PROBLEMAS DE ÁLGEBRA DE MATRICES
|
|
|
- Diego Crespo Lagos
- hace 9 años
- Vistas:
Transcripción
1 Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese que Por tnto, ee umplirse que: Luego, P, one y son números reles ulesquier
2 Mtemátis Álger e mtries José Mrí Mrtínez Meino ) Sen, y C tres mtries tles que el prouto C es un mtriz y el prouto C t es un mtriz ur, sieno C t l trspuest e C Clul, rzonno l respuest, ls imensiones e, y C ) D M, otén tos ls mtries que onmutn on M, es eir, que verifin M M ) Clul l mtriz que verifi M M, sieno M l mtriz en ), M l mtriz invers e M e l mtriz uni e oren Soluión: ) Pr multiplir os mtries es neesrio que el número e olumns e l primer oini on el número e fils e l segun Es eir, pueen multiplirse mtries e imensiones m n por n p, sieno el resulto un mtriz e imensión m p Por tnto, si el prouto C es un mtriz, l mtriz ee ser e imensión n, l e imensión n p, y l C e imensión p Pr que pue relizrse el prouto C t, mtries ( n) ( p), es neesrio que n si el resulto, que es e imensión p, es un mtriz ur, entones p Por onsiguiente: es un mtriz e imensión ;, e imensión ; y C e imensión ) Si ee umplirse que: ; ; L mtriz ) M M, pues ( ) M M M t ij (Tmién puee otenerse por el métoo e GussJorn) Como M M (M M ) Luego: / /
3 Mtemátis Álger e mtries José Mrí Mrtínez Meino Se l mtriz ) Compror que verifi O, on mtriz ienti y O mtriz nul ) Clul ) sánose en los prtos nteriores y sin reurrir l álulo e inverss hll l mtriz que verifi l igul Soluión: ) Multiplino se tiene: Por tnto, O ) Como ( ) Por tnto, ) De ) ( Luego,
4 Mtemátis Álger e mtries José Mrí Mrtínez Meino Resolver l euión mtriil ) (, sieno, e Soluión: Operno en l euión se tiene: ) ( Multiplino por por mos los se tiene: Como se tiene que Not: L invers e puee lulrse por el métoo e GussJorn sí: ( ) ( ) F F L invers es
5 Mtemátis Álger e mtries José Mrí Mrtínez Meino Ds ls mtries y ) Resolver el sistem ) Clulr el rngo e M Soluión: ) plino el métoo e reuión pr l resoluión e sistems lineles: E E Si se elimin l mtriz se tiene: E E ) M Como l terer fil es l sum e ls os primers, el rngo e M
6 Mtemátis Álger e mtries José Mrí Mrtínez Meino 6 6 Ds ls mtries se pie: ) Enontrr ls oniiones que een umplir,, pr que se verifique ) Pr, lulr Soluión: ) Multiplino e igulno se otiene: Dee umplirse que: ) Pr, Luego: ; ;
7 Mtemátis Álger e mtries José Mrí Mrtínez Meino Sen, y ls mtries s por, y 6 Contestr rzonmente l siguiente pregunt Existe lgún vlor e λ R tl que l igul ( ) λ se iert? En so firmtivo hllr iho vlor e λ Soluión: Cálulo e ( ) λ : ( ) λ λ λ λ λ λ λ λ λ λ λ λ λ λ ) ( Pr que ( ) λ ee umplirse que los elementos orresponientes e ms mtries sen igules En prtiulr que: λ λ Este vlor e λ umple l igul e los emás elementos e ms mtries Por tnto, sí existe el vlor e λ peio en l uestión
8 Mtemátis Álger e mtries José Mrí Mrtínez Meino ) Compror que si es un mtriz ur tl que, one es l mtriz ienti, entones es invertile Cuál es l expresión e? ) Utilizr el prto ) pr lulr l invers e l mtriz Soluión: ) Si ( ) Por tnto, existe un mtriz,, que multipli por l ienti Es mtriz es l invers e : Pr ompror que posee invers hy que ver que su eterminnte es istinto e En efeto: ( ) ( ) ( ) ) Si se quiere utilizr el prto ) hrá que ompror que Por un prte: Por otr: Efetivmente Por tnto, Luego,
9 Mtemátis Álger e mtries José Mrí Mrtínez Meino Ds ls mtries y, se pie: ) Dr un efiniión e rngo (o rterísti) e un mtriz ) Es ierto que rngo() (rngo )(rngo )? Justifir l respuest Soluión: ) El rngo e un mtriz es igul l número e vetores fil (o e vetores olumn) linelmente inepenientes que tiene es mtriz Ese número oinie on el oren el myor menor no nulo e l mtriz Pr ls mtries s: rngo e, pues el menor rngo e, pues el menor ) El prouto es: Por tnto, rngo () (l mtriz sólo tiene tres fils) Como (rngo ) (rngo ) y rngo(), l respuest l pregunt formul es negtiv
10 Mtemátis Álger e mtries José Mrí Mrtínez Meino D l mtriz, enuentr os mtries, y C, e tmño y e rngo, tles que el rngo e se y el rngo e C se Soluión: Hy infini e soluiones Por ejemplo, y C Como puee verse:, que tiene rngo C, que tiene rngo Oservión: De mner generl, este ejeriio puee resolverse tomno f e Multiplino, f e Pr que el prouto teng rngo st on que l fil (, ) no se proporionl l fil (, ) Por ejemplo, hieno,, y En mio, pr que el rngo el prouto se ee rse l proporionli; o her que un e ls fils se (, )
11 Mtemátis Álger e mtries José Mrí Mrtínez Meino Ds ls mtries y ) Clul y ) Comprue que ( ) Soluión: ) Multiplino: ) Do que y que ( ) se umple que ( ) Tmién puee verse hieno ls operiones: sumno y multiplino
12 Mtemátis Álger e mtries ) Despej l mtriz en funión e e en l euión ( ), sieno y mtries urs e oren os, e l mtriz ienti e oren os ) Resuelve l euión, si e l mtriz ienti e oren os Soluión: ) Operno se tiene: ( ) ( ) ) De ( ) L invers e es, ( ) t ij, sieno ( ij ) l mtriz e los juntos e Como Por tnto: y ( ) ij José Mrí Mrtínez Meino
13 Mtemátis Álger e mtries Se un mtriz m n ) Existe un mtriz tl que se un mtriz fil? Si existe, qué oren tiene? ) Se puee enontrr un mtriz tl que es un mtriz fil? Si existe, qué oren tiene? ) us un mtriz tl que ( ) sieno Soluión: ) niilmente, l mtriz ee ser e imensión p m sí: p m m n () p n Si se ese que () p n se un mtriz fil, p Luego l mtriz ee ser e imensión m ) En este so, m n n p () m p Si se ese que () m p se un mtriz fil, m Luego l mtriz ee ser e imensión n p; sieno neesrio que se un mtriz fil, e imensión n ) Si ( ), sieno ; esto es, ( ) Entones: ( ) ( ) ( ) ( ), por el prto ), l mtriz ee ser e imensión ; L mtriz ( ) En prtiulr, ( ) José Mrí Mrtínez Meino
14 Mtemátis Álger e mtries Se un mtriz ur tl que, one es l mtriz ienti Se pue segurr que mite invers? Rzonr l respuest Soluión: De ( ) Luego, l mtriz mite invers, y es: Tmién puee verse que el eterminnte e es istinto e ero, pues: ( ) ( ) Si el prouto nterior vle, ninguno e los os ftores es Luego l mtriz es regulr José Mrí Mrtínez Meino
15 Mtemátis Álger e mtries José Mrí Mrtínez Meino ) Determinr l mtriz pr que teng soluión l euión C( ), one, y C son mtries no singulres e oren n e l mtriz ienti e oren n ) plir el resulto nterior pr, y C Not: Mtriz singulr es quell e eterminnte nulo Soluión: ) Como ls mtries son no singulres, tienen invers; entones: C( ) C C( ) C C C ) Ls mtries s son invertiles: en toos los sos su eterminntes es istinto e Por tnto C Ls inverss e y C son: y C ; luego:
16 Mtemátis Álger e mtries José Mrí Mrtínez Meino 6 6 Ds ls mtries reles:,, C, D se pie: ) Clulr l mtriz M C ) Justifir que existe l mtriz D, invers e D, y lulr tl mtriz ) Clulr ls mtries, que umplen D M D Soluión: ) M 6 6 ) Como D, l mtriz D es no singulr tiene invers Mtriz junt: ) ( ij D nvers: ( ) t D ij D D ) D M D M 6 M D MD 6
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees
CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA
CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene
Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:
Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr
Matrices y determinantes
Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)
Matemática II Tema 4: matriz inversa y determinante
Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte
TEMA 9. DETERMINANTES.
Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.
Determinantes D - 1 DETERMINANTES
Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos
MATRICES: un apunte teórico-práctico
MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e
MATRICES Y DETERMINANTES
MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente
APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:
PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en
PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.
PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores
DETERMINANTES. 1. Utiliza las propiedades de los determinantes para calcular el valor de. a, b, c, d R.
Memáis II Deerminnes DETERMINNTES Oservión: L morí e esos ejeriios se hn propueso en ls prues e Seleivi, en los isinos isrios universirios espñoles.. Uiliz ls propiees e los eerminnes pr lulr el vlor e,,,
DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión
DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno
B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues:
nálisis eáio (eáis Eresriles ) José rí rínez eino ROLES DE TRCES DETERNNTES eguns e io es () Ls ries, y sus rsuess, y, ulen: ) ) ) Ningun e ls neriores Soluión: En ese so se ule ), ues: L resues es ) ()
TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.
Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir
Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.
Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.
se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.
Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se
TEMA 2. Determinantes Problemas Resueltos
Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l
MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A
MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes
3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:
PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:
ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?
ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni
TEMA 2. DETERMINANTES
TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se
ECUACIONES DE PRIMER Y SEGUNDO GRADO
UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.
CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a
CNTRI / JUNIO. LOGSE / MTEMÁTICS PLICDS LS CIENCIS SOCILES / ÁLGER / LOQUE Un imporor e gloos los impor e os olores: e olor nrnj (N) e olor fres (F). Toos ellos se envsn en pquees e, unies, que vene los
En donde x representa la incógnita, y a, b y c son constantes.
FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.
Matemáticas aplicadas a las Ciencias Sociales II. ANAYA
Uni Nº Resoluión e sisems meine eerminnes! PR EPEZR, RELEXION Y RESUELVE Deerminnes e oren! Resuelve uno e los siguienes sisems e euiones lul el eerminne e l mri e los oefiienes: E sumno E E sumno λ,s.c.i.,
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
Tema 2 Matrices Matemáticas CCSSII 2º Bachillerato 1
Tem Mtries Mtemátis CCSSII º hillerto TEM MTRICES OPERCIONES CON MTRICES EJERCICIO D l mtri ompre qe = I sieno I l mtri ienti Usno l fórml nterior ll Compromos qe = - I igles Son I Utilino qe = - I llmos
TEMA 9. DETERMINANTES.
Unidd.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl de determinntes. Determinnte de mtries de orden y orden... Determinnte mtries udrds de orden.. Determinnte mtries
DETERMINANTES. GUIA DETERMINANTES 1
GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor
MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.
Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem
a b c =(b a)(c a) (c b)
E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)
ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,
Determinantes. Ejercicio nº 1.-
Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio
Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado
Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:
I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.
I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,
Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.
89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr
IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II
IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?
2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA
ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o
1.6. BREVE REPASO DE LOGARITMOS.
.. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EXAMEN FINAL. (,5 puntos) D l siguiente euión mtriil: 6 z otener e form rzon los vlores e,, z. 5. Se el siguiente sistem e ineuiones 6. 7 ) (,5 puntos) Represent
Determinantes: un apunte teórico-práctico
Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente
2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA
MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / / / / / / C. +B B.
SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS
nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de
MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn
Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m
que verifican A 2 = A.
. Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A
UNIDAD IV ÁLGEBRA MATRICIAL
Vicerrectordo cdémico Fcultd de iencis dministrtivs Licencitur en dministrción Mención Gerenci y Mercdeo Unidd urriculr: Mtemátic II UNIDD IV ÁLGER MTRIIL Elordo por: Ing. Ronny ltuve, Esp. iudd Ojed,
Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )
Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri
MATRICES. siendo. Ejercicio nº 1.- Ejercicio nº 2.- Dadas las matrices: b) Halla una matriz, X, tal que AX = B. Ejercicio nº 3.-
MTRICES Ejeriio nº - Ejeriio nº - Ds ls mtries: ) Hll n mtriz tl qe Ejeriio nº - Reselve el sigiente sistem mtriil: Ejeriio nº - Cll los vlores e pr qe l mtriz: verifiqe l eión l one l O son respetivmente
UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA
UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como
Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:
UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente
TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ
TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
Ejemplo para transformar un DFA en una Expresión Regular
Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno
MATEMATICA Parte III para 1 Año
Crpet e Trjos Prátios e MATEMATICA Prte III pr 1 Año APELLIDO Y NOMBRE DEL ALUMNO:... PROFESOR:... DIVISIÓN:... Crpet e Trjos Prátios e Mtemáti Prte III 1º ño Págin 1 POLÍGONOS TRIÁNGULOS 3) En el triángulo
LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así
LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest
EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log
EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes
Ejemplo de cálculo de un portico por el método matricial de la rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ. Fig. 1
Ejemplo de álulo de un portio por el método mtriil de l rigidez EJEMPLO DE CÁLCULO POR EL MÉTODO DE LA RIGIDEZ Con el fin de resumir en un ejemplo el proeso seguir vmos resolver el pórtio de l figur. Ls
2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.
.3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede
Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.
MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -
Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre
Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %
lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a
Resuelve ls siguientes ecuciones: 4 5 = 0 0 + 6 = 0 0 + 0 = 0 = 0 Hll el vlor de los siguientes determinntes de orden 4: 0 0 0 0 0 0 4 0 0 5 4 0 0 6 0 5 Clcul el vlor de los siguientes determinntes: 0
SenB. SenC. c SenC = 3.-
TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,
MATEMÁTICAS II SISTEMAS DE ECUACIONES
Mite Gonále Jurrero Proles PU. Sistes de euiones. SISTEMS DE ECUCIONES. Considérese el siguiente siste de euiones lineles (en él,, son dtos; ls inógnits son,, Si, son no nulos, el siste tiene soluión úni.
