tendencia? Pág. 6 a) Una posible gráfica es: INTENSIDAD DISTANCIA b) La tendencia de la función es cero: la intensidad del sonido es prácticamente nula a medida que nos alejamos del foco. P IENSA RESUELVE 9 Observa esta función dada gráficamente: Calcula su T.V.M. en los intervalos [0, ], [0, 5], [5, 7], [0, 7], [, 0] y [, ]. Copia en tu cuaderno la gráfica y dibuja en cada caso el segmento del cual estás hallando la pendiente T.V.M. [0, ] = 3 + = T.V.M. [0, 5] = + = 5 T.V.M. [5, 7] = 0 = 7 5 T.V.M. [0, 7] = 0 + = 7 7 T.V.M. [, 0] = 6 = T.V.M. [, ] = 0 6 = 3 +
7 0 Halla la T.V.M. de la función: y = 3x 3 + 9x 3x 9 en los intervalos [, 0], [, 0], [ 3, ], [0, ]. T.V.M. [, 0] = 9 9 = 9 T.V.M. [, 0] = 9 0 = T.V.M. [ 3, ] = 0 0 = 0 T.V.M. [0, ] = = Pág. 7 La posición de una partícula viene dada por la función: s = (t 8t 3 + 8t ) Calcula la velocidad media de dicha partícula en los intervalos [, ], [, ], [, 3], [, 3]. T.V.M. [, ] = 6 = T.V.M. [, ] = / = T.V.M. [, 3] = 7/ / = T.V.M. [, 3] = 7/ = De cada una de las siguientes funciones di: a) En qué intervalos es creciente y en cuáles es decreciente. b)cuáles son sus máximos y sus mínimos relativos. I 3 3 II a) I crece en (, ) «(, +@). Decrece en ) «(, ). II crece en 3) «(0, 3). Decrece en ( 3, 0) «(3, ) «(, +@). b) I Mínimos relativos en los puntos (, ) y (, ). Máximo relativo en el punto (, 5). II Mínimo relativo en el punto (0, 3). Máximos relativos en los puntos ( 3, ) y (3, ).
8 PÁGINA 0 Pág. 8 3 La gráfica adjunta describe el valor de una empresa desde que abrió. Responde: a) Cuál era su valor en el momento de la apertura? b) A cuánto se redujo su valor después de meses? c) Cuál es la T.V.M. en el intervalo [, ]? Da el resultado en miles de euros por mes. d) Cuál es la T.V.M. en [, ] y en [, 0]? e) Esta función tiene un máximo y dos mínimos relativos. Descríbelos. f) Cuál parece la tendencia de esta función para los próximos meses? g) Haz una descripción global del valor de esta empresa en sus tres primeros años. VALOR (millones de euros) TIEMPO (meses) a) El valor de la empresa en el momento de la apertura era de b) Después de meses su valor se redujo a c) T.V.M. [, ] = = /mes d) T.V.M. [, ] = = /mes T.V.M. [, 0] = e) Máximo relativo en (, ) = /mes Mínimos relativos en (, ) y (, ) f) Parece que el valor de la empresa, para los próximos meses, tiende a g) El valor de la empresa tiene un brusco descenso en los cuatro primeros meses. A partir de aquí crece rápidamente durante 8 meses y tiene una ligera caída en los dos meses siguientes. A partir del mes. crece rápidamente durante otros 6 meses y después cada vez más despacio. Su precio se aproxima a
9 Es periódica esta función? Cuál es su periodo? 3 Pág. 9 Averigua los valores de la función en los puntos de abscisas x =, x = 3, x = 0, x = 3 y x =. La función es periódica de periodo. f() = ; f(3) =,5; f(0) = f(0) = ; f(3) = f(3) =,5; f() = f() =,5 5 Continúa esta gráfica sabiendo que se trata de una función periódica. Di cuál es su periodo Su periodo es 3, Averigua si los puntos A (0, 3), B (, 5) y C (, ) pertenecen a la gráfica de la función: y = 3x x + 3 A(0, 3) x = 0 8 y = = 3 Sí pertenece. B(, 5) x = 8 y = = 5 Sí pertenece. C(, ) x = 8 y = 3 ( ) ( ) + 3 = 7 No pertenece Los puntos A y B pertenecen a la función. El C, no 7 Observa la gráfica de la función y responde:
10 a) Cuáles son su dominio de definición y su recorrido? b) Tiene máximo y mínimo relativos? En caso afirmativo, cuáles son? c) Cuáles son los puntos de corte con los ejes? d) En qué intervalos es la función creciente y en cuáles es decreciente? Pág. 0 a) Dominio = [, ). Recorrido = [, ]. b) Tiene un máximo relativo en el punto (, ) y un mínimo relativo en (3, ). c) Corta a los ejes en los puntos (0, ) y (, 0). d) Crece en (, ) «(3, ). Decrece en (, 3). 8 a) Calcula la T.V.M. de la función y = x 3 en los intervalos [0, ], [5, 6], [, 5], [0, 7]. b)observa que en todos los intervalos el valor obtenido es igual. Con qué elemento característico de la recta coincide ese valor? c) Generaliza completando la frase: En las funciones lineales, la T.V.M. en cualquier intervalo es igual a. a) T.V.M. [0, ] = + 3 = T.V.M. [5, 6] = 9 7 = T.V.M. [, 5] = 7 + = T.V.M. [0, 7] = + 3 = 5 7 b) Coincide con la pendiente de la recta y = x 3. c) En las funciones lineales, la T.V.M. en cualquier intervalo es igual a su pendiente. 9 Dos compañías telefónicas, A y B, tienen diferentes tarifas. Observa las gráficas y contesta: 0,8 COSTE ( ) B 0,6 A 0, 0, TIEMPO (min) a) Qué dos variables se relacionan en estas gráficas? Cuál es la independiente y cuál la dependiente? b)di si cada una de estas funciones es continua. Escribe los puntos de discontinuidad si es que los hay.
11 c) Di cuánto vale una llamada de 3 minutos con cada una de las dos compañías. una de media hora? Pág. a) Tiempo: variable independiente. Coste: variable dependiente. b) A es discontinua en los puntos de abscisas,, 3,, 5, 6, 7, B es continua. c) Tanto en A como en B el punto de abscisa 3 es (3; 0,5). Por tanto, en ambas compañías el coste de una llamada de 3 min es de 0,50. Llamadas de media hora: En A, 0, + 0, 30 = 3,0. En B, cada 3 min aumenta 0,. Por tanto, en 30 min: 0, + =,0
4Soluciones a los ejercicios y problemas PÁGINA 96
Soluciones a los ejercicios y problemas PÁGINA 96 Pág. P RACTICA Interpretación de gráficas Pepe y Susana han medido y pesado a su hijo, David, cada mes desde que nació hasta los meses. Estas son las gráficas
3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS. Página web del profesor: Profesor: Rafael Núñez Nogales
3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS Página web del profesor: http://www.iesmontesorientales.es/mates/ 1.-LAS FUNCIONES Y SUS GRÁFICAS. (Págs: 13 y 133) 1.1.- Qué es una función? Esta gráfica representa
Cálculo de derivadas
0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa
8Soluciones a los ejercicios y problemas PÁGINA 170
PÁGINA 70 Pág. P RACTICA Representación de rectas Representa las rectas siguientes: a) y b) y c) y d) y c) b) a) d) Representa estas rectas: c) a) y 0,6 b) y c) y, d) y d) a) b) Representa las rectas siguientes,
Ejercicios ( ) EJERCICIOS PRIMERA EVALUACIÓN PARA ALUMNOS CON MATEMATICAS DE 3º DE ESO PENDIENTE
Pendientes º ESO Primera evaluación Pág. / 9 Temario TEMA.- NÚMEROS RACIONALES. Repaso breve de números racionales y operaciones en forma de fracción. Repaso de las formas decimales y de la fracción generatriz.
8Soluciones a las actividades de cada epígrafe
PÁGINA 128 Pág. 1 En una comarca hay una cierta especie de vegetal que se encuentra con frecuencia. Se ha estudiado la cantidad media de ejemplares por hectárea que hay a distintas alturas. El resultado
1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente?
UD 4 Funciones. Características globales 4º ESO (opción A) 1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? 2.
10Soluciones a los ejercicios y problemas
0Soluciones a los ejercicios y problemas PÁGINA 6 Pág. P RACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valores como esta, y di cuál es el vértice
EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x.
2 FUNCINES EJERCICIS PRPUESTS 2. Representa las siguientes funciones. a) y 6 x b) y 0 x Tienen algún punto en común? Cuál crece más rápidamente? y = 0 x El (0, ) es el único punto que tienen en común.
FUNCIONES ELEMENTALES
0 FUNCIONES ELEMENTALES Página PARA EMPEZAR, REFLEIONA RESUELVE Problema Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
8 FUNCIONES: PROPIEDADES GLOBALES
8 FUNCINES: PRPIEDADES GLBALES EJERCICIS PRPUESTS 8. Escribe las coordenadas de los puntos que aparecen en la figura. A D B C A( 3, 3) B(3, ) C(3, ) D( 3, 3) 8. Representa estos puntos en un eje de coordenadas.
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
1. GRÁFICAS. Página 1
1. GRÁFICAS Página 1 Lectura, construcción e interpretación de gráficas Características globales y locales de las gráficas Página 2 1. LECTURA, CONSTRUCCIÓN E INTERPRETACIÓN DE GRÁFICAS. ETAPA CICLISTA
MATEMÁTICAS 2º ESO LOS NÚMEROS ENTEROS
MATEMÁTICAS 2º ESO LOS NÚMEROS ENTEROS BLOQUE I Ejercicio 1.- Representa y escribe: a) Los números negativos mayores que 5. b) Los números positivos menores que 5. c) Todos los números enteros que verifican
1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución:
1.- Resuelve las siguientes ecuaciones: 2.-Resuelve las siguientes ecuaciones: 3.- En el último examen de Matemáticas mi amigo Juan sacó tres puntos menos que yo, y la nota de mi amiga Sara fue el doble
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
Definición matemática de Relación y de Función
Fecha: 05/0 Versión: DOCENTE: ANTONIO ELI CASTILLA Definición matemática de Relación de Función En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto,
Formas de expresar la relación entre dos variables.
866 _ 00-06.qxd 7/6/08 : Página Funciones INTRDUCCIÓN RESUMEN DE LA UNIDAD La representación gráfica de las funciones es la forma más adecuada de entender la relación entre las variables. Estas gráficas
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
Funciones. 63 Ejercicios para practicar con soluciones
Funciones. 63 Ejercicios para practicar con soluciones Dadas las siguientes funciones gráficas, asocia cada función con su gráfica: a) f() = b) g() = - c) h() = 3 a) La 3; b) La ; c) La De las siguientes
3ª Parte: Funciones y sus gráficas
3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
10 PROPIEDADES DE LAS FUNCIONES
0 PRPIEDADES DE LAS FUNCINES PARA EMPEZAR Copia y completa la tabla, y representa la gráfica de la función. Se trata de una función continua? Figura 3 4 5 N.º de puntos f() hace corresponder a cada natural
12 Límites. y derivadas. 1. Funciones especiales. Solución: Ent(x) Dec(x) x 3,6 3,6 0,8 0,8. Signo(x) Signo(x) 1 1 1 1
Límites y derivadas. Funciones especiales Completa la tabla siguiente: 3,6 3,6 0, 0, Ent() Dec() Signo() P I E N S A C A L C U L A 3,6 3,6 0, 0, Ent() 4 3 0 Dec() 0,4 0,6 0, 0, 3,6 3,6 0, 0, Signo() A
ECUACIONES E INECUACIONES
ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x
Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.
Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término
TEMA 4 FUNCIONES ELEMENTALES I
Tema 4 Funciones elementales I Ejercicios resueltos Matemáticas B 4º ESO 1 TEMA 4 FUNCIONES ELEMENTALES I DEFINICIÓN DE FUNCIÓN EJERCICIO 1 : Indica cuáles de las siguientes representaciones corresponden
Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.
Representa la función que relaciona el área de un triángulo rectángulo isósceles la longitud del cateto. a) Cuál es la variable dependiente? b) la variable independiente? = a) La variable independiente
DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"
COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud
FUNCIONES ELEMENTALES
0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES
9. Rectas e hipérbolas
08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente
4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES
Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,
5Soluciones a las actividades de cada epígrafe PÁGINA 102
Soluciones a las actividades de cada epígrafe PÁGINA 0 Pág. La red de la canasta ha sugerido a estos chicos construir el aparato de abajo. Al girar uno de los aros, las cuerdas configuran esta bonita forma.
EJERCICIOS PROPUESTOS. a) En efecto, ya que a cada medida en centímetros le corresponde otra en pulgadas.
0 FUNCINES EJERCICIS PRPUESTS 0. Para pasar de centímetros a pulgadas se multiplica por y se divide por 5. a) Es una función? Escribe su epresión algebraica. c) Confecciona una tabla y representa la gráfica
Ejercicios para el Examen departamental
Departamento de Física Y Matemáticas Ejercicios para el Examen departamental 1ª Parte M. en I.C. J. Cristóbal Cárdenas O. 15/08/2011 Ejercicios para el examen departamental de Cálculo 1 primera parte A
CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3
PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 4 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 22
1. ESQUEMA - RESUMEN Página 2 2. EJERIIOS DE INIIAIÓN Página 4 3. EJERIIOS DE DESARROLLO Página 10 4. EJERIIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN Página 1.1. OORDENADAS Y GRÁFIAS ARTESIANAS.
1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6
ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media
TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL
TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,
LAS FUNCIONES ELEMENTALES
UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 5 PRACTICA Interpretación de gráficas Se suelta un globo que se eleva y, al alcanzar cierta altura, estalla. La siguiente gráfica representa la altura, con el paso del tiempo, a la que se encuentra
PÁGINA 149 PARA EMPEZAR. La mosca y la araña. La mosca de Descartes ha acabado posándose en un cuadro. Una araña la ve y va a por ella.
Soluciones a las actividades de cada epígrafe PÁGINA 19 Pág. 1 PARA EMPEZAR La mosca y la araña La mosca de Descartes ha acabado posándose en un cuadro. Una araña la ve y va a por ella. B C D M A Describe
Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:
Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo
Funciones y gráficas. Objetivos
8 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar
1.- CONCEPTO DE FUNCIÓN
.- CONCEPTO DE FUNCIÓN Actividades del alumno/a Explica porqué la siguiente gráfica no corresponde a una función: Porque a un valor de x, por ejemplo x =, le corresponde más de un valor de y. .- CONCEPTO
7Soluciones a los ejercicios y problemas PÁGINA 152
PÁGINA 5 Pág. P RACTICA Interpretación de gráficas En la gráfica siguiente viene representado el porcentaje de fumadores en España en los últimos años (parte roja), así como la previsión de cómo se supone
BLOQUE III Funciones y gráficas
BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
5Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones:
Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones: Pág. y 6 Puntos de corte con los ejes: 9 (, 9) Eje : 6 0 8 ± + 8 ± 7 8 8 + 7 ( ), 0 (,8; 0) 7 ( ),
Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.
Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.
Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido
9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar
TEMA 7 SISTEMAS DE ECUACIONES
TEMA 7 SISTEMAS DE ECUACIONES 7.1 Ecuaciones de primer grado con dos incógnitas PÁGINA 156 Actividades 1. Averigua cuáles de los siguientes pares de valores son soluciones de la ecuación x 4y 8 x f) y
APLICACIONES DE LA DERIVADA
7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece
MATEMÁTICA: TRABAJO PRÁCTICO 2. Funciones. 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura.
ILSE-2º Año- MATEMÁTICA: TRABAJO PRÁCTICO 2 Funciones 1) Carlos está enfermo. Veamos la gráfica de la evolución de su temperatura. a) Cuántos días ha estado enfermo el paciente? (Se considera normal una
dada por c(x) = donde x indica el tamaño de los pedidos para renovar existencias
FUNCIONES +, si
BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas
BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo
EJERCICIOS PROPUESTOS
. FUNCINES EJERCICIS PRPUESTS. Un kilogramo de azúcar cuesta,0 euros. Completa la siguiente tabla que relaciona las magnitudes número de kilogramos y precio en euros. N.º de kilogramos 5 0 0 Precio,0 5,50..3
7Soluciones a las actividades de cada epígrafe PÁGINA 142
PÁGINA 142 Pág. 1 Las representaciones gráficas de las funciones son una forma muy sencilla y visual de describir muchos fenómenos de la vida cotidiana. Por ejemplo, la temperatura del agua con la que
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1
Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x
La concentración de ozono contaminante, en microgramos por metro cúbico, en una
ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5
58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer
11 FUNCIONES POLINÓMICAS Y RACIONALES
FUNCINES PLINÓMICAS RACINALES EJERCICIS PRPUESTS. Estudia y representa la siguiente función cuadrática: f(). Es una parábola con las ramas hacia arriba, pues a 0. El vértice es el punto V, 5 8. El eje
CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.
CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento
1. Funciones y sus gráficas
FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada
IES RIBERA DEL BULLAQUE PORZUNA ALUMNO: CURSO: SEMANAS TRABAJADAS: NO OLVIDES ENVIAR LOS RESULTADOS DE CUADERNIA POR E-MAIL 1
ALUMNO: CURSO: SEMANAS TRABAJADAS: NO OLVIDES ENVIAR LOS RESULTADOS DE CUADERNIA POR E-MAIL 1 NO OLVIDES ENVIAR LOS RESULTADOS DE CUADERNIA POR E-MAIL 2 CUADERNO: FUNCIONES. HOJA DE TRABAJO: INTRODUCCIÓN
PÁGINA 131 PARA EMPEZAR. Una función para las oscilaciones de un péndulo
Soluciones a las actividades de cada epígrafe PÁGINA 131 Pág. 1 PARA EMPEZAR Una función para las oscilaciones de un péndulo Representa en tu cuaderno las observaciones, en una cuadrícula como la que aquí
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
ACTIVIDAD DE APRENDIZAJE
ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática
. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011
1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)
EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO
NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número
1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:
LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función
Interpretación de gráficas 1
Interpretación de gráficas 1 Dos ejemplos sencillos. 1. El precio de un bolígrafo en la papelería cercana es de 0,30. Calcula y escribe en la tabla siguiente el precio de los bolígrafos que se indican.
DERIVADAS. TÉCNICAS DE DERIVACIÓN
DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros
DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES
UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en
TEMA 5 FUNCIONES ELEMENTALES II
Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas
Tema 5: La energía mecánica
Tema 5: La energía mecánica Introducción En este apartado vamos a recordar la Energía mecánica que vimos al principio del Bloque. 1. Energía Potencial gravitatoria 2. Energía Cinética 3. Principio de conservación
Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág.
11 Funciones. Objetivos En esta quincena aprenderás a: Comprender, distinguir y valorar el concepto de función Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional Distinguir los
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
Por ejemplo si a = 1 y c = 2 obtenemos y x 2 2. 2 1, su gráfico es el mismo que el de. En general, a partir del gráfico de
Caso 3: En la ecuación general a b c, a 0 b 0, obtenemos a c, a 0. 10 = + = 8 6 4 = -1 3 - -1 1 3-1 Por ejemplo si a = 1 c = obtenemos. El gráfico de, es el mismo que el de desplazado unidades hacia arriba.
1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.
ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES
FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución
Problemas de funciones para 2º E.S.O
Problemas de funciones para 2º E.S.O 1º) Esboza una representación gráfica de las siguientes funciones: a) La altura a la que se encuentra el asiento de un columpio, al pasar el tiempo. b) La temperatura
BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA
Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética
Cuaderno de Actividades 4º ESO
Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
, o más abreviadamente: f ( x)
TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura
1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo.
EJERCICIOS de CINEMÁTICA 1. Corresponden las gráficas siguientes a un movimiento uniforme? Explícalo. 2. De las gráficas de la figura, cuáles corresponden a un MRU? Cuáles a un MUA? Por qué? Hay alguna
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función
TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
Hoja 6: Estadística descriptiva
Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
