Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2)"

Transcripción

1 Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2) Derehos ásios de prendizje: Comprende y utiliz l ley del seno y el oseno pr resolver prolems de mtemátis y otrs disiplins que involuren triángulos no retángulos. (ver DBA #12 grdo 10º. Págin 3 de 5. Ministerio de Eduión Nionl (2015). Derehos Básios de Aprendizje. Bogotá. Indidores de logros: Aplir ls leyes del seno y del oseno, pr resolver prolems que se puedn modelr medinte triángulos oliuángulos. Seuenis de prendizje: Soluión de triángulos oliuángulos: Ley del seno, Ley del oseno. Prolems que dn origen triángulos oliuángulos. 11

2 RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Elementos de Trigonometrí (2) Un triángulo que no es retángulo se le llm oliuángulo. Los elementos de un triángulo oliuángulo son los tres ángulos y los tres ldos respetivos. Los ángulos se ostumrn representr por letrs myúsuls y los ldos por letrs minúsuls orrespondientes los vérties opuestos, sí: Un prolem de resoluión de triángulos oliuángulos onsiste en hllr tres de sus elementos, ldos o ángulos, undo se onoen los otros tres (uno de los ules h de ser un ldo). Pr resolver un triángulo retángulo utilizremos tres herrmients: L sum de los tres ángulos de un triángulo A + B + C Teorem o ley del seno sen A sen B sen C Teorem o ley del Coseno osa osb osc 12

3 Ley del seno: Si ABC, es un triángulo oliuángulo uyos ángulos son A, B, C y sus ldos opuestos,, respetivmente, entones: sen A sen B sen C ó sen A sen B sen C En form generl: En ulquier triángulo, l rzón entre el seno de un ángulo y l longitud del ldo opuesto es igul l rzón entre el seno de otro ángulo y l longitud del ldo opuesto ese otro ángulo. L ley de seno es prtiulrmente útil, si se onoe: ) 2 ldos y un ángulo opuesto uno de ellos (LLA) ) 2 ángulos y ulquier ldo. Ejemplo 1: Resolver el siguiente triángulo: Soluión: Primero signemos letrs los vérties y ldos del triángulo y sí reonoemos elementos onoidos y desonoidos: Elementos onoidos : Ángulos A y C y ldo < A 26, < C 19, 5 dm Elementos desonoidos: Ángulo B y ldos y < B? ;? ;? El ángulo B, se puede lulr siendo que < A + < B + < C 180, entones < B 180 (< A + < C), o se: < B 180 ( ) ; < B

4 Ahor podemos lulr el ldo, plindo sen A sen B A, < B y ), remplzmos los vlores onoidos y quedrí sí: 5 5 sen26, hor ien, si despejmos qued 3,09; sen26 sen135 sen135 luego 3,09 Finlmente, podemos lulr el ldo, plindo (porque se onoen < sen C sen B (porque se onoen: < C, < B y ), remplzmos los vlores onoidos y quedrí sí: 5 5 sen19, hor si despejmos qued 2,30; luego 2,30 sen19 sen135 sen135 on lo ul qued resuelto el triángulo. Not: En el ejeriio nterior, el ldo mide 5 dm (5 deámetros), por tnto ls respuests son: 3,09 dm y 2, 30 dm, durnte el desrrollo del ejemplo esriimos 5, en lugr de 5dm, pr gilizr su mnejo; en los demás ejemplos de este módulo sumiremos que ls medids de los ldos utilizn ls misms uniddes de longitud, por lo ul no ls tendremos en uent en el desrrollo de los ejemplos Ejemplo 2: Resuelve el triángulo, si se onoen los siguientes dtos: < A 103, 40 m, 31 m Soluión: Eloremos un gráfio pr representr los dtos: Aplimos sen A sen B sen 103 sen B, (remplzndo) senb 31.sen Elementos onoidos : Ángulo A y ldos y < A 103, 40 m, 31 m Elementos desonoidos: Ángulos B y C y ldo < B? ; < C? ;?, (pr lulr < B, porque se onoen < A, y ), (despejndo) Luego sen B 0,755, entones B sen 1 (0,755) 49,02, B 49,02 14

5 El ángulo C, se puede lulr siendo que < A + < B + < C 180, entones < C 180 (< A + < B), o se: < C 180 ( ,02 ) ,02 27,98 ; < C 27,98 Finlmente, plimos A, y < C ) sen A sen C, (pr lulr, porque se onoen, < 40 sen sen27,98 sen 103 sen 27,98 (remplzndo) 19,26 ; (despejndo) Entones 19,26 m, on lo ul qued resuelto el triángulo. Ejemplo 3: Dos puestos de oservión A y B están olodos lo lrgo de l ost (seprdos por 10 mills), pr vigilr l llegd ilegl de ros que resen el límite de 3 mills. Si el vigilnte A inform que hy un ro S en un ángulo BAS 37 y el B inform que el mismo ro está en un ángulo ABS 20 ; A qué distni del puesto A se enuentr el ro? A qué distni de l ost se enuentr el ro (si se supone que l ost es un líne ret lo lrgo de los dos puestos de oservión)?, H resdo el ro el límite de gus territoriles? Soluión: hgmos un interpretión gráfi del prolem: S: posiión del ro A y B: puestos de oservión : distni del ro l puesto A El ángulo S, se puede lulr siendo que < A + < B + < S 180, entones < S 180 (< A + < B), o se: < S 180 ( ) ; < S 123 Ahor plimos ley del seno en el triángulo ABS, sí: s sen S sen B 10 sen 123, (pr lulr, porque se onoen s, < S, y < B ) sen 20 (remplzndo) 15

6 10sen20 sen 123 4,07 ; (despejndo) O se, l distni entre el ro S y el puesto de oservión A, es 4,07 mills. Pr determinr l distni entre el ro y l ost, poyémonos en el siguiente gráfio: Segmento SC o d: distni del ro l ost. Segmento AB: líne oster SC AB, SC es perpendiulr AB En el triángulo retángulo ACS, on ángulo reto en C, d represent el teto opuesto l ángulo A y l hipotenus, entones: sena d, o se sen37 d 4,07 entones d 4,07sen37 2,44 O se, l distni entre el ro S y l ost, es 2,44 mills, de tl mner que el ro está violndo el límite de gus territoriles Ejeriios 1: Resolver los siguientes triángulos: ) ) ) d) 16

7 Ejeriios 2: Prolems de Apliión: 1) Se loliz un fuego F desde dos estiones de prevenión de inendios, A y B, ls ules están 10 mills de distni. Si l estión B inform que el fuego está en un ángulo ABF 53 y l estión A lo inform en ángulo BAF 29, qué distni está el fuego de l estión A? de l estión B?. 2) Los ároles más grndes del mundo reen en el Prque Nionl de Redwood en Cliforni; estos ároles son más grndes que el lrgo de un mpo de futol. Enuéntrese l ltur de uno de esos ároles, prtir de l informión dd en l figur. 3) Como se muestr en l figur, un telefério trnsport psrejos desde el punto A, que está 1.2 mills del punto B que se hll en l se de un montñ, hst un punto P de l im. Los ángulos de elevión P desde A y B son 21 y 65 respetivmente. ) Clulr l distni entre A y P ) Clulr l ltur de l montñ. 17

8 Ley del oseno: Si ABC, es un triángulo oliuángulo uyos ángulos son A, B, C y sus ldos opuestos,, respetivmente, entones: osb osc En form generl: El udrdo de l longitud de ulquier ldo de un triángulo es igul l sum de los udrdos de ls longitudes de los otros dos ldos, menos el dole produto de ls longitudes de los mismos ldos por el oseno del ángulo entre ellos. L ley de oseno es utilizd pr resolver un triángulo del ul se onoen dos ldos y el ángulo omprendido entre ellos (LAL), o sus tres ldos (LLL), en estos sos no es útil plir l ley del seno. Ejemplo 1: Resuelve el triángulo, si se onoen los siguientes dtos: 40 m, 25 m, 20 m Soluión: Eloremos un gráfio pr representr los dtos: Elementos onoidos : Ldos, y 40 m, 25 m, 20 m Elementos desonoidos: Ángulos A, B y C < A? ; < B? ; < C? Aplindo l ley del oseno tenemos: (osA) O, osa (despejndo) 2 osa (25)2 + (20) 2 (40) 2 2(25)(20) ,575 Si osa 0,575, entones A os 1 ( 0,575) 125,09 A 125,09 Igulmente, (osB), entones: 18

9 osb (40)2 + (20) 2 (25) 2 2(40)(20) ,859 Si osb 0,859, entones B os 1 (0,859) 30,79 B 30,79 Finlmente C 180 (A + B) 180 (125, ,79 ) 24,12 Entones 24,12, on lo ul qued soluiondo el triángulo Ejemplo 2: Dos trenes prten simultánemente de un estión en direión tl que formn un ángulo de 37. Uno v 15 km h, y el otro 25 km h. Determinr qué distni se enuentrn seprdos después de 2 hors de vije. Soluión: Si hn trnsurrido 2 hors los trenes hrán reorrido 30 km y 50 km, respetivmente, l interpretión gráfi podrí ser sí: C: posiión de l estión de donde prten los trenes A: posiión de un tren después de 2 hors B: posiión del otro tren : distni entre los trenes después de 2 hors (es el dto usdo) Con se en los dtos onoidos podemos plir l ley del oseno sí: osc; O se: (30)(50). os os os (0,79) , luego: ,09 Entones, trnsurrids 2 hors de her prtido de l estión los trenes estrán seprdos 32,09 km 19

10 Ejeriios 1: Resolver los siguientes triángulos: ) ) ) d) Ejeriios 2: Prolems de Apliión: 1) Dos ldos dyentes de un prlelogrmo formn un ángulo de 35 y tienen un longitud de 3 y 8 entímetros. Cuál es l longitud de l digonl más ort del prlelogrmo? 2) Al mediodí, dos viones de úsqued se disponen slir de Sn Frniso pr rstrer un vión que yó en el oéno. El vión A vij diretmente l oeste 400 mills /h, y el vión B hi el noroeste 500 mills/h. A ls 2 PM el vión A enuentr los sorevivientes del vión ído y llm por rdio l vión B pr que ud y yude en el reste. A qué distni está el vión B del vión A en ese momento? 3) Tres irunferenis de rdios 2, 5 y 8 entímetros, son tngentes exteriores entre sí (vése l figur siguiente). Enuéntrese los tres ángulos formdos por ls rets que unen sus entros. 20

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1.- El ldo de un udrdo mide 10 m. Cuánto mide su digonl? (Aproxim el resultdo hst ls déims)..- Ls digonles de un romo miden 15 m y 17 m, respetivmente. Cuánto miden sus ldos? (Aproxim

Más detalles

C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área?

C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área? 4 Resoluión de triángulos. Resoluión de triángulos retángulos Piens y lul lul mentlmente l inógnit que se pide en los siguientes triángulos retángulos: ) = 6 m, = 8 m; ll l ipotenus ) = 35 ; ll el otro

Más detalles

Profr. Efraín Soto Apolinar. Ley de senos

Profr. Efraín Soto Apolinar. Ley de senos Profr. Efrín Soto Apolinr. Ley de senos Hst hor hemos resuelto triángulos retángulos, pero tmién es omún enontrr prolems on triángulos que no son retángulos, omo utángulos u otusángulos. Pr resolver estos

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad OLEGIO PEDGOGIO DE LOS NDES GUI DE TRIGONOMETRÍ REUPERION PERIODO UNO EIMO GRDO Los ángulos se pueden medir en grdos sexgesimles y rdines Un ángulo de 1 rdián es quel uyo ro tiene longitud igul l rdio

Más detalles

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE Áre: MTEMÁTIS Dignostio Trigonometrí Feh: Enero de 07 onoimiento: Rzones Trigonométris y TP Doente: Sntigo Vásquez Grdo: UNDEIMO Estudinte: Ojetivo: Repsr los oneptos ásios sore rzones trigonométris, teorem

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

Teorema de Pitágoras

Teorema de Pitágoras Profr. Efrín Soto Apolinr. Teorem de Pitágors En geometrí, uno de los teorems más importntes es el teorem de Pitágors porque se pli muy freuentemente pr resolver prolems. En todo triángulo retángulo que

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos).

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos). TEMA: 1. TEOREMA DE LOS SENOS despejndo h de ms igulddes: En generl tendremos que resolver triángulos no retángulos, y, en ellos, no es posile plir ls definiiones de ls rzones trigonométris de sus ángulos.

Más detalles

CONSTRUCCION DE TRIANGULOS

CONSTRUCCION DE TRIANGULOS ONSTRUION DE TRINGULOS INTRODUION Ls exigenis que se imponen un figur que se dese onstruir son ls siguientes: 1) l mgnitud de segmentos, ros, ángulos y áres. 2) l posiión reltiv de puntos y línes. 3) l

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

Resolución de triángulos de cualquier tipo

Resolución de triángulos de cualquier tipo Resoluión de triángulos de ulquier tipo Ejeriio nº 1.- Hll los ldos y los ángulos de este triángulo: Ejeriio nº.- Clul los ldos y los ángulos del siguiente triángulo: Ejeriio nº 3.- Hll los ldos y los

Más detalles

Lección 3.4. Leyes del Seno y Coseno. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 17

Lección 3.4. Leyes del Seno y Coseno. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 17 Leión 3.4 Leyes del Seno y Coseno /0/04 Prof. José G. Rodríguez Ahumd de 7 Atividdes 3.4 Refereni Texto: Seíón 8. Ley de los Senos; Problems impres -5 págins 577 y 578 (53 y 533); Seión 8. Ley de los Cosenos;

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza Figurs plns. Semejnz Qué tienes que ser? QUÉ tienes que ser? Atividdes Finles Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los tetos.

Más detalles

22. Trigonometría, parte II

22. Trigonometría, parte II 22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemáti Trjo Prátio N 2: PROPORCIONALIDAD Y SEMEJANZA TEOREMA DE PITÁGORAS RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Segundo Año 1) Clulen x en los siguientes gráfios si te informn

Más detalles

GEOMETRÍA DEL TRIÁNGULO

GEOMETRÍA DEL TRIÁNGULO GEOMETRÍA DEL TRIÁNGULO Definiión de triángulo Se llm triángulo un onjunto { ABC,, } de tres puntos no linedos del plno. Los puntos A, B y C reien el nomre de vérties del triángulo. Los segmentos (o en

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

Resolución de Triángulos Rectángulos

Resolución de Triángulos Rectángulos PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) exigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión

Más detalles

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b. Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Trigonometría Ing. Avila Ing. Moll

Trigonometría Ing. Avila Ing. Moll Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de un triángulo o de un figur

Más detalles

II. FUNCIONES TRIGONOMÉTRICAS

II. FUNCIONES TRIGONOMÉTRICAS II. FUNCIONES TRIGONOMÉTRICAS.. RAZONES TRIGONOMÉTRICAS Ls rzones trigonométris se utilizn fundmentlmente en l soluión de triángulos retángulos, reordndo que todo triángulo retángulo tiene un ángulo de

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

Lección 10: TRIÁNGULOS. Un triángulo es un polígono de tres ángulos y tres lados. También tiene tres vértices.

Lección 10: TRIÁNGULOS. Un triángulo es un polígono de tres ángulos y tres lados. También tiene tres vértices. 1.- QUÉ ES UN TRIÁNGULO? Leión 10: TRIÁNGULOS Un triángulo es un polígono de tres ángulos y tres ldos. Tmién tiene tres vérties. ELEMENTOS DE UN TRIÁNGULO Ldo: Cd uno de los tres segmentos que limitn l

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Seres procedimentles 1. Utiliz correctmente el lenguje lgerico, geométrico y trigonométrico.. Identific l simologí propi de l geometrí y l trigonometrí. 3. Identific ls uniddes

Más detalles

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

PB' =. Además A PB = APB por propiedad de

PB' =. Además A PB = APB por propiedad de limpid de Mtemátis, Querétro GEMETRÍ: Trigonometrí, Áres, ílios, Ptolomeo Rosrio Velázquez 0 y de Junio, 005 PRLEM EL EXMEN ESTTL P es ulquier punto del interior de un triángulo. Sen, y los puntos medios

Más detalles

Resolución de Triángulos Rectángulos

Resolución de Triángulos Rectángulos PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) eigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión

Más detalles

Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7

Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7 Colegio Dioesno Asunión de Nuestr Señor Ávil Tem 7 Pr onoer l sidurí de Tles de Mileto (646 546.C.), se uent que los serdotes de Egipto lo sometieron un dur prue: verigur l ltur de l pirámide de Kéops.

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

MATEMÁTICA MÓDULO 3 Eje temático: Geometría

MATEMÁTICA MÓDULO 3 Eje temático: Geometría MATEMÁTICA MÓDULO 3 Eje temátio: Geometrí 1. SEGMENTOS PROPORCIONALES EN EL TRIÁNGULO RECTÁNGULO En el ABC retángulo en C de l figur: Se pueden estbleer ls siguientes semejnzs: 1) De est semejnz, se obtienen

Más detalles

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen. 9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio

Más detalles

LEY DE SENOS Y COSENOS

LEY DE SENOS Y COSENOS FULTD DE IENIS EXTS Y NTURLES SEMILLERO DE MTEMÁTIS GRDO: 10 TLLER Nº: 1 SEMESTRE 1 LEY DE SENOS Y OSENOS RESEÑ HISTÓRI Menelo de lejndrí L trigonometrí fue desrrolld por strónomos griegos que onsidern

Más detalles

Triángulos congruentes

Triángulos congruentes Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors

Más detalles

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll Mtemáti Diseño Industril Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC I.E.S. Ciudd de Arjon Deprtmento de Mtemátis. º BAC UNIDAD : TRIGONOMETRÍA. MEDIDAS DE ÁNGULOS. GRADOS: Un grdo sexgesiml es el ángulo orrespondiente un de ls 60 prtes en que se divide el ángulo entrl

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

Eje normal. P(x,y) LLR Eje focal

Eje normal. P(x,y) LLR Eje focal . L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se

Más detalles

Semejanza. Teoremas de Thales y Pitágoras

Semejanza. Teoremas de Thales y Pitágoras 11 Semejnz. Teorems de Thles y Pitágors 1. Figurs semejntes P I E N S Y L U L Si l Torre del Oro mide proximdmente 0 m de lto, uánto mide proximdmente de lto l Girld de Sevill? Si l Torre de Oro mide 1

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada.

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada. Hoj de Prolems Geometrí III 49. Dd l elipse, si tommos el etremo B de ordend positiv del eje menor omo entro, se desrie un irunfereni de rdio igul diho eje menor, ortr l elipse en dos punto P P. Determinr

Más detalles

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general)

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general) 2.7. POLÍGONO REGULR INSRITO EN UN IRUNFERENI (Método generl) Reuerd: Ddo el rdio del polígono de n ldos (3 m) 1. Diuj un irunfereni de 3 m. de rdio. 2. Trz su diámetro, y divídelo en n prtes igules. 3.

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III)

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III) PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos

Más detalles

Qué tienes que saber?

Qué tienes que saber? Trigonometrí Qué tienes que sber? QUÉ tienes que sber? tividdes Finles Ten en uent Rzones trigonométris de un ángulo gudo, α: teto opuesto sen α hipotenus teto dyente os α hipotenus teto opuesto tgα teto

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti 6 Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni siendo que el segmento de etremos (- ; 3) (4; -) es diámetro

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

3- Calcula la amplitud de los ángulos interiores de los siguientes cuadriláteros. b c s t

3- Calcula la amplitud de los ángulos interiores de los siguientes cuadriláteros. b c s t 3- Clul l mplitud de los ángulos interiores de los siguientes udriláteros. s t 36 r u rstu trpeio isóseles û x 16 tˆ x 30 TRIÁNGULOS Se llm triángulo tod figur de tres ldos. Un triángulo tiene tres vérties,

Más detalles

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III)

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III) PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Est or

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

Definición: Llamamos triángulo a la figura determinada por la intersección de tres semiplanos.

Definición: Llamamos triángulo a la figura determinada por la intersección de tres semiplanos. Mtemáti ª Año ESB Triángulos Cpítulo IV: Triángulos Definiión: Llmmos triángulo l figur determind por l interseión de tres semiplnos. Spl(R;o) Spl(S;o) Spl(T;o)= R Elementos: Vérties :son los puntos de

Más detalles

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus Mtemáti ási pr ingenierí (MA05) Clse Práti 4.. Dd l siguiente euión, identifique l óni, grfique enuentre todos sus elementos. 6 9 64 54 6 0 Completndo udrdos: ( ) ( 3) 3 4 Centro= C(; 3) 3 4 Como Entones

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

AA = Eje menor La elipse.

AA = Eje menor La elipse. 3.. L elipse. 3... L elipse omo lugr geométrio. L elipse es el lugr geométrio del onjunto de puntos P(, ) u sum de ls distnis dos puntos fijos llmdos foos equivlen l dole de un onstnte (), l ul represent

Más detalles

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje XVI Enuentro Deprtmentl de Mtemátis: L innovión en el proeso doente edutivo en Mtemátis prtir de diferentes medios de prendizje y I Enuentro Deprtmentl de GeoGer Netmente intuitivos. Inextitud de los

Más detalles

BLOQUE IV. Geometría. 11. Semejanza. Teorema de Thales y Pitágoras 12. Cuerpos en el espacio 13. Áreas y volúmenes

BLOQUE IV. Geometría. 11. Semejanza. Teorema de Thales y Pitágoras 12. Cuerpos en el espacio 13. Áreas y volúmenes LOQUE IV Geometrí 11. Semejnz. Teorem de Thles y Pitágors 1. uerpos en el espio 13. Áres y volúmenes 11 Semejnz. Teorems de Thles y Pitágors 1. Figurs semejntes P I E N S Y L U L Si l Torre del Oro mide

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 103 REFLEXION Y RESUELVE Prolem 1 Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr hllr l ltur de un pirámide de Egipto: omprr su somr

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

Criterios de igualdad entre triángulos.

Criterios de igualdad entre triángulos. TRIÁNGULO Triángulo. Superfiie pln liitd por tres línes (ldos). Polígono ás pequeño. lsifiión de los triángulos. Ldos Ángulos UTÁNGULO Tiene los tres ángulos gudos. RTÁNGULO Tiene un ángulo reto y dos

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

Resolución de triángulos cualesquiera tg 15 tg 55

Resolución de triángulos cualesquiera tg 15 tg 55 Resuelve los siguientes triángulos: ) 3 cm 17 cm 40 ) 5 cm c 57 cm 65 c) 3 cm 14 cm c 34 cm ) c 3 +17 3 17 cos 40 c 1,9 cm 17 3 + 1,9 3 1,9 cos 9 56' '' 10 ( + ) 110 3' 5'' ) 5 + 57 5 57 cos 65 79,7 cm

Más detalles

UNIDAD 2 Geometría 2.2 Triángulos 10

UNIDAD 2 Geometría 2.2 Triángulos 10 UNI Geometrí. Triánguos 10. Triánguos OJETIVOS ur e áre e perímetro de triánguos. Otener os dos ánguos de triánguos utiizndo s reiones entre otros ánguos en figurs geométris. ur os dos de un triánguo usndo

Más detalles

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. TRIGONOMETRÍA. EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS. PROBLEMAS.

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. TRIGONOMETRÍA. EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS. PROBLEMAS. GYMNÁZIUM BUDĚJOVICKÁ MATEMÁTICAS TRIGONOMETRÍA EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS PROBLEMAS - Determinr ls longitudes de los ldos y los tmños de los ángulos interiores del triángulo ABC si semos:

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

Trigonometría 3 de Secundaria: I Trimestre. yanapa.com

Trigonometría 3 de Secundaria: I Trimestre. yanapa.com I: SISTEMA DE MEDIDA ANGULAR ÁNGULOS TRIGONOMÉTRICOS-En trigonometrí se onsidern ángulos de ulquier vlor, por lo que se he neesrio plir el onepto de ángulo, supongmos un ryo AB, on origen en A en l figur

Más detalles