SenB. SenC. c SenC = 3.-
|
|
|
- Enrique Guzmán Valdéz
- hace 9 años
- Vistas:
Transcripción
1 TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos, en este so representremos los ángulos respetivmente por ls myúsuls A,B,C y los ldos opuestos por,,. C A B LEY DE LOS SENOS En ulquier tringulo, l rzón entre el seno de un ángulo y el ldo opuesto ese ángulo es igul l rzón entre el seno de otro ángulo y el ldo opuesto ese ángulo SenA SenC L ley de los senos onst de ls siguientes tres formuls: 1.- SenA 2.- SenA 3.- SenC SenC 27
2 Pr plir ulquier de ls formuls nteriores un tringulo espeifio, deemos onoer los vlores de tres de ls utro vriles, si sustituyes estos tres vlores en l formul propid, podrás despejr el vlor de l urt vrile. Se dedue que l ley de los senos se puede usr pr hllr ls prtes restntes de un tringulo oliuo siempre que se onozn ulquier de ls siguientes dos ondiiones: 1.- dos ldos y un ángulo opuesto uno de ellos (LLA) 2.- dos ángulos y ulquier ldo (AAL o ALA) Uso de l ley de los senos: Cso (ALA) Dos ángulos y ulquier ldo Resuelve ABC ddos A 48º, C 57º y 47 B 48º 57º A 47 C Soluión: 1.- Reuerd que l sum de los ángulos interiores de un tringulo es igul 180º, por lo tnto: A + B + C 180º 48º + B + 57º 180º B 180º - 48º - 57º B 75º 2.- Ddo que se onoen el ldo y los tres ángulos, se puede enontrr "" usndo un form de l ley de los senos donde intervengn, A, y B: SenA Ley de los senos ( sena) Despejr " " 28
3 47( sen48º) 47(0.743) Sustituir, A y B 36 Sen75º Resultdo Pr hllr, st sustituir en: SenC ( senc) 47( sen57º) Sen (0.838) Cso (LLA) dos ldos y un ángulo opuesto ellos: Resuelve el ABC ddos 12.4 ; 8.7 y B 36.º Hllr A y se proede de l siguiente mner: C B 36º A 1.- Determinr un segundo ángulo: SenA Ley de los Senos Despejr Sen A Sustituir,, B ( senb) SenA 12.4( sen36º) 12.4(0.587) SenA Resultdo Sen A 57º 29
4 2.- Por el teorem que señl que l sum de los ángulos interiores de un tringulo es igul 180º determinr el vlor del ángulo C: C Por Ley de senos determinr l medid del ldo restnte: 8.7 SenC Sen87º Sen36º 8.7( Sen87º ) 8.7(.9986) Sen36º LEY DE LOS COSENOS "El udrdo de l longitud de ulquier ldo de un tringulo es igul l sum de los udrdos de ls longitudes de los otros dos ldos, menos el dole produto de ls longitudes de los mismos ldos por el oseno del ángulo entre ellos" De donde: ² ² + ² - 2 os A ² + ² ² os A 2 ² ² + ² - 2 os B ² ² + ² - 2 os C ² + ² ² os B 2 ² + ² ² osc 2 L ul pliremos en l soluión de triángulos oliuángulos en ulquier de los siguientes sos: 1.- Dos ldos y el ángulo entre ellos (LAL) 2.- Tres ldos (LLL) Not: Ddos dos ldos y el ángulo inluido de un tringulo, podemos usr l ley de los osenos pr hllr el terer ldo y reurrimos l ley de los senos pr enontrr otro ángulo del tringulo. Ejemplo: Uso de l ley de los osenos (LAL) 30
5 Clulr ls prtes restntes del ABC si 5; 8 y B 77º A 8 77º B 5 C 1.- Como B es el ángulo entre los ldos y, empezr por lulr (ldo opuesto B) utilizndo l ley de los osenos: ² ² + ² - 2 os B ley de los osenos ² (5.0)² + (8.0)² - 2(5.0) (8.0) os77º Sustituimos, y B ² (0.225) Simplifimos y lulmos ² ² Enontrr otro ángulo del tringulo medinte l ley de los senos, hllr "A", puesto que es el ángulo opuesto l ldo más orto, el ul es : Ley de los senos SeA Despejr seno de A SenA ( senb) Sustituir,, B 5( sen77º) SenA 8.4 5(0.974) 8.4 5(0.974) 4.87 Por lo que: SenA A Sen ¹ º 3.- Finlmente determinmos C: Reordr que A + B + C 180º Por lo tnto: C 180º - 77º - 35º 68º Uso de l ley de los Cosenos (LLL) Ddos los tres ldos de un tringulo, se puede usr l ley de los osenos pr hllr ulquier de los ángulos. Siempre enontrremos primero el ángulo más grnde, es deir, el ángulo opuesto l ldo ms lrgo, y que esto grntiz que los ángulos restntes sen gudos 31
6 Posteriormente se puede enontrr otro ángulo plindo l ley de los senos o l ley de los osenos. Ejemplo: Si un ABC tiene ldos 90, 70 y 40, lulr A, B, C. 1.- De uerdo on l informión previ, primero se enuentr el ángulo opuesto l ldo ms lrgo que es "", por lo tnto se esoge l form de l ley de los osenos donde pree "A" y se proede omo sigue: ² ² + ² - 2 os A Ley de los osenos 2 os A ² + ² - ² Despejr os A os A ² + ² - ² 70² + 40² - 90² Sustituir y simplifir 2 2(70)(40) CosA CosA ( ) 7 2 A os ¹ ( ) ( ) 106.6º 107º Podemos usr l ley de los osenos pr hllr el ángulo B: ² ² + ² - 2 os B Ley de los osenos 2 osb + ² ² +² - ² Despejr CosB CosB ² +² - ² Sustituir y simplifir 2 90² + 40² 70² CosB 2(90)(40) B os ¹ ( ) º 48º
RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS
Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO
Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto
UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE
UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.
Triángulos congruentes
Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors
Resolución de triángulos de cualquier tipo
Resoluión de triángulos de ulquier tipo Ejeriio nº 1.- Hll los ldos y los ángulos de este triángulo: Ejeriio nº.- Clul los ldos y los ángulos del siguiente triángulo: Ejeriio nº 3.- Hll los ldos y los
Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51
Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y
SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA
Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio
MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA
MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este
10.- Teoremas de Adición.
Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.
TRIGONOMETRÍA (4º OP. A)
SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente
Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO
Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:
UNIDAD 7 Trigonometría
UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier
UNIDAD 7 Trigonometría
UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier
EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log
EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o
Haga clic para cambiar el estilo de título
Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles
Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.
89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr
Profr. Efraín Soto Apolinar. Ley de senos
Profr. Efrín Soto Apolinr. Ley de senos Hst hor hemos resuelto triángulos retángulos, pero tmién es omún enontrr prolems on triángulos que no son retángulos, omo utángulos u otusángulos. Pr resolver estos
En donde x representa la incógnita, y a, b y c son constantes.
FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.
Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2)
Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2) Derehos ásios de prendizje: Comprende y utiliz l ley del seno y el oseno pr resolver prolems de mtemátis y otrs disiplins que involuren triángulos no retángulos.
ECUACIONES DE PRIMER Y SEGUNDO GRADO
UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.
ECUACIONES DE PRIMER GRADO
IES Jun Grí Vldemor Deprtmento de Mtemátis TEMA : ECUACIONES º ESO Mtemátis B ECUACIONES DE PRIMER GRADO PASOS PARA RESOLVER UNA ECUACIÓN DE PRIMER GRADO. Eliminr préntesis si los hy). Eliminr denomindores
Departamento de Matemáticas
Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1
4 Trigonometría UNIDAD
UNIDAD 4 Trigonometrí ÍNDICE DE CONTENIDOS 1. Ángulos............................................ 77 1.1. Sistem sexgesiml................................. 77 1.2. Rdines........................................
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS
TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen
B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN
Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:
LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un
UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA
REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)
Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics
Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.
Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,
Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES
8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =
Resolución de triángulos rectángulos
Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.
ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?
ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni
TRIGONOMETRÍA CONTENIDO TRIGONOMETRÍA
CONTENIDO TRIGONOMETRÍA Tem. Pág. Coneptos y definiiones. Ángulos. Grdos. Aros. Rdines 4 Polígonos y irunfereni. 5 4 Sistems oordendos. Retngulres. Polres. 6 5 Triángulos. Definiión. Clsifiión. 7 6 Círulo
Triángulos y generalidades
Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro
Teorema de Pitágoras
Profr. Efrín Soto Apolinr. Teorem de Pitágors En geometrí, uno de los teorems más importntes es el teorem de Pitágors porque se pli muy freuentemente pr resolver prolems. En todo triángulo retángulo que
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
9 Proporcionalidad geométrica
82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9
1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)
ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems
m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular
Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de
LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.
LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo
Razones trigonométricas
LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos
Lección 3.4. Leyes del Seno y Coseno. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 17
Leión 3.4 Leyes del Seno y Coseno /0/04 Prof. José G. Rodríguez Ahumd de 7 Atividdes 3.4 Refereni Texto: Seíón 8. Ley de los Senos; Problems impres -5 págins 577 y 578 (53 y 533); Seión 8. Ley de los Cosenos;
E-mail: [email protected] 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619
1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del
se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.
Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se
Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes
Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists
Razones trigonométricas de un ángulo agudo. Relaciones fundamentales
B C Mtemátis I - º Billerto Rzones trigonométris de un ángulo gudo. Reliones fundmentles En todo triángulo retángulo BC ls rzones trigonométris (seno, oseno y tngente) de uno de sus ángulos gudos, en este
LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco
LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco
NOCIONES DE TRIGONOMETRÍA
Ejeiios de Tigonometí http://pi-tgos.esp.st NOCIONES DE TRIGONOMETRÍA L Tigonometí tiene po ojeto l esoluión de tiángulos, es dei, onoe los vloes de sus tes ldos de sus tes ángulos. P esolve un tiángulo
PSU Matemática NM-4 Guía 22: Congruencia de Triángulos
Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo:
Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll
Mtemáti Diseño Industril Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de
Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz
Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr
SISTEMAS DE ECUACIONES LINEALES
UNEFA C.I.N.U. Mtemátis Mteril dptdo on fines instruionles por Teres Gómez, de: Oho, A., González N., Lorenzo J. Gómez T. (008) Fundmentos de Mtemátis, Unidd 5: Euiones e Ineuiones, CIU 008, UNEFA, Crs.
LEY DE SENOS Y COSENOS
FULTD DE IENIS EXTS Y NTURLES SEMILLERO DE MTEMÁTIS GRDO: 10 TLLER Nº: 1 SEMESTRE 1 LEY DE SENOS Y OSENOS RESEÑ HISTÓRI Menelo de lejndrí L trigonometrí fue desrrolld por strónomos griegos que onsidern
PROBLEMAS DE ÁLGEBRA DE MATRICES
Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)
TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.
BLOQUE III Geometría
LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40
TEOREMA DE PITÁGORAS
TEOREMA DE PITÁGORAS 1.- El ldo de un udrdo mide 10 m. Cuánto mide su digonl? (Aproxim el resultdo hst ls déims)..- Ls digonles de un romo miden 15 m y 17 m, respetivmente. Cuánto miden sus ldos? (Aproxim
DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE
DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí
7Soluciones a los ejercicios y problemas PÁGINA 161
7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60
II. FUNCIONES TRIGONOMÉTRICAS
II. FUNCIONES TRIGONOMÉTRICAS.. RAZONES TRIGONOMÉTRICAS Ls rzones trigonométris se utilizn fundmentlmente en l soluión de triángulos retángulos, reordndo que todo triángulo retángulo tiene un ángulo de
1.6. BREVE REPASO DE LOGARITMOS.
.. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos
Resolución de Triángulos Rectángulos
PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) exigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión
Resolución de triángulos
8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del
Clasifica los siguientes polígonos. a) b) c) d)
1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr
TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS
Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores
Fracciones equivalentes
6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees
C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área?
4 Resoluión de triángulos. Resoluión de triángulos retángulos Piens y lul lul mentlmente l inógnit que se pide en los siguientes triángulos retángulos: ) = 6 m, = 8 m; ll l ipotenus ) = 35 ; ll el otro
SISTEMA SEXAGESIMAL. Unidad: El grado sexagesimal (º). 1 º = ángulo completo 360. ángulo completo = º = 400 g = 2π rad
TRIGNMETRÍ. ÁNGULS igen: Positivos: tido ntihoio. Negtivos: tido hoio. + MEDID DE ÁNGULS Sistem segesiml Sistem entesiml Rdines SISTEM SEXGESIML. Unidd: El gdo segesiml (º. ángulo ompleto 60º º ángulo
11La demostración La demostración en matemáticas (geometría)
L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es
1.6 Perímetros y áreas
3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente
Razones trigonométricas de un ángulo agudo. Denominación Definición Propiedad básica. cos α = c a. tg α = tan α = b c. Propiedad fundamental
Trigonometrí 1 Trigonometrí Rzones trigonométris de un ángulo gudo Denominión Definiión Propiedd ási Seno sen = 0 sen 1 Coseno Tngente os = tg = tn = Propiedd fundmentl sen + os = 1 Rzones trigonométris
Determinantes de una matriz y matrices inversas
Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión
Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.
Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.
Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor?
ONTENIDOS Ls reliones trigonométris en un triángulo retángulo Seno y oseno de un ángulo Tngente de un ángulo Relión entre l tngente y l pendiente de un ret Teorems del seno y del oseno Existen vris situiones
TRIÁNGULOS OBLICUÁNGULOS
PR SER TRJDO EL 09 y 16 DE GOSTO 2011 RZONMIENTO Y DEMOSTRIÓN Selecciona los procedimientos a seguir en la resolución de triángulos rectángulos y oblicuángulos. RESOLUIÓN DE PROLEMS Resuelve problemas
Matrices y determinantes
Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)
8 - Ecuación de Dirichlet.
Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos
1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)
Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES
8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =
Senx a) 0 b) 1 c) 2 d) 2
EJERIIOS. lculr en : Sen( - 0º) = os( + 0º) ) b) c) 4 d) 6 e). Si : Tg (8 º) Tg ( + º) = Hllr: K = Sen tg 6 7 7 ) b) c) - d) - e) ) 0, b) c), d) e) 8. Si : Tg =, Sen lculr : K Tg ) c) e) ( ) b) d) ( ).
