Problemas puertas lógicas, karnaugh...
|
|
|
- Natividad Ortega Cano
- hace 9 años
- Vistas:
Transcripción
1 ENUNCIADOS Prolems puerts lógis, krnugh Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B'' 3.- Ps l funión lógi e los iruitos ominionles siguientes tl lógi o tl e ver F = A'BC'+A'BC+AB'C'+ABC' 4. Relizr l tl e ver e los iruitos el ejeriio 1 5. Convierte ls siguientes tls funiones lógis utilizno el métoo e los MINitérminos y MAXitérminos Tl F
2 Tl nº F Simplifir por el métoo e álger e Boole F F F F e F f F 7.- Psr puerts NAND e 2 puerts 7400 F F F 8. Psr ls siguientes funiones puerts NOR7402 F e F 9. Supongmos un sistem e lrm e tres interruptores y, uno esten los tres en Off, o sólo el On tiene que tivrse l lrm, el so ontrrio tmién, es eir uno esten los tres On o sólo el Off. Relizr el iruito en puerts NAND. 10. Supongmos un lrm e tres interruptores que se tiene que tivr uno esté sólo en Off o sólo el en On. Si sólo est el interruptor en On o sólo est en Off es iniferente l tivión el sistem. Tmién si están toos en Off es iniferente. 11. Tenieno en uent sólo ls entrs I1 I2 I3 e I4 relizr un progrm que Q1=1 si el número e interruptores tivos supern o iguln l número e interruptores estivos. Relizrlo on puerts NAND e os entrs Tenieno en uent sólo ls entrs I1 I2 I3 e I4, her un progrm que si hy os interruptores ontíguos tivos, entones Q1=1. Si I1=0 e I4 =0 entones l sli Q1 es iniferente. Relizrlo on puerts NAND e os entrs 7400.
3 13. Diseñr un iruito e pertur e un grje e ohes, existen 4 entrs, mirno l figur: = etetor e ohe en l entr = llve e entr = etetor e ohe que quiere slir = llve e rir entro el grje Se tienen 5 slis en el iruito : M = Motor e l puert. 0 = ierr. 1 = rir. R1 V1 = Lues roj y vere l entr el grje R2 V2 = Lues roj y vere entro el grje. Se tiene que ri si se hy ohe en l entr y ion l llve e entr y no hy nie entro o si hy lguien entro y ion l llve e rir. L luz roj R1 se tiene que enener si hy lguien entro que quiere slir. L luz V1 se tiene que enener si hy lguen fuer, y entro no hy nie. L luz roj R2 se tiene que enener si hy lquien fuer que quiere entrr, y l luz V2 se tiene que enener si hy lguien entro y fuer no hy nie. Si hy os ohes en l entr y entro y los os ionn l llve l vez, ls lues een e inir que tiene prefereni el e entro, l puert se re. Diseñr el iruito on el mínimo e iruitos integros. No iseñr los finles e rrer, sistems e seguri y el sistem utomátio e ierre e l puert. Relizrlo on puerts NAND e 2 ent 14. Diseñr un iruito lógio e un sistem e lrm e 3 interruptores y, que se tive si hy sólo os interruptores enenios, si sólo est el tiene que estr pgo, y el resto e ominiones es iniferente l sli. Relizrlo on puerts NAND e 2 ent Diseñr un iruito lógio e un sistem e lrm e 4 interruptores y, que se tive si hy 3 o 4 interruptores tivos, se estive si hy uno o ninguno tivo y es iniferente si hy 2 tivos. Relizrlo on puerts NOR Relizr un iruito lógio e 4 interruptores y e tl mner que se tive si y estn en sólos en "on" o y estn en sólos en "on" o y estn en sólos en "on" o sólo est en "off". Si est sólo en "on" o el sólo en "on" o el sólo en "off" o toos en "on" entones l tivión el sistem es iniferente. El resto e estos 0. Utilizr el mínimo e puerts lógis. 17. Diseñr un iruito lógio e un sistem e lrm e 4 interruptores y, que se estive si hy 3 o 4 interruptores tivos, se tive si hy uno o ninguno tivo y es iniferente si hy 2 tivos. Relizrlo on puerts NAND
4 SOLUCIONES 1. F 2. L funión lógi que respone l euión AB'C'+D'+A+B'' es L funión lógi que respone l euión A+B'+C'D''+A'+B''CA+B'' 3 Se reliz operno en un e ls ominiones resultno : F
5 Se reliz operno en un e ls ominiones resultno : F El primer ejeriio, tiene e tl e ver l siguiente, que se puee her lulnolos e uno en uno, o vieno que l ser un puert OR slrá los unos e puert, que en un so en uno A y B sen l vez 0 y 0 y en el otro so será uno y sen l vez 0 y 0 nº F En este ejeriio tn omplejo, lo mejor es her ominiones pero e uno e los suiruiotos nº 1 +' nn or ' 7nor 6 3 F nn
6 5. En MINitérminos tenemos : F En MAXitérminos : F En MINitérminos F En MAXitérminos F 6. F 1 F F F 1 1 e F f F Teorem2 llmno B B B 7. Hieno MORGAN F Este y es más omplejo... F * * * * * * *
7 Bueno, y este muho más... F * * * * * * * * * * * * * * * Y el iujo serí e l siguiente form F El iujo serí :
8 e e e e e F 9. L tl e ver, krnugh y psr puerts NAND :
9 10. L soluión el prolem ps por onsierr lgunos omo unos 11. Aquí lo que hy que her es un tl e ver on su orresponiente tl e krnugh : I1I2 I3 I4 Q1 I1 I2\I3 I L funión es simplifino F=I3I4+I1I2+I2I3+I2I4+I1I3+I1I Aquí lo que hy que her es un tl e ver on su orresponiente tl e krnugh : I1I2 I3 I4 Q x x x x I1 I2\I3 I X 0 1 X X 0 1 X L funión es simplifino Q1=I3 + I1I2
10 13. L tl e ver y ls funiones e krnugh y simplifis y pss puerts NAND es 14. L tl e ver y el iruito pso puerts nn e os entrs es 15. L funión simplifi que F=+ pero pr psrl puerts NOR hy que her Morgn : F omo poemos ver, ls vriles e entr están negs, luego poemos utilizr en vez e lógi positiv que nos oligrí unilizr puerts NOT pr negrls, utilizr lógi negtiv y sí horrnos ls puerts NOT 7404 e ls vriles e entr : 16. En este so l simplifiión por krnugh F * si utilizmos l lógi positiv nos sle el iruito e l izquier, pero on l lógi negtiv pli sólo en el iruito e l ereh, sin un puert NOT.
11 17. El iruito tiene omo soluión F * * que l psr en puerts NAND que el iruito e l ereh, pero usno l lógi negtiv, nos horrmos 4 puerts NOT on el iruito e l ereh.
Fundamentos de Informática II Tema 2 Sistemas Combinacionales Resolución de ejercicios de la hoja de problemas. nivel 1 a b c.
Funmentos e Inormáti II Tem Sistems Cominionles Resoluión e ejeriios e l hoj e prolems.-) nivel nivel nivel nivel Pso : Ientiir ls slis e puert lógi. Se muestr en l igur. Pso : Diviir el iruito en niveles.
BOLETIN DE EJERCICIOS 2: CIRCUITOS COMBINACIONALES
: OBJETIVO Los ejeriios e este oletín tienen omo ojetivo onsolir los onoimientos reltivos los siguientes oneptos: - L implementión e ls uniones lógis meinte puerts lógis interonets. - Los istintos tipos
PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:
PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro
PROBLEMAS DE ELECTRÓNICA DIGITAL
Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.
Ejemplo para transformar un DFA en una Expresión Regular
Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno
ELECTRÓNICA DIGITAL 0 FALSO APAGADO CON INTERRUPTOR
I.E.S Sntos Iss Deprtmento de Tenologí ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN Y CÓDIGOS 3. ALGEBRA DE BOOLE 4. FUNCIONES LÓGICAS 5. SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. INTRODUCCIÓN
LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así
LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest
ECUACIONES DE PRIMER Y SEGUNDO GRADO
UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.
Matemática II Tema 4: matriz inversa y determinante
Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte
Álgebra Booleana y Propiedades
Álger Boolen y Propieddes Se B ={;}. Deinimos l sum y el produto y omplemento pr los elementos de B omo + =. + = + = + =.. = =. =.. = Un vrile es un vrile oolen si sólo tom vlores de B. en onseueni + =
PROBLEMAS DE ÁLGEBRA DE MATRICES
Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese
PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.
PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores
TEMA 5: ELECTRÓNICA DIGITAL
Deprtmento de Tecnologí. IE Ntr. r. de l Almuden. Mª Jesús iz TEMA 5: ELECTRÓNICA DIGITAL L electrónic se divide en dos grupos: electrónic nlógic y electrónic digitl. En l electrónic nlógic los vlores
DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión
DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno
TEMA 1. Electrónica digital. Circuitos combinaciones. Álgebra de Boole
TEMA 1 Eletróni digitl. Ciruitos ominiones. Álger de Boole 1. Introduión Un iruito ominionl es quel que en d instnte present un estdo de slid que depende únimente del estdo de sus entrds. Un señl nlógi
MATRICES: un apunte teórico-práctico
MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e
APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:
PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en
Modulo 9V OK! OK! Guía de uso
Moulo 9V Guí e uso Pg. 1 INSTALACIÓN. El móulo e mno es perfetmente estno y funion unque siempre esté sumergio en gu hst un metro e profuni (gro e proteión IP68). Se puee instlr l ire lire o en un rquet.
Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:
Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
Álgebra de Boole (Relés y ecuaciones en el mundo industrial)
Alger de Boole (Automtismos ominionles) Álger de Boole (Relés y euiones en el mundo industril) UPCO CA Deprtmento de Eletróni y Automáti 1 Alger de Boole (Automtismos ominionles) Vriles y uniones lógis
APUNTE: TRIGONOMETRIA
APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo
. Se clasifican en Números Racionales Q y Números Irracionales Q. . Se pueden representar en la recta numérica al igual que otros números reales.
COMPETENCIA Estleer reliones y iferenis entre iferentes notiones e números reles pr eiir sore su uso. 2.. NÚMEROS RACIONALES Los números Frionrios se simolizn on l letr Q. Se lsifin en Números Rionles
TEMA 9. DETERMINANTES.
Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.
Cuestionario Respuestas
Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012
UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES
Estructuras de datos. Estructuras de datos. Estructuras de datos. Estructuras de datos
Existen dos tipos de list on un uso muy freuente en el desrrollo de pliiones de softwre. El primero son ls pils uyo omportmiento es el de un list que insert y elimin sus elementos por el mismo extremo
MATRICES Y DETERMINANTES
MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente
CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA
CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene
NÚMEROS RACIONALES. y Números Irracionales Q
CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR DEPARTAMENTO DE CIENCIAS BÁSICAS LOGICA Y PENSAMIENTO MATEMATICO ASIGNATURA: AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA TIPO DE
c a, b tal que f(c) = 0
IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se
TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.
Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL. (,5 puntos) D l siguiente euión mtriil: 6 z otener e form rzon los vlores e,, z. 5. Se el siguiente sistem e ineuiones 6. 7 ) (,5 puntos) Represent
Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.
TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre
Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %
CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) Analizar los autómatas de estado finito y sus componentes, así como las diferentes formas de representarlos.
CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) OBJETIVO Anlizr los utómts de estdo finito y sus omponentes, sí omo ls diferentes forms de representrlos. JUSTIFICACION L definiión de los utómts de estdo finito
Matemáticas aplicadas a las Ciencias Sociales II. ANAYA
Uni Nº Resoluión e sisems meine eerminnes! PR EPEZR, RELEXION Y RESUELVE Deerminnes e oren! Resuelve uno e los siguienes sisems e euiones lul el eerminne e l mri e los oefiienes: E sumno E E sumno λ,s.c.i.,
Determinantes D - 1 DETERMINANTES
Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos
Ciclos Termodinámicos
Cpítulo 5 Cilos Termoinámios 5.1. Cilo e Crnot Consieremos un gs iel sometio l siguiente proeso ílio: b isoterm f ibt ibt o isoterm V V V Figur 5.1: Cilo e Crnot. Proeso b : Aibt reversible El gs se omprime
Facultad de Ingeniería UCV Álgebra Lineal y Geometría Analítica (0250) Ciclo Básico EJERCICIOS RESUELTOS 3 T. = entonces. = c ( ) ( ) ( ) ( ) 7
Ful e Ingenierí UV Álger Linel Geomerí nlíi ilo Básio eprmeno e Memái pli EJERIIOS RESUELOS. Se l represenión mriil e l rnsformión linel : P R respeo ls ses B } { B. Enuenre pr R. Opión : Sen l mri e mio
INTEGRAL INDEFINIDA. Derivación. Integración
Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES
Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1
Ruión stos quivlnts Mrio Min. [email protected] Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi
Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.
Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.
Transformaciones Geométricas 3D
Trnsformciones Geométrics 3D Introucción 3D Cuno nos introucimos l muno 3D, hy que consierr: El fctor e profuni Ls combinciones que se pueen generr sobre 3 ejes L perspectiv e observción Los operores se
Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.
MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -
SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14
R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo
1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.
º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems
Álgebras de Boole. Concepto de Álgebra. Elementos Operaciones Axiomas. Conjuntos Lógica...
Automtizción Industril UC3M Dep. de Ing. de Sistems y Automátic Álger de Boole Concepto de Álger. Elementos Operciones Axioms Álgers de Boole. Conjuntos Lógic... Automtizción Industril UC3M Dep. de Ing.
Práctica 3. Convertidores de códigos
. Objetivo Práctic Convertiores e cóigos El lumno construirá un circuito convertior e cóigo y esplegrá su resulto en un exhibior e siete segmentos.. Anteceentes L informción en un sistem igitl se proces
UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA
UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.
1.TIPOS DE SEÑALES Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:
4.ELECTRÓNIC DIGITL. Tipos de señles 2. Representción de ls señles digitles 3. istem inrio 4. Funciones ásics 5. Propieddes de ls funciones ND y OR. Teorem de Morgn. 6. implificción de funciones lógics
Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado
Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:
Programación: el método de bisección
Progrmión: el método de iseión Este texto fue esrito por Egor Mximenko y Mri de los Angeles Isidro Perez. Ojetivos. Enter l ide del método de iseión, progrmr el método de iseión usndo un ilo while, pror
SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO
: L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP
( ) ( ) El principio de inducción
El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum
GRAMATICAS REGULARES - EXPRESIONES REGULARES
CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl
ARQUITECTURA DE LAS COMPUTADORAS PRÁCTICA
RQUITETUR E LS OMPUTORS PRÁTI INTROUION TEORI: IRUITOS LÓGIOS El Álgebra de oole o Álgebra ooleana es de dos estados o binaria. Los circuitos lógicos son circuitos que pueden analizarse con este álgebra.
DETERMINANTES. GUIA DETERMINANTES 1
GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor
Seminario de problemas. Curso Soluciones Hoja 18
Seminrio de problems. Curso 015-16. Soluiones Hoj 18 10. Sen, b, y d utro números enteros. Demostrr que el produto de ls seis diferenis b,, d, b, d b, d es múltiplo de 1. Soluión Vemos que diho produto
Variables, Constantes y Operadores
L Eseni e l Lógi e Progrmión Omr Ivn Trejos Buritiá 27 Cpítulo 3 Vriles, Constntes y Operores Vrile Informlmente lgo vrile es lgo que puee mir e un momento otro. Ténimente un vrile es un mpo e memori l
SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS
nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de
MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1
MÉTODO DE KARNAUGH Jesús Pizrro Peláez MÉTODO DE KARNAUGH... 1 1. INTRODUCCIÓN... 1 2. MÉTODO DE KARNAUGH... 2 3. EJEMPLO DE APLICACIÓN (I)... 4 4. ESTADOS NO IMPORTA EN LAS FUNCIONES LÓGICAS... 6 5. EJEMPLO
Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.
Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión,
Matrices y determinantes
Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)
TEMA 2. Determinantes Problemas Resueltos
Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l
que verifican A 2 = A.
. Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A
IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II
IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones
