Transformaciones Geométricas 3D
|
|
- Óscar Coronel Valdéz
- hace 4 años
- Vistas:
Transcripción
1 Trnsformciones Geométrics 3D
2 Introucción 3D Cuno nos introucimos l muno 3D, hy que consierr: El fctor e profuni Ls combinciones que se pueen generr sobre 3 ejes L perspectiv e observción Los operores se ven fectos en iferente mei Trnslción Rotción Esclmiento
3 Trnslción 3D Así como en el espcio 2D, l trslción se efine prtir e un vector, hor con 3 componentes
4 Trslción 3D El operor e trslción se puee efinir trvés e un mtriz e l siguiente form:
5 Rotción 3D Ls rotciones 3D se pueen relizr con culquier gro e libert En generl, se erivn e ls combinciones e rotción prtir e los ejes X, Y, Z
6 Mtriz e Rotción Eje z Pr relizr l rotción con respecto l eje Z se emple l mtriz siguiente
7 Rotciones 3D pr los ejes X, Y A prtir e l rotción sobre el eje Z, es posible erivr l rotción pr culquier e los otros 2 ejes, simplemente utilizno un permutción cíclic Pr obtener l rotción en eje X y Y, cíclicmente se sustituye X con Y, Y con Z y Z con X
8 Rotciones 3D X, Y, Z
9 Mtrices e Rotción 3D sobre los ejes cos sin sin cos R z cos sin sin cos R x cos sin sin cos R y
10 Ejercicio Dibujr un rectángulo 3D (coorens libres) e implementr los operores e trslción y rotción 3D sobre ejes X, Y, Z Investigr como ibujr un punto y un líne 3D en opengl Crer l figur prtir e ests primitivs
11 Rotción 3D prlel un eje e rotción Pr rotr un objeto 3D con un eje e rotción prlelo un eje: Primero se mueve el eje e rotción l eje e rotción efinio pr trbjr (uno e los 3 ejes el plno 3D) Se plic l rotción que se ese plicr Se regres el eje e rotción su posición originl
12 Rotción 3D prlel un eje Mtricilmente, consiere que un punto P(x,y,z) será roto con respecto l eje X. Ls operciones relizr serán ls siguientes: Done: P T ' Rx( ) T P P es el punto resultnte e l rotción R x es l mtriz se rotción con respecto l ángulo especifico T es l mtriz e trnslción l eje T - es l mtriz invers e T e trslción l eje
13 Rotción 3D generl Cuno el eje e rotción e un objeto no es prlelo uno e los ejes, se tiene que proceer e l siguiente mner:. Trslr el objeto e tl form que el eje e rotción pse trvés e l cooren e origen 2. Rotr el objeto e tl form que el eje e rotción coinci con lguno e los ejes e coorens 3. Relizr l rotción especific sobre el eje e coorens selecciono 4. Aplicr l rotción invers pr regresr el eje e rotción su orientción originl 5. Aplicr l trnslción invers pr regresr el eje e rotción su posición espcil originl
14 Rotción 3D Generl Si l rotción no es prlel uno e los ejes el plno
15 Rotción 3D generl El pso 2 es posible relizrlo seleccionno culquier e los ejes (consieremos el cso one se seleccion el eje Z) Por simplici, consieremos que el eje e rotción es efinio por os puntos P y P2
16 Rotción 3D generl Si P (x, y,z) y P2 (x2, y2,z2), se tiene lo siguiente: V (P2 P) : componentes el eje e rotción u V / V (,b,c) : vector unitrio el eje e rotción one Aquí sumimos que el eje e rotción punt en l irección e rotción en sentio ls mnecills el reloj (mirno trvés el eje e rotción)
17 Rotción 3D generl Con l notción nterior, los psos pr l rotción libre son los siguientes:. Se efine l mtriz e trslción l origen (tomno P) 2. Se relizn ls trnsformciones pr colocr el eje e rotción sobre uno e los ejes el sistem (este pso se puee relizr e iferentes forms). Se rot U sobre X pr colocrlo en el plno XZ 2. Se rot U sobre Z pr colocrlo en el plno YZ
18 Rotción Generl 3D Pr relizr el pso 2 (proyectr U sobre el plno XZ) se consier lo siguiente: Notemos que U gener un ángulo α sobre el plno XZ, el cul se puee observr e form más clr si se proyect u sobre el plno YZ (vector u ) Notemos lo siguiente: Como u (, b, c) u' (, b, c) 2 2 Aemás: u' b + c De lo nterior se concluye: c b cos( α), sen( α)
19 Rotción 3D generl Proyectr u sobre el plno XZ, requiere rotr icho vector sobre X, por lo que l mtriz e rotción utilizr es: cos sin sin cos ) ( R x Sustituyeno por el ángulo corresponiente α, se tiene que: / / / / ) ( c b b c R x α
20 Rotción 3D generl Aplicno R x (α) l punto u (,b,c) se tiene: ) / ( / / bc bc b b c ' ) / ( ) / ( / / / / ) ( 2 2 u c b bc bc c b c b b c u R x + α
21 Rotción 3D generl El siguiente pso consiste en clculr l mtriz e rotción el vector u proyecto sobre el plno XZ pr colocrlo sobre el eje positivo Z ' c b u De l figur, se puee observr que: ) cos(, ) sin( β β ) cos(, ) sin( β β Aplicno l mtriz e rotción sobre Y: cos sin sin cos ) ( R y β β β β β Por tnto: ' ) ( u R y β
22 Rotción 3D generl Con estos psos, se h coloco el vector u sobre el eje Z positivo 3. Con ls mtrices e trnsformción y expuests, se reliz l rotción el vector u e cuero l ángulo :
23 Rotción 3D generl 4. Finlmente se ebe e regresr el eje e rotción su posición originl, plicno los operores inversos. En generl, l mtriz e rotción pr culquier eje se expres como:
24 Rotción 3D generl
25 Esclo 3D Esclr un punto P(x,y,z) con respecto l origen es un extensión irect el cso 2D Punto P Mtriz e esclo S Punto P Nots Si los vlores e sx, sy, sz son iferentes, se cmbirá el specto generl e l imgen Pr esclr objetos 3D (l igul que en el cso 2D) se ebe elegir un punto e referenci el mismo
26 Esclo 3D Consiere que el punto P(px,py,pz) se tom como referenci e un objeto 3D. Pr esclr el objeto se ebe relizr: Trslr el punto P l origen (incluyeno toos los puntos el objeto) Aplicr l mtriz e esclo c punto el objeto Regresr el objeto l posición originl e P
27 Esclo 3D ( ) x x x p s s Mtriz e trslción pr objetos 3D ) ( ) ( ),, ( z z z y y y P s s s P p s s p s s T S T z y x
51 EJERCICIOS DE VECTORES
51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l
Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )
Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
Práctica 3. Convertidores de códigos
. Objetivo Práctic Convertiores e cóigos El lumno construirá un circuito convertior e cóigo y esplegrá su resulto en un exhibior e siete segmentos.. Anteceentes L informción en un sistem igitl se proces
1.- VECTORES EN EL PLANO. OPERACIONES. Cualquier vector v tiene dos componentes (v 1. v = (4,3) 1 2 1 2 u v. u = v (u, u ) = (v, v )
º Bchillerto Mtemátics I Dpto e Mtemátics- I.E.S. Montes Orientles (Iznlloz-Curso 0/0 TEMA 8.- GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS.- VECTORES EN EL PLANO. OPERACIONES. Concepto e vector Un
Toda expresión que conste de una expresión algebraica en su denominador y en el numerador.
TEMA : Epresiones Rcionles Contenio TEMA H: Epresiones Rcionles... Introucción epresiones rcionles... PRÁCTICA: Inic los vlores que no formn prte el conjunto solución... Simplificr Epresiones Rcionles...
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:
ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un
a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n
Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden
LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS
L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic
Transformaciones lineales en 3D
Tem II Trnsformciones lineles en 3D Ricrdo Rmos Colbordores: Luis Jiméne de l Fuente, Alberto Góme Vicente, Jesús Moisés Peláe Nvrro, Emilio Gonále Gonále, Igncio Colom Gonále Antes de comenr estudir el
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
Vectores en el espacio. Producto escalar
Geometrí del espcio: Vectores; producto esclr Vectores en el espcio Producto esclr Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril si en él se definen dos operciones,
2. Impedancia Serie de Líneas de Transmisión
ANEXO. Impenci Serie e Línes e Trnsmisión Prolem # Un conuctor e luminio ientifico con el nomre e Mgnoli est compuesto por 7 hilos conuctores e iámetro 0.606 pulgs. Ls tls crcterístics pr conuctores e
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.
Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción
Curvas en el espacio.
Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos
Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores
Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos
Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
CUADRILÁTEROS. ELEMENTOS BÁSICOS Son los mismos que en un polígono cualquiera, excepto el triángulo, ya que un triángulo no tiene diagonales.
DEFINICIÓN Un curilátero es un polígono cerro compuesto por cutro los. 1 EEMENTOS ÁSICOS Son los mismos que en un polígono culquier, excepto el triángulo, y que un triángulo no tiene igonles. VÉRTICES:
3.- Matrices y determinantes.
3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot
LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco
LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco
3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p
IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR
1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García
ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,
Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.
UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
Determinantes de una matriz y matrices inversas
Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión
Estudio de funciones exponenciales y logarítmicas
FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.
Cristal. Estado Sólido. Estructura Cristalina. Red. Celdas. Red
Estdo Sólido Estructurs Cristlins Cristl Un cristl es un rreglo periódico de átomos o grupos de átomos que es construido por l repetición infinit de estructurs unitris idéntics en el espcio. L estructur
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).
64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls
DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.
DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)
CONJUNTO DE LOS NÚMEROS RACIONALES. Definición El conjunto cuyos elementos son los números que pueden representarse de la ,,,, 3,
Mtemátic 8 vo ño Pág. CONJUNTO DE LOS NÚMEROS RACIONALES Los números rcionles se escrien e l siguiente form: ; one es el numeror es el enominor Aemás, l expresión se lee como: sore y signific que está
E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619
1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del
TRIGONOMETRÍA LEY DE SENOS Y DE COSENOS página 89
TRIGONOMETRÍA LEY DE SENOS Y DE COSENOS págin 89 págin 90 INSTITUTO VALLADOLID PREPARATORIA SEGUNDO SEMESTRE 5 RESOLUCIÓN DE TRIÁNGULOS 5.1 CONCEPTOS Y DEFINICIONES Toos los triángulos constn e seis elementos
Examen de Admisión a la Maestría 8 de Enero de 2016
Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.
Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica
Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel
LA TUBERÍA DE PRESIÓN
LA TUBERÍA DE PRESIÓN INTRODUCCIÓN Tmbién enomins tuberís forzs, ls tuberís e presión tienen como objeto conucir el gu ese el punto en el cul se tiene un grn energí potencil, ese el emblse en lgunos csos,
OPERACIONES CON RADICALES
OPERACIONES CON RADICALES Como consecuenci de ls fórmuls fundmentles de rdicles, se pueden relizr ls siguientes operciones. Se requiere que en los rdicles sólo h productos o cocientes. Si huier sumndos
VECTORES. b procesador de texto lo más usual es escribirlo con negrita (a). Ambas notaciones se leen el vector a. De ahora en
/o Físic Generl. FCQN. UNM. Ciclo Lectio 008 VECTORES En físic eisten cntiddes que quedn representds por un número, ests cntiddes dimensionles pueden ser: el umento de un lente ( M 3); el coeficiente de
DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K
DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
AX = B. X es la matriz columna de las variables:
ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores
Qué se puede hacer? Plan de clase (1/2) Escuela: Fecha: Profr. (a):
Qué se puede hcer? Pln de clse (1/) Escuel: Fech: Profr. (): Curso: Mtemátics 1 secundri Eje temático: FEyM Contenido: 7..6 Justificción de ls fórmuls de perímetro y áre de polígonos regulres, con poyo
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA
. DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN
Cambio de Variables en las Integrales Dobles
E.E.I. CÁLCULO II Y ECUACIONES DIFEENCIALES Curso 20-2 Clse 3 (7 fe. 202) Cmio de Vriles en ls Integrles Doles. Ejemplo: Áre de l elipse. 2. Cmio de Vriles I. Punto de ist de l trnsformción. 3. Cmio de
Tema 3. DETERMINANTES
Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de
= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13
Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l
SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS ECUACIÓN LINEAL CON VARIAS INCÓGNITAS.- Un ución linel con os o más incónits un ución en l que ls incónits tán sometis solmente ls opercion sum (o rt) proucto
Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple
Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región
LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así
LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest
FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:
FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ
TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes
Razones trigonométricas
LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos
MATRICES Y DETERMINANTES
Mtrices Tem MATRICES Y DETERMINANTES. DEFINICIÓN Y DESCRIPCIÓN DE MATRICES Un mtriz es un ordención rectngulr de elementos dispuestos en fils y columns encerrdos entre préntesis, por ejemplo A 3 4 Ls mtrices
De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.
DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción
2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.
. Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto
pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión
es pa c i o s c o n p r o d U c t o
Unidd 5 es p c i o s c o n p r o d U c t o i n t e r n o (n o r M, d i s t n c i ) Objetivos: Al inlizr l unidd, el lumno: Aplicrá los conceptos de longitud y dirección de vectores en R. Aplicrá el concepto
MATRICES DE NÚMEROS REALES
MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
Señaléticas Diseño gráfico de señales
Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles
int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.
Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,
5. Integral y Aplicaciones
Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción
CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una
CAPÍTULO. PROCEDIMIENTOS DE INTEGRACIÓN.. Integrción por cmbio de vrible.. Integrción por prtes... Producto de un polinomio por un eponencil... Producto de un polinomio por un seno o un coseno... Producto
TEMA 4: Transformaciones 3D
TEMA 4: Transformaciones D Ínice. Sistemas e Coorenaas. Transformaciones Básicas. Traslación. Escalao. Rotación lana 4. Afilamiento 5. Deformaciones. Composición e Transformaciones 4. Rotación General
manual de normas gráficas
mnul de norms gráfics Normtiv gráfic pr el uso del mrc de certificción de Bioequivlenci en remedios genéricos. mnul de norms gráfics BIenvenido l mnul de mrc del logo Bioequivlente L obtención de l condición
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees
MATRICES: un apunte teórico-práctico
MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
Matemática DETERMINANTES. Introducción:
Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.
Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso
Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n
Presentación Axiomática de los Números Reales
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos
pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
r = 1 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R DESPLAZAMIENTO Y VECTORES
1 Introducción l Físic Prlelos 10 13. Profesor RodrigoVergr R DPLAZAMIT Y VCTR 1) Repso de trigonometrí Definir plicr ls 3 funciones trigonométrics ásics en triángulos rectángulos. Definir ls funciones
CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES
FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems
Algoritmos matemáticos sobre matrices:
Algoritmos mtemáticos sobre mtrices: Representciones especiles de mtrices, Algoritmo de Strssen, multiplicción y tringulción de mtrices Jose Aguilr Mtriz Mtriz Un mtriz es un rreglo rectngulr de elementos
Estabilidad de los sistemas en tiempo discreto
Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de
Funciones de valores vectoriales
Zill655-68.q 6/9/ 8:3 Págin 655 pítulo Funciones e vlores vectoriles ( (t ), (t ), (t )) r (t ) (t ), (t ), (t ) En este cpítulo Un curv en el plno sí como un curv en el espcio triimensionl pueen efinirse
Métodos de Integración I n d i c e
Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con
8 - Ecuación de Dirichlet.
Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos
La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y
L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
ACTIVIDADES DE APRENDIZAJE Nº 5... 112
FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio
Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero
Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd