BOLETIN DE EJERCICIOS 2: CIRCUITOS COMBINACIONALES
|
|
|
- María Elena Quintero Toledo
- hace 9 años
- Vistas:
Transcripción
1 : OBJETIVO Los ejeriios e este oletín tienen omo ojetivo onsolir los onoimientos reltivos los siguientes oneptos: - L implementión e ls uniones lógis meinte puerts lógis interonets. - Los istintos tipos e iruitos e sli e ls puerts lógis y su representión meinte símolos normlizos. - Ls uniones lógis e pliión generl (Generl purpose) que onstituyen loques unionles, sus símolos normlizos y su utilizión pr implementr ulquier unión lógi. - L implementión e ls uniones lógis meinte iruitos ominionles progrmles. L teorí orresponiente estos ejeriios se puee estuir en los pítulos y el liro Sistems Eletrónios Digitles e l eitoril Mromo. En el enunio e ejeriio se inin los prtos onretos.
2 . D l unión uy tl e ver se ini ontinuión. Oteng: ) L expresión nóni e sum e proutos. ) L expresión nóni e prouto e sums. ) L expresión mínim e sum e proutos y e prouto e sums meinte l tl e Krnugh e impleméntel meinte puerts NO- Y (NAND) y NO-O (NOR). X L teorí orresponiente se puee estuir en los prtos.,.4,.. y.5 el liro.. Do el esquem el iruito e l igur inique: ) El esquem el iruito e sli e un e ls puerts lógis implemento on ispositivos eletrónios tivos. ) El símolo que hy que ñir ls puerts e l igur pr que los símolos lógios utilizos estén normlizos. ) L unión lógi implement por el iruito. ) Se puee enener un ioo luminisente onetánolo entre l sli y ms on el átoo unio ést últim? En so irmtivo, ules son ls limitiones que se een tener en uent. e) Se puee enener un ioo luminisente onetánolo entre l sli y el positivo e l limentión on el ánoo unio éste último? En so irmtivo, ules son ls limitiones que se een tener en uent. e e L teorí orresponiente se puee estuir en los prtos.5. y el liro.
3 . Do el iruito e l igur se ee otener: ) L expresión lgeri e sum e proutos. ) L expresión numéri nóni e sum e proutos. ) L expresión numéri nóni e prouto e sums. ) L tl e ver. e) L expresión mínim e prouto e sums, utilizno ls tls e Krnugh. L teorí orresponiente se puee estuir en los prtos.,.4,.. y.5 el liro..4 Oteng l expresión lgeri e prouto e sums nónis y l tl e ver e l unión lógi implement por el iruito e l igur. L teorí orresponiente se puee estuir en los prtos.7.4.,.. y.5 el liro..5 Do el esquem e l igur: ) Oteng l tl e ver e l unión que implement. ) Represéntelo meinte un símolo lógio normlizo. ) Oteng ls expresiones numéris nónis e. L teorí orresponiente se puee estuir en los prtos., y.7.4. el liro.
4 .6 Do el iruito e l igur: ) Inique ul es l unión que implement meinte sus expresiones nónis e sum e proutos y e prouto e sums. ) Implemente ih unión meinte un mtriz PAL, minimizánol meinte un tl e Krnugh. D D D D G L teorí orresponiente se puee estuir en el prto el liro..7 Do el esquem e l igur: ) Inique el símolo lógio orresponiente y rzone l respuest. ) Oteng l tl e ver orresponiente. E E X/Y L teorí orresponiente se puee estuir en los prtos.7.4. y.7.4. el liro. 4
5 .8 El loque unionl uyo símolo lógio se represent en l igur implement l unión Y en lógi positiv: ) Represente el iruito e l etp e sli. ) Conete un ioo luminisente e tl mner que se tive uno tos ls vriles e entr están en nivel uno. Inique ls limitiones que se een tener en uent. L teorí orresponiente se puee estuir en el prto.7. el pítulo el liro y en el prto. el tem eio los unmentos e los ispositivos eletrónios..9 En el iruito e l igur: ) Inique l expresión lgeri e sum e proutos e l unión que implement. ) Minimíel meinte un tl e Krnugh. ) Oteng ls expresiones nónis e sum e proutos y e prouto e sums. G G L teorí orresponiente se puee estuir en los prtos.,.. y el liro.. Oteng ls expresiones lgeris y numéris nónis e ls uniones implements on el iruito PLA e l igur. Oteng tmién l mtriz PAL mínim que pose el mismo número e proutos onetos puert O. L teorí orresponiente se puee estuir en el prto.8.. el liro. 5
Fundamentos de Informática II Tema 2 Sistemas Combinacionales Resolución de ejercicios de la hoja de problemas. nivel 1 a b c.
Funmentos e Inormáti II Tem Sistems Cominionles Resoluión e ejeriios e l hoj e prolems.-) nivel nivel nivel nivel Pso : Ientiir ls slis e puert lógi. Se muestr en l igur. Pso : Diviir el iruito en niveles.
Problemas puertas lógicas, karnaugh...
ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''
PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:
PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro
ELECTRÓNICA DIGITAL 0 FALSO APAGADO CON INTERRUPTOR
I.E.S Sntos Iss Deprtmento de Tenologí ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN Y CÓDIGOS 3. ALGEBRA DE BOOLE 4. FUNCIONES LÓGICAS 5. SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. INTRODUCCIÓN
PROBLEMAS DE ÁLGEBRA DE MATRICES
Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese
Álgebra Booleana y Propiedades
Álger Boolen y Propieddes Se B ={;}. Deinimos l sum y el produto y omplemento pr los elementos de B omo + =. + = + = + =.. = =. =.. = Un vrile es un vrile oolen si sólo tom vlores de B. en onseueni + =
. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales.
COMPETENCIA Estleer reliones y iferenis entre iferentes notiones e números reles pr eiir sore su uso. 2.. NÚMEROS RACIONALES Los números Frionrios se simolizn on l letr Q. Se lsifin en Números Rionles
Matemática II Tema 4: matriz inversa y determinante
Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte
MATRICES: un apunte teórico-práctico
MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012
UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES
Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre
Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %
PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.
PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores
NÚMEROS RACIONALES. y Números Irracionales Q
CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR DEPARTAMENTO DE CIENCIAS BÁSICAS LOGICA Y PENSAMIENTO MATEMATICO ASIGNATURA: AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA TIPO DE
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA
CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene
TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.
Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir
APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:
PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en
TEMA 1. Electrónica digital. Circuitos combinaciones. Álgebra de Boole
TEMA 1 Eletróni digitl. Ciruitos ominiones. Álger de Boole 1. Introduión Un iruito ominionl es quel que en d instnte present un estdo de slid que depende únimente del estdo de sus entrds. Un señl nlógi
Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:
Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr
LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así
LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest
APUNTE: TRIGONOMETRIA
APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo
EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log
EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes
1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.
º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno
TEMA 9. DETERMINANTES.
Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.
SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS
nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de
Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes
Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists
Ejemplo para transformar un DFA en una Expresión Regular
Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o
- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.
9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm
Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.
MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -
Unidad didáctica 4. Trigonometría plana
Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y
TEMA 5: ELECTRÓNICA DIGITAL
Deprtmento de Tecnologí. IE Ntr. r. de l Almuden. Mª Jesús iz TEMA 5: ELECTRÓNICA DIGITAL L electrónic se divide en dos grupos: electrónic nlógic y electrónic digitl. En l electrónic nlógic los vlores
IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II
IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones
PRACTICA #7 CIRCUITOS POLIFASICOS DESBALANCEADOS OBJETIVOS: 1.- Estudiar los voltajes y corrientes en circuitos trifásicos con cargas desbalanceadas.
PRTI #7 OJETIVOS: 1.- Estudir los voltjes y orrientes en iruitos trifásios on rgs deslneds. EXPOSIIO: ulquier rg trifási en l que l impedni de un o más fses difiere de l impedni de ls otrs fses, se die
CUESTIONES RESUELTAS
CUETIONE EUELTA ) Cuál es l principl diferenci entre un circuito de control nlógico y otro digitl? ) Indicr y justificr l principl ventj de uno frente otro. (electividd ndluz). Un circuito nlógico funcion
ÁLGEBRA I FICHA 1: 1.- Efectuar las siguientes operaciones:
ÁLGEBRA I FICHA 1: 1.- Efetur ls siguientes operiones: (-+-(--+-(-+= (- -+ ( + --7= ( - (-+ (-= d (- ---(- = e (- = f (- -+-(- ( +=.- Efetur ls siguientes operiones on produtos notles: ( - = ( + = (+ -(+
1. Definición de Semejanza. Escalas
Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión
Tema 5. Semejanza. Tema 5. Semejanza
Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión
ARQUITECTURA DE LAS COMPUTADORAS TÉCNICAS DIGITALES (PRÁCTICA)
RQUITETUR DE LS OMPUTDORS TÉNIS DIGITLES (PRÁTI) INTRODUION TEORI: IRUITOS LÓGIOS El Álgebra de oole o Álgebra ooleana es de dos estados o binaria. Los circuitos lógicos son circuitos que pueden analizarse
Óvalo dados los dos ejes: óvalo óptimo
l óvlo es un urv err y pln que está ompuest por utro, o más, ros e irunferéni simétrios entre sí. Suele venir efinio por os ejes que mrn sus imensiones y sirven e ejes e simetrí e los ros. Se emple freuentemente
ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS
ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS Cinemáti e Menismos Tem 3 Itzir Mrtij López Mier Loizg Grmeni Deprtmento e Ingenierí Meáni Meknik Ingeniritz Sil 2 ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS 1.
MATRICES Y DETERMINANTES
MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente
Teoría de Autómatas y Lenguajes Formales
Teorí de Autómts Lengujes Formles Ingenierí Téni en Informáti de Sistems Segundo urso, segundo utrimestre Curso démio: 2010 2011 Deprtmento de Informáti Análisis Numério Esuel Politéni Superior Universidd
EIE SISTEMAS DIGITALES Tema 5: Análisis de la lógica combinacional. Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas
EIE 446 - SISTEMS DIGITLES Tema 5: nálisis de la lógica combinacional Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas OJETIVOS DE L UNIDD nalizar los circuitos lógicos combinacionales
FORMACIÓN DEL CONJUNTO DE NÚMEROS RACIONALES
Fult e Ingenierí - Universi Rel Lnívr Revist Eletróni No. FORMACIÓN DEL CONJUNTO DE NÚMEROS RACIONALES Por Li. Julio Césr Slzr, [email protected] RESUMEN A vees no se tiene mno el esrrollo orml el onjunto
ELECTRÓNICA DIGITAL TEMA 2
Escuels Técnics de Ingenieros Universidd de Vigo Deprtmento de Tecnologí Electrónic Electrónic Digitl: Álger de Boole ELECTRÓNICA DIGITAL TEMA 2 ÁLGEBRA LOGICA Enrique Mnddo Pérez Escuels Técnics de Ingenieros
CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) Analizar los autómatas de estado finito y sus componentes, así como las diferentes formas de representarlos.
CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) OBJETIVO Anlizr los utómts de estdo finito y sus omponentes, sí omo ls diferentes forms de representrlos. JUSTIFICACION L definiión de los utómts de estdo finito
GRAMATICAS REGULARES - EXPRESIONES REGULARES
CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl
UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA
UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.
ARQUITECTURA DE LAS COMPUTADORAS PRÁCTICA
RQUITETUR E LS OMPUTORS PRÁTI INTROUION TEORI: IRUITOS LÓGIOS El Álgebra de oole o Álgebra ooleana es de dos estados o binaria. Los circuitos lógicos son circuitos que pueden analizarse con este álgebra.
La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.
CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d
ECUACIONES DE PRIMER Y SEGUNDO GRADO
UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.
9.1. Puertas complementarias. V CC a b c m. Plano P ... a b c m. Plano N Electrónica Digital
9 TECNOLOGÍ CMOS. DIVERSIDD DE CONFIGURCIONES 9.1. Puerts omplementris 9.2. Tipos e slis y e entrs 9.3. Puerts e trnsmisión 9.4. Relizión CMOS e ls estruturs mtriiles 9.5. Dispositivos progrmles L tenologí
Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1
Ruión stos quivlnts Mrio Min. [email protected] Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi
SenB. SenC. c SenC = 3.-
TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,
UNIDAD IV ÁLGEBRA MATRICIAL
Vicerrectordo cdémico Fcultd de iencis dministrtivs Licencitur en dministrción Mención Gerenci y Mercdeo Unidd urriculr: Mtemátic II UNIDD IV ÁLGER MTRIIL Elordo por: Ing. Ronny ltuve, Esp. iudd Ojed,
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL. (,5 puntos) D l siguiente euión mtriil: 6 z otener e form rzon los vlores e,, z. 5. Se el siguiente sistem e ineuiones 6. 7 ) (,5 puntos) Represent
UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro
CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte
A puede expresarse como producto de matrices elementales
TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los
Programación: el método de bisección
Progrmión: el método de iseión Este texto fue esrito por Egor Mximenko y Mri de los Angeles Isidro Perez. Ojetivos. Enter l ide del método de iseión, progrmr el método de iseión usndo un ilo while, pror
Si se divide una cuarta parte de un pastel a la mitad se obtiene una octava parte del mismo, lo que escrito en simbología matemática es
págin 8 págin 8 DIVISIÓN DE FRACCIONES Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 4 8 4 4 8 De donde
