NÚMEROS ENTEROS NEGATIVOS
|
|
|
- Lourdes Rojas Valdéz
- hace 9 años
- Vistas:
Transcripción
1 NÚMEROS ENTEROS NEGATIVOS DEFINICIONES PREVIAS Los números enteros son: los positivos, los negativos y el cero. Se representan sobre una recta numérica: El valor absoluto de un número entero, es el mismo número sin el signo: -8 = +8 = 8 El mayor valor de dos números enteros: Siempre, un número entero positivo es mayor que el cero o un negativo. En dos números enteros negativos es mayor, el que tiene menor valor absoluto. En dos números enteros positivos es mayor, el que tiene mayor valor absoluto OPERACIONES CON NÚMEROS ENTEROS: SUMAS y RESTAS Con el mismo signo: Se suman los valores absolutos de los sumandos y a la suma total se le asigna el mismo signo de los sumandos (-3) + (-4) + (-8) = -15 ( +3) + ( +4) + ( +8) = +15 Con diferente signo: Ejemplo: (-5) + (-2) + (+6) + (-8) + (+4) + (+9) Se ordenan los sumandos considerando el mismo signo. =[ (+6) + (+4) + (+9)] + [ (-5) + (-2) + (-8) ] Se suman (como en el procedimiento anterior), de forma separada los valores de los sumandos del mismo signo. = ( + 19) + (- 15 ) Luego, se restan los valores y a la diferencia se le pone el signo del número de mayor valor absoluto = ( + 19) + (- 15 ) = + 4 = 4 NOTA: En los números enteros positivos no es necesario indicar el signo. 11
2 MULTIPLICACIONES y DIVISIONES Cuando se multiplican o dividen dos números enteros se aplica al resultado (producto o cociente) la siguiente Regla de signos: Tabla 1. Cociente Si te das cuenta, la Tabla 1 y la Tabla 2, son iguales Tabla 2. Producto : + - x Regla general: Si los números enteros que se consideran en el producto y el cociente: Son del mismo signo, el resultado es positivo. Son del diferente signo, el resultado es negativo. Ejemplo, para el cociente: (+10) : (+2 ) = +5 El cociente de un + con un + es: + (+10) : (-2 ) = -5 El cociente de un + con un - es: - (-10) : (+2 ) = -5 El cociente de un - con un + es un - (-10) : (-2 ) = + 5 El cociente de un - con un - es un + Ejemplo, para el producto: (+10) x (+2 ) = +20 El producto de un + con un + es: + (+10) x (-2 ) = -20 El producto de un + con un - es un - (-10) x (+2 ) = -20 El producto de un - con un + es un - (-10) x (-2 ) = + 20 El producto de un - con un - es un + OPERACIONES COMBINADAS Seguir el orden de prioridad: 1º. Corchete 2º Paréntesis 3º Exponentes. 4º Multiplicaciones y divisiones 5º Sumas y restas Cuando un signo -, antecede a un corchete o a un paréntesis, cambiar los signos de cada uno de sus elementos. Hacerlo de forma progresiva tal como se indica en el paso anterior. Recuerda que en los enteros positivos, no es necesario poner el signo 12
3 Por ejemplo, en la siguiente expresión : - [10 x -( +2-5) + 25] + [ 20 : ( 2 x -2) ] x 4 = Cambiamos de signo a los elemento del CORCHETE. Primero por aplicar un método PASO a PASO, que permita comprenderlo, primero lo haremos con el de la izquierda y luego, con el de la derecha. Recordar que siempre lo hacemos siguiendo el Orden de Prioridad (ver página 8 de los apuntes de matemáticas). Paso 1. Con el Corchete de la Izquierda Viendo que dentro del corchete hay un PARÉNTESIS, cambiamos de signo a los números dentro del PARÉNTESIS, y seguimos. - [10 x ( ) + 25] + [ 20 : ( 2 x -2)] x 4 = - [10 x(+ 3 ) + 25] + [ 20 : ( 2 x -2)] x 4 = Resolvemos las MULTIPLICACIONES (y divisiones si las hubiera). -[ ] + [ 20 : ( 2 x -2)] x 4 = Ahora, por el Orden de Prioridad, nos corresponde finalmente, resolver las Sumas y Restas. - [+ 55] + [ 20 : ( 2 x -2)] x 4 = Cambiamos el signo al número dentro del CORCHETE de la izquierda, y seguimos [ 20 : ( 2 x -2)] x 4 = Paso 2. Con el Corchete de la Derecha (cuando hay más pericia, ambos corchetes se resuelven SIMULTANEAMENTE) Viendo que dentro del corchete hay un paréntesis, resolvemos primero, el PARÉNTESIS, y seguimos [ 20 : ( 2 x -2) ] x 4 = [ 20 : (-4) ] x 4 = Resolvemos las MULTIPLICACIONES (y divisiones si las hubiera) [ -5 ] x 4 = = Ahora, por el Orden de Prioridad, nos corresponde finalmente, resolver las Sumas y Restas. (-55) + (-20) =
4 DIVISIBILIDAD de LOS NUMEROS NATURALES DEFINICIONES PREVIAS Los criterios que permiten establecer si un número es divisible por otro, son los siguientes: 2 El número termina en cero o en cifra par. 3 La suma de sus cifras es un múltiplo de 3 Por ejemplo, El número: 822 = = 12 Es divisible por 3, porque 12 es múltiplo de 3 4 El número formado por sus DOS últimas cifras es un múltiplo de 4 Por ejemplo, El número: = 88 Es divisible por 4, porque 88 es múltiplo de 4 5 La cifra de las unidades es cero ó 5 6 El número es divisible por 2 y por 3 simultáneamente (ver los criterios anteriores) 7 En números de 3 cifras: Si al número formado por la decena y centenas se le resta: [el número de las unidades multiplicada por 2], el resultado es un múltiplo de 7. Por ejemplo, El número: 294 = [ (29) (2x4) ] = 21 Es divisible por 7, porque 21 es múltiplo de 7 En números de más de 3 cifras: Paso 1. Formar dos número: el primero, truncar el número separándolo de la posición de las Unidades. Paso 2. El segundo número es el valor de las UNIDADES multiplicado por 2. Paso 3. Restar el segundo número formado al primero. Paso 4. Con el nuevo número aplicar los pasos del 1 al 3. Hasta verificar que el resultado es CERO o un múltiplo de 7. Por ejemplo: Paso 1: Paso 2: 8 x 2 = 16 Paso 3: = Repetimos pasos 1 al 3 hasta verificar que el resultado es múltiplo de 7 Paso 1: 638 Paso 1: 63 Paso 2: 4 x 2 = 8 Paso 2: 0 x 2 = 0 Paso 3: = 630 Paso 3: 63 0 = 63 8 Si el número de la CENTENAS es PAR o CERO Es divisible por 7, porque 63 es múltiplo de 7 Y, los 2 últimos dígitos (Decena y Unidades) son CERO, entonces es múltiplo de 8. Por ej ; 8.400; 7.600; ; 8.000; Cuando, los 2 últimos dígitos (Decena y Unidades) son DISTINTOS DE CERO, se toman los 2 últimos dígitos (Decena y Unidades) y se DIVIDE entre 8, verificando si esa cantidad es múltiplo de 8. Si el número de la CENTENAS es IMPAR Paso 1. Le sumamos 4 al número. Paso 2. Se toman los 2 últimos dígitos (Decena y Unidades) y se DIVIDE entre 8, verificando si esa cantidad es múltiplo de 8. Por ejemplo, con el número: Paso 1: = Paso 2: 24 : 8 = 3 Es divisible por 8, porque 24 es múltiplo de 8 9 La suma de sus cifras es múltiplo de 9 Por ejemplo, El número: = = 18 Es divisible por 8, porque 18 es múltiplo de 9 10 La cifra de las unidades es cero. 11 En números de 2 CIFRAS: Se cumple cuando las dos cifras son iguales Por ejemplo: 22, 33, 44, 55, En números de MÁS de 2 CIFRAS: Paso 1. Separar el número en dígitos. Paso 2. Asignar alternativamente, los dígitos los signos + y. Empezar siempre de izquierda a derecha y con el signo +. Paso 2. Realiza la suma algebraica. Paso 3. Con el resultado final, verificar si el resultado es cero o múltiplo de 11, entonces el número es divisible por 11. Por ejemplo: El número Paso 1, 2 y = 11 Es divisible por 11, porque 11 es múltiplo de El número es divisible por 3 y por 4 simultáneamente (ver los criterios anteriores) 14
5 TAREA Marca con una X la divisibilidad de los números Número Divisible por: Resuelve: I Problema Resultado a) [70 ( 14-7 ) x 4 2 ] 5 + ( 4 x 2) = b) [35 + ( ) x 2 3 ] + 5 [20 (8-4 ) x 5 2 ] ( 9 x 3) c) + 8 [15 (3-5 ) x 1 2 ] ( 12 x 2) + [35 + ( )] d) ( 7 x 3) + [45 x ( ) x 2 3 ] x 2 3. Cuántas unidades de millar son 232 centenas de millar? 4. Un autobús tiene que llevar desde Murcia a Sevilla 392 personas. Si en cada viaje lleva 28, cuántos kilómetros recorrerá entre idas y vueltas si la distancia entre ambas capitales es de 534 kilómetros? 15
6 5. Sabiendo que el sonido recorre m. por segundo, a la temperatura de 0 C., aumentando aproximadamente en 0,60 m. por grado de aumento. A qué distancia ha hecho explosión un barreno si tarda 8 segundos en oírse la detonación y la temperatura ambiente es de 10 C.? 6. Si por 6 plantas se han pagado 102 euros, cuánto costarán 28 hileras de plantas si cada una tiene 25? 7. Si un coche vale euros y tengo esculturas iguales a la venta, que tienen un coste unitario de producción de 350 y un coste total de venta, de 500. Qué cantidad de esculturas debo vender para adquirir una flota de 5 coches? 8. Indica si es verdadero o falso I Afirmación V F a) Todos los múltiplos de 3 y 2, lo son también de 6 b) La suma de los múltiplos de un número da otro múltiplo de ese número c) Todos los múltiplos de 3, lo son también de 5 d) Todos los múltiplos de cuatro, lo son también de dos e) Todos los múltiplos de 5, lo son también de 2 9. Tenemos 8 vacas que dan 14 litros de leche, cada una por día. De cada 7 litros se obtiene una libra de manteca. En 7 días, cuántas libras de manteca fabricaremos? 10. Un tractor lleva 25 sacos de 50 kilos cada uno, 10 sacos de 150 kilos cada uno y 2 sacos de 75 kilos cada uno. Cuántos kilos lleva en total? 11. Un agricultor pudo vender 900 kilos de peras a 2 euros el kilo. Rechazó la oferta, y después de habérsele podrido 150 kilos vendió las restantes a 3 euros el kilo. Averiguar la ganancia o pérdida comparando con el precio a que pudo realizar si no hubiese rechazado la primera oferta. 13. Pretendemos vender 50 pelotas por 15 euros, cada una, y con ese dinero recaudado de la compra total, comprar igual número de redes y arcos, para practicar, en el club, dos deportes adicionales. Qué cantidad de redes y arcos podemos comprar?, sabiendo que las redes valen el doble que los arcos. 14. Compramos, para el comedor del colegio: 6 melones de 2 kilos por 5 euros la unidad; 2 melones de 3 kilos por 4 euros la unidad; y, 5 melones de 3 kilos por 3 euros la unidad. Cuánto hemos pagado por ellos?; y cuál fue el precio promedio por kilo? 16
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
Números enteros. Los números enteros son los formados por los números naturales (1), sus opuestos (2) y el número 0
Los números enteros son los formados por los números naturales, sus opuestos (2) y el número 0 Números enteros Los números naturales son aquellos que nos permiten contar las cosas. Ej. 2 sillas, 4 patas,
Apuntes de matemáticas 2º ESO Curso
Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde a un número menor
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 2. Los números enteros 1. Los números enteros Es el conjunto de los números negativos, el cero y los positivos, y se representan como: Z...,-5,-4,-3,-2,-1,0, 1, 2, 3, 4,
Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.
Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde
TEMA 2.- NÚMEROS ENTEROS
TEMA 2.- NÚMEROS ENTEROS Matemáticas 1º ESO 1.- Números enteros Los números enteros comprenden: Números enteros positivos: +1, +2, +3, +4, (se corresponden con los números naturales: +4 = 4) Números enteros
Operaciones con números enteros
Operaciones con números enteros Suma de números enteros Cuando tienen el mismo signo: Se suman los valores y se deja el signo que tengan, si son positivos signo positivo y si son negativos signo negativo.
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN
UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez
UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica
Suma de números enteros
NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un
Guía 1: Operaciones numéricas en los Números enteros (Z)
Guía 1: Operaciones numéricas en los Números enteros (Z) NÚMEROS ENTEROS (Z): Existen números con signo, que son los números enteros (Z+ son los positivos y Z- son los negativos). Según se sabe, nos los
Suma de números enteros
NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un
Tema 1: NUMEROS ENTEROS
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.
TEMA 1: LOS NÚMEROS ENTEROS Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 1. Los Números Enteros. 2. Suma y resta de números enteros.
Potencias y raíces Matemáticas 1º ESO
Potencias y raíces Matemáticas 1º ESO ÍNDICE 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores
TEMA 2: NÚMEROS ENTEROS
TEMA : NÚMEROS ENTEROS 1. NÚMEROS ENTEROS Los números naturales se utilizan para expresar matemáticamente multitud de situaciones cotidianas. Sin embargo, a veces no sirven para cuantificar las situaciones
GAIA.- Números Enteros
GAIA.- Números Enteros 1.- EL CONJUNTO DE LOS NÚMEROS ENTEROS.- El conjunto de los números enteros está formado por todos los números naturales (N) precedidos del signo más (+), los números naturales precedidos
Colegio Portocarrero. Curso Departamento de matemáticas.
PRIORIDAD DE OPERACIONES: 1º Hay que resolver o quitar los paréntesis. 2º Se hacen las multiplicaciones y divisiones en el orden que aparezcan de izquierda a derecha 3º Se hacen las sumas y las restas
C U R S O : MATEMÁTICA
C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS VALOR ABSOLUTO Es la distancia que existe entre un número y el 0-3 -2-1 0 1 2 3 Z -3 = 3, 3 = 3 DEFINICIÓN:
PRIORIDAD DE OPERACIONES:
PRIORIDAD DE OPERACIONES 1º Hay que resolver o quitar los paréntesis. º Se hacen las multiplicaciones y divisiones en el orden que aparezcan de izquierda a derecha º Se hacen las sumas y las restas en
Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria:
TEMA 0: REPASO DE NÚMEROS. Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria: Suma de números enteros 1. Si los sumandos son del mismo
NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.
NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden
Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto?
REPASO Y APOYO OBJETIVO 1 3 RECONOCER EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO Nombre: Curso: echa: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA III : LOS NÚMEROS ENTEROS Los números negativos. Su necesidad. El conjunto de los números enteros. Valor absoluto de un número entero. Opuesto de un número entero. Suma
El conjunto de números enteros está formado por los números naturales, sus opuestos (negativos) y el cero.
1 1. NÚMEROS ENTEROS El conjunto de números enteros está formado por los números naturales, sus opuestos (negativos) y el cero. La necesidad de representar el dinero adeudado, la temperatura bajo cero,
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I
ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números
Orden de los números enteros
Números enteros Orden de los números enteros Podemos colocar los números enteros, positivos y negativos, en una recta cuyo centro es el 0. NEGATIVOS POSITIVOS -10-5 0 1-1 3 8 A la derecha del 0 van colocados
Divisibilidad I. Nombre Curso Fecha
Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra
UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS
C u r s o : Matemática Material N 02 GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS ENTEROS ( ) Los elementos del conjunto enteros. OPERATORIA EN ADICIÓN = {, -3,
INSTITUCIÓN EDUCATIVA JORGE ROBLEDO PLAN DE APOYO
FECHA:07-0-204 Página de 4 ÁREA/ASIGNATURA: ARITMÉTICA PARA LA PROMOCIÓN ANTICIPADA GRADO: SEXTO AÑO: 207 INSTRUCCIONES: La entrega de la solución, por escrito y bien presentada, es requisito indispensable
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
NUMEROS ENTEROS ( Z)
NUMEROS ENTEROS ( Z) En N la resta sólo está definida si el minuendo es mayor o igual al sustraendo. Para que dicha operación no sea tan restringida se creó el conjunto de enteros negativos ( notado por
TEMA 4 NÚMEROS ENTEROS
TEMA 4 NÚMEROS ENTEROS 1 2 3 Recta numérica. -9-8 -7-6 -5-4 -3-2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 Enteros negativos A la izquierda del 0 están los números enteros negativos Enteros positivos A la derecha
Semana 1: Números Reales y sus Operaciones
Semana 1: Números Reales y sus Operaciones Taller de Preparación para Prueba PLANEA Ing. Jonathan Quiroga Tinoco Conalep Tehuacán P.T.B. en ADMO, SOMA y EMEC UNIDAD 04 Los números enteros y sus operaciones
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.
ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones
Complemento matemático. REPASO DE OPERACIONES MATEMÁTICAS BÁSICAS
Complemento matemático. REPASO DE OPERACIONES MATEMÁTICAS BÁSICAS SISTEMAS DE NUMERACIÓN Los números representan cantidades, pero una misma cantidad se puede representar mediante diferentes sistemas: numeración
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre
CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.
Potencias y raíces Matemáticas 1º ESO
ÍNDICE Potencias y raíces Matemáticas 1º ESO 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
NÚMEROS ENTEROS. OBSERVACION: En la división se cumple la regla de los signos de la multiplicación.
NÚMEROS ENTEROS Los elementos del conjunto = {, -3,-2,-1, 0, 1, 2, } se denominan Números Enteros. OPERATORIA EN ADICIÓN Al sumar números de igual signo, se suman los valores absolutos de ellos conservando
Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra.
Colegio Antil Mawida Departamento de Matemática Profesora: Nathalie Sepúlveda Guía nº1 Taller PSU Refuerzo Contenido y Aprendizaje N Fecha Tiempo 2 Horas Nombre: Unidad Nº Núcleos temáticos de la Guía
CUADERNILLO DE REFUERZO DE OPTATIVA DE MATEMATICAS 1º ESO. Si la división de un número A, entre otro número B, es exacta, entonces decimos que:
CUADERNILLO DE REFUERZO DE OPTATIVA DE MATEMATICAS 1º ESO Si la división de un número A, entre otro número B, es exacta, entonces decimos que: El número A es divisible por el número B. El número A es múltiplo
APU TES Y EJERCICIOS DEL TEMA 1 ÚMEROS E TEROS (Z)
APU TES Y DEL TEMA 1 ÚMEROS E TEROS (Z) 1-T 1--2ºESO NÚMEROS ENTEROS (Z): Existen n os con signo, que son los n os enteros (Z+ son los positivos y Z- son los negativos). Según se sabe, nos los podemos
UNIDAD DIDÁCTICA #1 CONTENIDO
UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA
NÚMEROS ENTEROS. Números naturales: sirven para contar, ordenar y comunicar información.
NÚMEROS ENTEROS 15 Números naturales: sirven para contar, ordenar y comunicar información. representa al conjunto de todos los número naturales. = {0, 1, 2, 3, 4, 5, 6, } Hay infinitos números naturales.
Números Enteros. Introducción
Números Enteros Introducción Todos los conjuntos de números fueron de alguna manera "descubiertos" o sugeridos en conexión con problemas planteados en problemas físicos o en el seno de la matemática elemental
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números
GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos
CURSO UNICO DE INGRESO 2010
INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para
FICHAS DE TRABAJO REFUERZO
FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias
FIN EDUCATIVO FIN INSTRUCTIVO
FIN EDUCATIVO Todos somos números en las Matemáticas de la vida, con valores: absolutos, relativos, positivos y negativos. Los primeros representan a nuestras cualidades y virtudes ; los segundos a los
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
TEMA 1 CONJUNTOS NUMÉRICOS
TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS º DE ESO ACTIVIDADES DE RECUPERACIÓN PARA ALUMNADO DE º DE ESO IES MAR MEDITERRÁNEO . OPERACIONES CON NÚMEROS NATURALES. Observa el número 06 86 y contesta: a) Cuál es la cifra de las centenas?
Comparación y Orden: El termómetro marca -3ºC a la tarde y 7ºC a la noche, la temperatura, bajó o subió? Ubiquemos esos valores en la recta numérica:
Números Enteros: En nuestro país tenemos un relieve montañoso al oeste y llano al este. Esto da por resultado una pendiente general del terreno hacia el Océano Atlántico. Pero la tierra se extiende bajo
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
Multiplicación y División de Números Naturales
Multiplicación y División de Números Naturales I. Multiplicación La multiplicación o producto, es una forma rápida de calcular la suma, cuando los sumandos son iguales. 2+2+2+2 = 2 x 4 = 8. También se
Los Números Enteros (Z)
Los Números Enteros (Z) Los números enteros: representación gráfica, orden, modulo o valor absoluto. Operaciones en Z, procedimientos y propiedades de estas. Prioridades de operaciones y paréntesis. Problemas
EJERCICIOS SOBRE : NÚMEROS NATURALES
1.- Números Naturales: 1 Sirven para identificar, ordenar y contar. Ejemplo: El número de alumnos de tú clase: treinta. El precio de un bolígrafo: tres euros. El número de asistente de tú aula: veinte.
Números fraccionarios y decimales
Unidad didáctica Números fraccionarios y decimales .- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número
CONJUNTO DE LOS NÚMEROS NATURALES
CONJUNTO DE LOS NÚMEROS NATURALES 1.- DEFINICIÓN DEL CONJUNTO DE LOS NÚMEROS NATURALES (Conjunto N): Un número natural es cualquier número que se puede usar para contar los elementos de un conjunto finito.
Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros
Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir
Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }
Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan
LIMPIEZA Y ORGANIZACIÓN
SATISFACTORIO ACEPTABLE MEJORABLE Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS TEMA 4 NÚMEROS ENTEROS ALUMNO/A: Nº Ejercicios TEMA 4 NÚMEROS ENTEROS (1º ESO) Página 1 N Ú M E R O S P O S I T
TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS
TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS Por qué aparecen los números enteros? Por qué aparecen los números enteros? La cueva de Voronia, es la cueva conocida más profunda de la Tierra, localizada
Operaciones de enteros. Prof. Yaritza González Adaptado por: Yuitza T. Humarán Departamento de Matemáticas UPRA
Operaciones de enteros Prof. Yaritza González Adaptado por: Yuitza T. Humarán Departamento de Matemáticas UPRA Suma de enteros: Reglas Suma de dos enteros negativos o dos enteros positivos El total es
Los números enteros y racionales
Los números enteros y racionales Objetivos En esta quincena aprenderás a: Representar y ordenar números enteros Operar con números enteros Aplicar los conceptos relativos a los números enteros en problemas
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA I : NÚMEROS NATURALES Sistema de numeración romano. Los números naturales. Números naturales como cardinales y ordinales. o Recta numérica. El sistema de numeración decimal.
Entrenamiento ONMAPS Guanajuato. Primaria (Teoría de Números)
Entrenamiento ONMAPS Guanajuato Primaria (Teoría de Números) Un concepto que se usa de manera muy frecuentemente en los problemas de Olimpiada de Matemáticas es el de divisibilidad. Esto no se tratará
MANEJO DE ESPACIOS Y CANTIDADES ALGEBRA
MANEJO DE ESPACIOS Y CANTIDADES ALGEBRA ALGEBRA: es el nombre que identifica a una rama de la Matemática que emplea números, letras y signos para poder hacer referencia a múltiples operaciones aritméticas.
Operaciones con números enteros
1. Identificación Nivel: Primario Área: Matemática Grado: Sexto SC 10: Resumen: En esta Unidad Didáctica se identifican los números enteros positivos y negativos. Se resuelven operaciones de adición y
TEMA 1: NÚMEROS ENTEROS
Números enteros 1 OBJETIVO 1: Significado de los números enteros TEMA 1: NÚMEROS ENTEROS 1. Expresa las siguientes situaciones con números enteros a) El año 2500 a.c... b) Pasear por la orilla del mar...
NÚMEROS ENTEROS. Números enteros positivos y números enteros negativos. Su representación gráfica en la recta. Número entero positivo.
NÚMEROS ENTEROS Números enteros positivos y números enteros negativos. Su representación gráfica en la recta. Número entero positivo. - Es todo aquel número mayor que 0. - Se utiliza para representar valores
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
Pendientes de Matemáticas de 1º ESO Relación 1. Números Naturales.
Pendientes de Matemáticas de 1º ESO Relación 1. Números Naturales. NOMBRE 1) Escribe con palabras los siguientes números: a) 6 534 = Seis mil quinientos treinta y cuatro b) 4 568 = c) 78 956 = d) 405 608
Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-2-1
Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-2-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Tutor: Antonio Rivero Cuesta 2.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.
LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES
LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS SUMA Si los números tienen el mismo signo se suman se deja el mismo signo. 3 + 5 = 8 ( 3) + ( 5) = 8 Si números tienen
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.
Números fraccionarios y decimales
Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número
Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales)
Sección III CRITERIOS DE I (Criterios Habituales) Las reglas de divisibilidad son criterios que sirven para saber si un número es divisible por otro sin necesidad de realizar la división. Llamaremos criterio
Índice. 1 Los números. 4 Magnitudes y medidas. 5 Ecuaciones. 6 Geometría. 2 Divisibilidad y fracciones. 3 Los porcentajes.
Índice 1 Los números pág. 2 Sistema de numeración romano. Suma y resta de números naturales. Sumas y restas combinadas. Producto de números naturales. Cociente de números naturales. Jerarquía de operaciones.
TEMA Nº 1. Conjuntos numéricos
TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales
CUADERNO DE CÁLCULO:
CUADERNO DE CÁLCULO: 2013-2014 TERCER CICLO 6º PRIMARIA ALUMNO/A:... Cálculo 6º Ed. Primaria Colegio Romareda 2013/14 Página 2 Cálculo 6º Ed. Primaria Colegio Romareda 2013/14 Página 3 Índice Cálculo mental
1. Observa los ejemplos y escribe como se leen las siguientes potencias.
ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º E.S.O. Tema : Potencias y raíces. 1. Observa los ejemplos y escribe como se leen las siguientes potencias. 1 : siete a la uno. 1 : : tres al cuadrado. : : cinco
TEMA 3 NÚMEROS DECIMALES
TEMA 3 NÚMEROS DECIMALES Al dividir el numerador entre el denominador de una fracción se obtiene un número decimal. 3 10 5 25 = 0,3; = 1,25; = 3,125 4 8 C D U d c m dm 3, 1 2 5 Parte entera Parte decimal
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
POTENCIACIÓN - PROPIEDADES
POTENCIACIÓN - PROPIEDADES Haga Click sobre la opción que desee ver: 1. Concepto general 2. Propiedades de la potenciación Potencia de exponente cero Potencia de exponente uno Producto (multiplicación)
UNIDAD 5: LA DIVISIÓN.
UNIDAD 5: LA DIVISIÓN. ÍNDICE 5.1 Repaso de la división de números naturales. 5.1.1 Términos de la división 5.1.2 Palabras clave de la división 5.1.3 Prueba de la división 5.1.4 Tipos de divisiones según
MATEMÁTICAS UNIDAD 4 GRADO 6º. Números naturales
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 6º Números naturales 1 2 Franklin Eduardo Pérez Quintero LOGRO: Estudiar, analizar y profundizar las operaciones y propiedades de los números
TEMA 1 MATEMÁTICAS 1º E.S.O.
TEMA 1 MATEMÁTICAS 1º E.S.O. NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN El conjunto de los números naturales es ilimitado y está formado por: N = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, El sistema de numeración decimal
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética
12345678901234567890 M ate m ática Tutorial MT-b1 Matemática 2006 Tutorial Nivel Básico Elementos básicos de Aritmética Matemática 2006 Tutorial Algunos elementos básicos de Aritmética Marco teórico: 1.
