Ejercicio 1(12 puntos)
|
|
|
- Daniel Blázquez Caballero
- hace 9 años
- Vistas:
Transcripción
1 ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Primer Parcial Montevideo, 30 de mayo de Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(12 puntos) En las elecciones departamentales se vota en forma conjunta un candidato para Intendente a nivel Departamental y un Alcalde a nivel municipal. La ciudad de Montevideo tiene un total de 8 municipios. En base al comportamiento electoral de las votaciones anteriores y a información recogida por un determinado partido político, se prevé una alta proporción de votantes en blanco a la próxima elección de Alcalde. Se busca estimar la proporción de votantes en blanco a la elección de Alcalde (nivel Municipal). Una consultora releva una muestra de tamaño 100 y obtiene que 40 de los encuestados manifiesta que va a votar en blanco. 1. Construya un estimador para la proporción de votantes en blanco en la población. Explicite su distribución muestral y el valor estimado en este caso. 2. Suponga que la verdadera proporción de ciudadanos que votarán en blanco es del 50%. Cuál es la probabilidad de haber obtenido una estimación muestral del 40% o menor? Explicite los cálculos que realiza y fundamente paso a paso. 3. Cuál es el tamaño de muestra mínimo óptimo, si se está dispuesto a tolerar en la estimación puntual un error de 3% y se requiere un nivel de confianza del 99%? Ejercicio 2 (10 puntos) Pasada las elecciones, se sabe que el partido del nuevo intendente electo en la ciudad de Montevideo ha obtenido 6 de los 8 Municipios, en tanto que los dos restantes fueron obtenidos por la oposición. El flamante intendente desea desarrollar un nuevo plan piloto de clasificación de residuos, pero tiene presupuesto para desarrollarlo inicialmente solamente en dos municipios. Suponga que se seleccionan los Municipios al azar. 1) Defina la variable aleatoria de interés, su recorrido, su distribución y el valor de los parámetros que la definen si se desean calcular las siguientes probabilidades: 2) Cuál es la probabilidad que los dos Municipios seleccionados sean administrados por la Oposición? 3) Cuál es la probabilidad que los dos sean del partido del Intendente?
2 Ejercicio 3 (10 puntos) Considere el experimento aleatorio consistente en tirar una moneda tres veces. Se pide: a) Defina el espacio de resultados y calcule la probabilidad de cada uno de los eventos elementales. b) Considere las variables aleatorias X=número de caras obtenidas e Y= número de números. Obtenga las cuantías correspondientes PX(x) y PY(y). Calcule los valores esperados E(X) y E(Y). c) Escriba la cuantía conjunta PXY(x,y). Son independientes X e Y? Ejercicio 4 (8 puntos) En cierta ciudad la distribución de los alquileres pagados por los hogares que alquilan sigue una distribución normal con una media de pesos, y desviación estándar igual a Se toma una muestra aleatoria simple con reposición. Calcular las probabilidades de que la media muestral: a) Se encuentre comprendida entre y b) Se encuentre comprendida entre y c) Sea mayor que 19000
3 SOLUCION Ejercicio 1(10 puntos) a. Variable de interés: X = decisión de voto del individuo. X Bernoulli(p) Estimador del parámetro p : votantes., donde las Xi valen 1 para los votantes y 0 para los no La muestra es grande (n=100). La distribución aproximada de la proporción muestral es Estimación puntual: b. Se supone que el p poblacional es igual a 0.5, y nos solicita calcular la probabilidad de que sea menor a 0.4. Utilizamos la distribución aproximada de para obtener las probabilidades solicitadas. ( ) Según la letra p = 0.5 y σ = = = Por tanto la distribución aproximada de es: Entonces: ( ) ( ). Si la verdadera proporción poblacional es 0.5, entonces la probabilidad de obtener una estimación muestral (para n=100) menor o igual a 0.4 es pequeña.
4 c. El tamaño de muestra óptimo viene dado por: ( ) En este caso tenemos: El tamaño de muestra mínimo óptimo para el error tolerado (3 puntos porcentuales) y el nivel de confianza requerido (99%) es de 1849 (por tanto el tamaño que se tomó no resulta suficiente). Ejercicio 2 (12 puntos) Se define la variable aleatoria de interés X = Cantidad de municipios de la oposición de entre los dos seleccionados Rec (X) = {0, 1, 2} X ~ Hipergeométrica (8; 2; 0,25) => A = N.p = 8*(0,25) = 2 Es muy poco probable que salgan seleccionados los dos municipios administrados por la oposición. Existe una probabilidad mayor a un medio de que los dos seleccionados sean del partido del Intendente.
5 Ejercicio 3 (10 puntos) Considere el experimento aleatorio consistente en tirar una moneda tres veces. Se pide: a) Espacio de resultados: Ω = {CCC, CCN, CNC, CNN, NCC, NCN, NNC, NNN} La probabilidad de cada uno de los eventos elementales es igual a 1/8. Es la probabilidad de la intersección de los resultados de tres tiradas individuales con probabilidad ½. Los resultados de las tiradas son independientes, por lo que la probabilidad de cualquier resultado es igual a (1/2) 3 =1/8. b) X=número de caras obtenidas; Y= número de números. Funciones de cuantía: 1/8 si X=0 1/8 si Y=0 3/8 si X=2 3/8 si Y=1 PX(x) = 3/8 si X=3 PY(y) = 3/8 si Y=2 1/8 si X=3 3/8 si Y=3 0 en otro caso 0 en otro caso La cuantía se obtiene sumando las probabilidades de los eventos elementales para los que X=x y Y=y respectivamente. P(X=0) = P(NNN) = 1/8; P(X=1) = P(NNC NCN CNN) = P(NNC) + P(NCN) + P(CNN) = 3/8; P(X=2) = P(CCN CNC NCC) = P(CCN) + P(CNC) + P(NCC) = 3/8; P(X=3) = P(CCC) = 1/8. Las probabilidades para Y se obtienen en forma análoga Valores esperados: E(X) = 0 1/ / / /8 = 14/8 E(Y) = 0 1/ / / /8 = 14/8
6 c) Cuantía conjunta PXY(x,y). X \ Y / / / / X e Y no son independientes pues no se cumple que PXY(x,y) = PX (x) PY(y) para todos los valores de x e y. Ejercicio 4 (8 puntos) En cierta ciudad la distribución de los alquileres pagados por los hogares que alquilan sigue una distribución normal con una media de pesos, y desviación estándar igual a Se toma una muestra aleatoria simple con reposición. Calcular las probabilidades de que la media muestral: La variable de interés Por lo tanto obtenemos que a) [ ] b)
7 [ ] [ ] c)
Ejercicio 1(10 puntos)
ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa
Estimaciones puntuales. Estadística II
Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un
CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO
CRITERIOS GENERALES DE EVALUACIÓN Cada pregunta de la 1 a 3 se puntuará sobre un máximo de 3 puntos. La pregunta 4 se puntuará sobre un máximo de 1 punto. La calificación final se obtiene sumando las puntuaciones
Estadística aplicada al Periodismo
Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #9 Tema: Estimación puntual y por Intervalo de confianza Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:
Muestreo de variables aleatorias
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como
Distribuciones Muestrales e Intervalos de Confianza
Distribuciones Muestrales e Intervalos de Confianza Sesión 5 Dr. Carlos J. Vilalta (DAP) Estadística - Curso propedéutico MAPP 2016 Centro de Investigación y Docencia económicas (CIDE) Contacto: [email protected]
VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos
1 Definiciones VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos Aleatoria: Azar 1. Una variable aleatoria ( v.a.) es una función que asigna un número real a cada resultado en el
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.
Distribución de probabilidad
Los experimentos aleatorios originan resultados y los resultados nos permiten tomar decisiones Por ejemplo, en un partido de fútbol si se lanza una moneda y sale cara parte la visita, de lo contrario parte
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #2 Tema: Esperanza y Decisiones Prof.: MSc. Julio Rito Vargas A. Grupo:CCEE y ADMVA /2016 Objetivos: Entender los conceptos básicos
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.
Estadística Inferencial. Sesión 2. Distribuciones muestrales
Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral
Probabilidad y Estadística
Probabilidad y Estadística Tema 11 Estimadores puntuales y de intervalo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de los estimadores puntuales y de intervalo.
RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL
RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL 1) PROBABILIDAD Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental. Operaciones con
MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL
MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL 1) PROBABILIDAD Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental. Operaciones con sucesos. Leyes de De Morgan.
Estadística I Tema 5: Introducción a la inferencia estadística
Estadística I Tema 5: Introducción a la inferencia estadística Tema 5. Introducción a la inferencia estadística Contenidos Objetivos. Estimación puntual. Bondad de ajuste a una distribución. Distribución
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica
TALLER 1 ESTADISTICA II
TALLER 1 ESTADISTICA II Profesor: Giovany Babativa Distribuciones Muestrales 1. Suponga que la variable aleatoria Z sigue una distribución normal estándar, Halle: a. P (Z < 1,2) b. P (Z > 1,2) c. P ( 1,7
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 1.1. Aleatoriedad e incertidumbre 1.2 Probabilidad
Práctica 5: Estimación de parámetros. Una población.
Práctica 5: Estimación de parámetros. Una población. 1. Considere el conjunto f1; 3; 5; 7; 9g (a) Enumere todas las muestras de tamaño 2 que pueden ser seleccionadas con reposición de ese conjunto. Calcule
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Ejercicio 1 (20 puntos)
ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6)
TEMA Nº 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Ser capaz de definir correctamente una o más variables aleatorias sobre los resultados de un experimento aleatorio y determinar
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Segundo Semestre 2008 1. El problema de Galileo.
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Universidad Técnica de Babahoyo INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA
Universidad Técnica de Babahoyo INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA Ateneo Ruperto P. Bonet Chaple UTB-Julio 2016 OBJETIVO Aplicar las técnicas de Muestreo e Inferencia Estadística Determinar el tamaño
Muestreo y. Distribuciones Muestrales
Muestreo y Distribuciones Muestrales Muestreo Muestreo POBLACION muestra Inferencia Estadística Conteos rápidos, preferencias electorales, etc. Tipos de Muestreo Muestreo No Probabilístico No aplican las
R E S O L U C I Ó N. a) La distribución de las medias muestrales es: N µ, = N 17 '4, = Como el nivel de confianza es del 95%, podemos calcular.
En una muestra aleatoria de 56 individuos se ha obtenido una edad media de 17 4 años. Se sabe que la desviación típica de la población normal de la que procede esa muestra es de años. a) Obtenga un intervalo
INFERENCIA ESTADÍSTICA MUESTRAL TEMA 2: ESTIMACIÓN POR INTERVALO
UNIDAD 2 INFERENCIA ESTADÍSTICA MUESTRAL TEMA 2: ESTIMACIÓN POR INTERVALO 1 2 RECUERDE: un estimador puntual es un estadístico muestral usado para estimar un parámetro poblacional: x (estimación de μ),
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
DISTRIBUCIONES MUESTRALES
DISTRIBUCIONES MUESTRALES Cuál es la finalidad de las distribuciones muéstrales y del método del muestreo como herramientas básicas de la estadística y qué aplicabilidad tienen en la vida cotidiana? Siendo
Juan Carlos Colonia INFERENCIA ESTADÍSTICA
Juan Carlos Colonia INFERENCIA ESTADÍSTICA PARÁMETROS Y ESTADÍSTICAS Es fundamental entender la diferencia entre parámetros y estadísticos. Los parámetros se refieren a la distribución de la población
Variables Aleatorias Discretas
Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.
EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)
EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón [email protected] FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Tema 2 Modelos de probabilidad
Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución
Cap 7 Intervalos de Confianza
Cap 7 Intervalos de Confianza Mate 3015 7.1-1 INTERVALOS DE CONFIANZA PARA UNA PROPORCIÓN 7.1-2 Estadísticas inferencial Ahora discutimos estadística inferencial -el proceso de generalizar la información
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X
Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También
ESTADÍSTICA II UNIDAD I: ESTIMACIÓN DE PARÁMETROS 3RA PARTE (CLASE 20/09)
ESTADÍSTICA II UNIDAD I: ESTIMACIÓN DE PARÁMETROS 3RA PARTE (CLASE 20/09) Estimación de una media de población: σ conocida Requisitos 1. La muestra es aleatoria simple. (Todas las muestras del mismo tamaño
Notas de clase Estadística R. Urbán R.
Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención
8.1. Sección. Distribución de la media muestral Pearson Prentice Hall. All rights reserved
Sección 8.1 Distribución de la media muestral 2010 Pearson Prentice Hall. All rights reserved Términos importantes variable aleatoria (v.a.) es un número real cuyo valor se determina al azar y mediante
Inferencia Estadística
Inferencia Estadística 2do C. 2018 Mg. Stella Figueroa Clase Nº10 Población y Muestra- Parámetro y Estimación puntual Población: Es el conjunto de todos los elementos o unidades elementales con características
Tema 4: Variables Aleatorias
Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto
Estadística Inferencial
Estadística Inferencial 1 Sesión No.2 Nombre: Distribuciones muestrales Contetualización Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico
1. Variables Aleatorias Discretas
Tema 4: Variables Aleatorias Modelos de Probabilidad 1. Variables Aleatorias Discretas Lo que pretendemos en este tema es transformar el problema de la asignación de probabilidades a otro consistente en
Biometría. Distribuciones de probabilidad para variables aleatorias discretas (Binomial, Hipergeométrica y Poisson)
Biometría Distribuciones de probabilidad para variables aleatorias discretas (Binomial, Hipergeométrica y Poisson) Variable aleatoria El resultado de un experimento aleatorio puede ser descripto en ocasiones
Anota aquí tus respuestas para esta sección Distribución Z
Tarea 2. Estadística Inferencial Cada sección vale 25%. Cada inciso tiene el mismo peso. Hacer la tarea en equipo de dos personas y entregar solo una copia por cada equipo. 1. Cálculo lo siguiente. Ten
Curso de Estadística Aplicada a las Ciencias Sociales
Curso de Estadística Aplicada a las Ciencias Sociales Tema 10. Estimación de una proporción Cap. 0 del manual Tema 10. Estimación de una proporción Introducción 1. Distribución en el muestreo de una proporción.
Problemas de Estimación de una y dos muestras
Problemas de Estimación de una y dos muestras Walpole Myers Myers Facultad de Estudios Superiores Acatlán Licenciatura en Economía 13 de marzo 2017 José A. Huitrón Mendoza Introducción En los ejercicios
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Un estimador es una regla que establece cómo calcular una estimación basada en las mediciones contenidas en una muestra
Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10
Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,
R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. µ zα, µ+ zα
En una población una variable aleatoria sigue una ley Normal de media desconocida y desviación típica. a) Observada una muestra de tamaño 400, tomada al azar, se ha obtenido una media muestral igual a
R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. μ zα
Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15.00 Km con una desviación típica de.50 Km. a) Determine un intervalo de confianza, al 99%, para la cantidad
2. Distribuciones de Muestreo
2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores
Tema 5: Modelos probabilísticos
Tema 5: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León
Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,
ESTADÍSTICA Y PROBABILIDAD
(distribución normal) 1 1.- Calcular las probabilidades de los siguientes intervalos, empleando para ello las tablas de la distribución de probabilidad normal estándar N(0, 1): (1) P(z 2 14) (2) P(z 0
ESTADÍSTICA. 2.- Halla las siguientes probabilidades en una distribución N (0, 1): Página 1 de 8
ESTADÍSTICA 1.- En determinada provincia hay cuatro comarcas, C1, C2, C3 y C4, con un total de 1 500 000 personas censadas. De ellas, 300 000 residen en C1, 450 000 en C2 y 550 000 en C3. Se quiere realizar
Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central
Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Objetivos: Al terminar este capítulo podrá: 1. Explicar por qué una muestra es la única forma posible de tener conocimientos acerca de una
Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00
U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria
Tema 6: Introducción a la inferencia estadística Parte 1
Tema 6: Introducción a la inferencia estadística Parte 1 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos Lecturas recomendadas:
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 6 de febrero de 018 1 hora y 15 minutos. NOMBRE APELLIDOS CALIFICACIÓN 1. La longitud auricular de la oreja en varones jóvenes, medida en centímetros
Práctica 6: Fundamentos de la Inferencia. Teorema Central del Límite.
: Fundamentos de la Inferencia. Teorema Central del Límite. 1. Dada una población de media µ = 400 y varianza σ 2 = 1.600. Se obtiene una muestra aleatoria de tamaño 35. Detallar bajo qué condiciones se
Estadística Clase 3. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 010 Clase 3 Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri 1. Pasos en un proceso estadístico 1. Plantear una hipótesis sobre una población.. Diseñar
PROBLEMAS DE ESTIMACIÓN PUNTUAL Y POR INTERVALOS
Estadística 1 PROBLEMAS DE ESTIMACIÓN PUNTUAL Y POR INTERVALOS 1. Obtener un estimador insesgado para p en una m.a.s. de tamaño n de una distribución binomial B(m,p) con m conocido y calcular su error
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
1. Ejercicios. 2 a parte
1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de
ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias
ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias 1. Se realizan mediciones independientes del volumen inicial y final en una bureta. Supongamos que las mediciones inicial y final siguen el
Distribuciones Fundamentales de Muestreo. UCR ECCI CI-0115 Probabilidad y Estadística Prof. Kryscia Daviana Ramírez Benavides
Distribuciones Fundamentales de Muestreo UCR ECCI CI-0115 Probabilidad y Estadística Prof. Kryscia Daviana Ramírez Benavides Distribuciones Muestrales La distribución de probabilidad de un estadístico
I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS
1. Experimentos aleatorios. 2. Operaciones con sucesos. 3. Probabilidad. Regla de Laplace 4. Probabilidad condicionada. Suceso Independiente. 5. Tabla de contingencia 6. Experimentos compuestos. Teorema
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio
MODELO DE RESPUESTAS Objetivos del 1 al 9
PRUEBA INTEGRAL LAPSO 2017-2 764-1/7 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 126 Fecha: 21/04/2 018 MODELO DE RESPUESTAS Objetivos del
Tema 5 Modelos de distribuciones de Probabilidad
Tema 5 Modelos de distribuciones de Probabilidad Variable aleatoria unidimensional Dado un espacio de Probabilidad (E, F, P), una variable aleatoria es una aplicación del espacio muestral E al conjunto
Estadística Clase 4. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 011 Clase 4 Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 4 1. Pasos en un proceso estadístico. Inferencia Estadística 3. Estimación Puntual
Estadística. Contrastes para los parámetros de la Normal
Contrastes para los parámetros de la Normal Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Contrastes para los parámetros de la Normal Contrastes para los parámetros
Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos
Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos Contextualización. Se denomina estadístico a un estimador insesgado de un parámetro poblacional si la media o la esperanza del
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
Tema 4: Modelos probabilísticos
Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
Análisis Estadístico en Simulaciones. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Análisis Estadístico en Simulaciones UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción En una simulación las variables aleatorias son la entrada para
ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía
ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía Novedades en el Plan de Trabajo Desviación típica sesgada
Estadística Aplicada
Estadística Aplicada Universidad Maimónides 2016 Clase 5 Distribución de la Media Muestral Pedro Elosegui 1 2 Métodos y Distribuciones de Muestreo En estadística nos gustaría contar con los parámetros
