UNIDAD DE APRENDIZAJE IV

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD DE APRENDIZAJE IV"

Transcripción

1 UNIDAD DE APRENDIZAJE IV Seres procedimentles 1. Utiliz correctmente el lenguje lgerico, geométrico y trigonométrico.. Identific l simologí propi de l geometrí y l trigonometrí. 3. Identific ls uniddes pr medir ngulos. 4. Emple de mner sistemátic conceptos geométricos y trigonométricos en prolems cotidino. Seres declrtivos Clsificción de triángulos olicuángulos. Metodologí de l resolución de triángulo olicuángulos medinte l división de triángulos rectángulos. Teorem de Senos. Teorem de Cosenos. Aplicciones. A Clsificción de Triángulos Olicuángulos Podemos llmr un tringulo olicuángulo quel que no tiene un Angulo recto, esto hce que no lo podmos resolver directmente con el teorem de Pitágors, por lo que usremos otrs herrmients como lo pueden ser los teorems de SENO y de COSENO. Rectángulos Triángulos Acutángulos Olicuángulos Otusángulos Triángulo rectángulo es el que tiene un ángulo de 90 y sus de sus ldos recien el nomre de ctetos y ldo más grnde de hipotenus. Triángulo Olicuángulo es el que no tiene ningún ángulo de 90. Y se dividen en Acutángulo y Otusángulo. Triángulo Otusángulo es el que tiene como principl crcterístic un ángulo myor de 90 llmdo ángulo otuso y por consecuenci los otros dos ángulos restntes serán ángulos gudos. Triángulo cutángulo es el que tiene como crcterístic que sus tres ángulos son menores de 90, son ángulos gudos. Acdemi de Mtemátics 015

2 B Metodologí de l Resolución de Triángulos Olicuángulos medinte l división en triángulos rectángulos Y semos que el teorem de Pitágors lo utilizmos pr resolver triángulos Rectángulos, pero tmién lo podrímos plicr pr triángulos otusángulos, siempre y cundo estos triángulos los podmos dividir en triángulos rectángulos más pequeños que estén incluidos en el olicuángulo. Por ejemplo un tringulo olicuángulo se podrí divir en dos triángulos rectángulos como se ve continución: Triángulo Olicuángulo Triángulos rectángulos 1 c Tnto el triángulo ABC como el BDC son rect+ngulos que tienen ls ssiguientes crácter stics: 1. El ldo h es común los dos triángulos. El ngulo C es l sum de los ángulo 3. El ldo c es l sem de los ldos m y n Ejemplo El ldo p mide 38cm, el ldo q es de 56cm y el ángulo R mide Clculr el vlor de los demás elementos. Incluyendo el áre Acdemi de Mtemátics 015

3 Primero en el triángulo PQR se trz l ltur h y se h seprdo en dos triángulos rectángulos que son QMP y QMR. Entonces l ltur es Se clcul en el triángulo QMP l se con yud del teorem de Pitágors Y por construcción se se que Ahor, l usr tngente, se clcul el ángulo P Con el teorem de sum de los ángulos internos del triángulo En los triángulos rectángulos QMP y QMR el áre es l se por ltur sore dos Pr el triángulo QMP: Pr el triángulo QMR: Por lo tnto el áre totl del triángulo es Ejercicios Clculr los ldos y ángulos fltntes de los siguientes triángulos 1. =1.30 B=38 0 C= =5.36 A=54 8 C= c=0.35 A=36 4 B= =50.8 A=10 37 B= c=54.7 =8.35 B=74 6. =1.84 c=9.78 A= =.304 c=3.568 A=6 8. =74. c=1.5 B= =485 =346 C= =7.3 =15.8 C=47 Acdemi de Mtemátics 015

4 C Teorem de Senos Al trzr l ltur (AD) l ldo opuesto o su proongción, prtir del vértice, es posile determinr dos triángulos rectángulos (ADC) como se ve en ls siguientes figurs: De cuerdo lo y estudido en culquier de los dos csos, se determin que: y ( ) y ( ) De ls igulddes nteriores l despejr AD e igulr los primeros miemros se otiene: Y en los mismos triángulos l trzr otr ltur diferente AD se deduce: Este teorem se expres de l siguiente mner: SenA SenB c SenC O puede mnejrse de l siguiente mner SenA SenB SenC c Muestr un relción de rzones entre el ldo de un tringulo y su ángulo opuesto ó vicevers siendo l mism pr los tres ldos, lo que nos fcilit l otención de dtos cundo conocemos 3 de 4 que igulmos por cd dos ldos que igulmos. Se recomiend usr l primer expresión cundo queremos encontrr un ldo y que l lumno le fcilit el despeje lgerico. Y l segund expresión pr cundo se quier encontrr el vlor del ángulo, por ls misms circunstncis ntes mencionds. Acdemi de Mtemátics 015

5 Ejemplos Resuelv el siguiente tringulo usndo el teorem de Senos 1. Aplicndo l relción entre relción tenemos que: SenA porque conozco 3 de 4 de los dtos que implicn est SenB SenB SenA 16 Sen41. Sen mts Not: considerr con el mestro proximción en decimles en los resultdos. Clculr l medid de los ldos y ángulos fltntes de cuerdo los dtos siguientes: =13cm, = 17cm y B=58. Sustituyendo en el teorem de senos se tiene que Pr el cálculo de C se puede utilizr el teorem de ángulos internos de un triángulo: Pr el cálculo del ldo c, utilizr de nuev cuent ley de senos Ejercicios Clculr los ldos y ángulos fltntes de los siguientes triángulos 1. p=5.5cm q=5.45cm Q= =8m A=0.314rd B=0.683rd 3. m=4.75cm o=17.5cm O=18 Acdemi de Mtemátics 015

6 4. =75m =36m A=60 5. X=35 0 Y=58 x=45cm 6. N=75 m=1dc n=3dc 7. =7.75m =9.75m B=7 8. r=430cm s=500cm R=8 D Teorem de Coseno Este teorem se expres de l siguiente mner c ccosa c ccosb c CosC Podemos oservr cómo se mntiene l relción entre los ángulos y los ldos sin importr de qué ldo estmos hlndo. Ls tres expresiones nteriores se refieren l teorem de cosenos. Si se quisier conocer el vlor de los ángulos strí con despejr correctmente l función de Coseno de cd expresión. Como por ejemplo de l expresión c CosC despejndo Cos C nos qued: c CosC CosC c CosC c CosC c Ejemplo Resuelv el siguiente triángulo plicndo el teorem de cosenos Aplicndo c CosC Despejndo Cos C CosC c CosC (11.9)(16) Acdemi de Mtemátics 015

7 89 7. m 1 Cos 85 MATEMÁTICAS II. GEOMETRÍA Y TRIGONOMETRÍA CosC Not: considerr con el mestro proximción en decimles en los resultdos APLICACIONES 1.- dos oservdores distntes de 38 m en terreno horizntl, miden los ángulos de elevción de un gloo estático, situdo en el mismo plno que ellos, y hlln que sus medids son: A=39 y B=4730. A qué ltur se hll el gloo? Primero con teorem de sum de ángulos se clcul el del gloo G A continución con el teorem de senos se ccul el ldo ( ) Finlmente con culquier de los triángulo rectángulo se clcul l ltur h.- Entre los puntos E y D hy un vegetción, pero entre los puntos F y D si como F y E si son ccesiles y se pueden medir Cuál será l distnci entre E y D Acdemi de Mtemátics 015

8 .- Del ejercicio nterior clcule los ángulos Fltntes. Ejercicios Resover los siguientes triángulos olicuángulos cuyos dtos: 1. A=80 B= 15 =81cm. A=4 10 B=59 30 =13.5cm 3. A=55 C=61 37 =63.3cm 4. B=60 1 C=71 13 c=75.80cm 5. B=95 36 C=4 =0.87m 6. B=80 C=45 =80cm 7. B=35 C=44 5 =8cm 8. B=69 39 =54.08cm =60.45cm 9. C=4 =3.604cm c=3.15cm 10. A=74 30 =4cm c=358cm 11. B=39 =15cm c=8cm 1. =4cm =5cm c=6cm 13. =1cm =18cm c=0cm 14. =3.cm =4.8cm c=6.3cm 15. =80cm =85cm c=90cm 16. A=63 =0.1734m =0.1545m 17. A= B=5 40 =45cm 18. A110 0 =8.5cm =4.5cm 19. C=7 =8.40cm c=6.10cm 0. =9.3km =40.6km c=34.1km 1. En un prlelogrmo los ldos dycentes miden respectivmente 34cm y 65cm y uno de sus ángulo mide 48. Clculr el áre del plelogrmo.. Clculr el áre de un octágono regulr inscrito en un círculo cuyo rdio mide 34cm. 3. En un círculo de 1.56cm de diámetro se inscrie un pentágono, clculr su áre. 4. Un prlelogrmo tiene ldos cuys longitudes son 3 y 75 cm y uno de sus ángulos mide 73. Clculr l longitud de sus digonles. Acdemi de Mtemátics 015

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori

Más detalles

Funciones trigonométricas

Funciones trigonométricas Funciones trigonométrics Por Sndr Elvi Pérez Márquez Ls funciones trigonométrics son funciones de l medid de un ángulo, es decir, si el vlor del ángulo cmi, el vlor de ésts tmién. L tl 1 muestrs ls seis

Más detalles

Ley de senos y cosenos

Ley de senos y cosenos MB0003 _MAA1L_Ley Versión: Septiembre 01 Revisor: Ptrici Crdon Torres Ley de senos y cosenos por Oliverio Rmírez Juárez En l lectur nterior resolviste distintos problems que implicn triángulos rectángulos,

Más detalles

Trigonometría. Prof. María Peiró

Trigonometría. Prof. María Peiró Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SOLUIONES LOS EJERIIOS DE L UNIDD Pág. 1 Págin 187 PRTI Rzones trigonométrics de un ángulo 1 Hll ls rzones trigonométrics de los ángulos y en cd uno de los siguientes triángulos rectángulos. Previmente,

Más detalles

. Triángulos: clasificación

. Triángulos: clasificación . Triángulos: clsificción Propieddes básics importntes En todo tringulo se verific: 1.- l sum de los ángulos interiores es 180º 2.- l sum de los ángulos exteriores es 360º 3.-un Angulo exterior es siempre

Más detalles

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA)

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA) RAZONES TRIGONOMÉTRICAS Recordmos los siguientes conceptos: ABC es un triángulo rectángulo en A : BC : hipotenus AB : cteto dycente B ó cteto opuesto C AC : cteto opuesto B ó cteto dycente C Propiedd de

Más detalles

AMPLIACIÓN DE TRIGONOMETRÍA

AMPLIACIÓN DE TRIGONOMETRÍA Alonso Fernández Glián 1. EL TEOREMA DEL SENO AMPLIACIÓN DE TRIGONOMETRÍA 1.1. OTRA DEMOSTRACIÓN DEL TEOREMA DEL SENO 1.. MEDIDA DE UN ÁNGULO INSCRITO EN UNA CIRCUNFERENCIA 1.3. UN COROLARIO DEL TEOREMA

Más detalles

PLANTEL Iztapalapa V

PLANTEL Iztapalapa V Colegio Ncionl de Educción Profesionl Técnic PLANTEL Iztplp V Modulo: Representción Simbólic y Angulr del Entorno Docente: Turno: Mtutino Resuelve y Gráfic x+1 ) x 6 x b) < x+ c) 5 x d) x + x + 7 e) +

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Identificación de propiedades de triángulos

Identificación de propiedades de triángulos Grdo 10 Mtemtics - Unidd 2 L trigonometrí, un estudio de l medid del ángulo trvés de ls funciones Tem Identificción de propieddes de triángulos Nombre: Curso: Ls ctividdes propuests continución se centrn

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos.

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos. BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS 1ª Prte :Trigonometrí:Resolución de triángulos. 1.-Medid de ángulos. Un ángulo se puede medir en : )Grdos sexgesimles (DEG ó D) : 1º=60,1 =60. = 90º, =180º

Más detalles

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg 6 6 - Comprueb:

Más detalles

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad?

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad? PÁGIN 164 El director del equipo nliz un plno en el cul 1 cm corresponde 20 m en l relidd. Su mquet de l moto es l décim prte de lrg que l moto rel. L moto de l fotogrfí es l mism que se ve en l mquet.

Más detalles

CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS (II)

CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS (II) CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIERÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 19: RESOLUCIÓN DE TRIÁNGULOS PLANOS

Más detalles

Unidad 5-. Trigonometría II 1

Unidad 5-. Trigonometría II 1 Unidd - Trigonometrí II ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Sbiendo que sen - / y tg b /7, y que 70 < < 0 y 80 < b < 70, clcul: sen ( b bb cos ( b cc tg ( b Hllmos el resto de rzones trigonométrics

Más detalles

INTRODUCCIÓN A LA FÍSICA

INTRODUCCIÓN A LA FÍSICA INTRODUCCIÓN A LA FÍSICA TRIGONOMETRÍA: CATETO CATETO ADYACENTE OPUESTO RAZONES TRIGONOMÉTRICAS: EJERCICIOS: SENO: COSENO: TANGENTE: cteto opuesto sen = hipotenus cteto dycente cos = hipotenus tg = cteto

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

2 Números reales: la recta real

2 Números reales: la recta real Unidd. Números reles ls Enseñnzs Aplicds Números reles: l rect rel Págin. ) Justific que el punto representdo es. 0 Represent 7 (7 ) y 0 (0 + ). ) Aplicndo Pitágors: x x + x + x x 0 7 7 0 0 7 0 0 7. Qué

Más detalles

Teorema de pitágoras Rectas antiparalelas

Teorema de pitágoras Rectas antiparalelas pítulo 16 Teorem de pitágors emos visto que l rzón de segmentos es igul l de sus medids tomds con un mism unidd. Tod proporción entre segmentos puede interpretrse como proporción entre sus medids. iendo

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -

Más detalles

Resolución de triángulos.

Resolución de triángulos. Resolución de triángulos. 06 Resuelve los siguientes triángulos. ) 10 cm, 14 cm, c cm e) 2,1 cm; 1,4 cm; c 1, cm ) 6 cm, c 9 cm, A $ 9 12' f) 9 cm, c 5 cm, B10 $ 27' c) 7 cm, B $ 49', C $ 66 40' g), cm;

Más detalles

Resolución de triángulos cualesquiera tg 15 tg 55

Resolución de triángulos cualesquiera tg 15 tg 55 Resuelve los siguientes triángulos: ) 3 cm 17 cm 40 ) 5 cm c 57 cm 65 c) 3 cm 14 cm c 34 cm ) c 3 +17 3 17 cos 40 c 1,9 cm 17 3 + 1,9 3 1,9 cos 9 56' '' 10 ( + ) 110 3' 5'' ) 5 + 57 5 57 cos 65 79,7 cm

Más detalles

Compilado por CEAVI: Centro de Educación de Adultos

Compilado por CEAVI: Centro de Educación de Adultos olígonos Un polígono es l región del plno limitd por tres o más segmentos. lementos de un polígono Ldos: on los segmentos que lo limitn. Vértices: on los puntos donde concurren dos ldos. Ángulos interiores

Más detalles

Aplicaciones de la integral definida

Aplicaciones de la integral definida MB5_MAAL_Aplicciones Versión: Septiemre Aplicciones de l integrl definid Por: Sndr Elvi Pérez L integrl tiene vris plicciones en diferentes áres del conocimiento. En este curso se nlizrán sus funciones

Más detalles

Clase 21 Tema: Propiedades de los triángulos y expresiones algebraicas

Clase 21 Tema: Propiedades de los triángulos y expresiones algebraicas Mtemátics 8 imestre: II Número de clse: 21 lse 21 Tem: Propieddes de los triángulos y expresiones lgebrics ctividd 72 1 Le l siguiente informción. L sum de los ángulos internos de un triángulo es 180º.

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1 GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

ESPA 2. es limitado longitud. que no lleguen. a tocarse. que son secantes y no se. cortan son. paralelas. origen. perpendiculares.

ESPA 2. es limitado longitud. que no lleguen. a tocarse. que son secantes y no se. cortan son. paralelas. origen. perpendiculares. CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA 2 Mtemátics y Tecnologí Unidd 4 Línes rects. Ángulos. Polígonos. Teorem de Pitágors RECTAS, SEMIRRECTAS Y SEGMENTOS Dos puntos A y B determinnn un rect

Más detalles

5? Empezamos calculando el valor de cos a. cos a52 12sen 2 a sen 2a52sen a cos a5 2? 2. cos 56. cos 70º2cos 50º 5.

5? Empezamos calculando el valor de cos a. cos a52 12sen 2 a sen 2a52sen a cos a5 2? 2. cos 56. cos 70º2cos 50º 5. Mtemátics Bchillerto? Solucionrio del Libro Trigonometrí 07 Actividdes. Clcul ls rzones trigonométrics de un ángulo del segundo cudrnte, si. De sen cos se obtiene cos sen 9. Como está en el tercer cudrnte,

Más detalles

Circunferencia y elipse

Circunferencia y elipse GAE-05_M1AAL5_circunferenci_elipse Circunferenci y elipse Por: Sndr Elvi Pérez Circunferenci Comienz por revisr l definición de circunferenci. Un circunferenci es un curv formd por puntos que equidistn

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Una nueva unidad para medir ángulos: el radián

Una nueva unidad para medir ángulos: el radián Unidd. Trigonometrí Un nuev unidd pr medir ángulos: el rdián Hst hor hemos utilizdo pr medir los ángulos el sistem segesiml. Como y ses cd un de ls 60 prtes igules en ls que se divide l circunferenci se

Más detalles

HOJA 6 GEOMETRÍA Y TRIGONOMETRÍA

HOJA 6 GEOMETRÍA Y TRIGONOMETRÍA 2x x + 30 x 2x x + 20 5x 2x x -2 x 3x + 18 x 4. Rects prlels cortds por un trnsversl. lculr los vlores de x e y en cd cso y fundmentr ls relciones estblecids Ejercicio 1 Ejercicio 2 3x -20º y 2x x + y

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de ángulos, polígonos y cuadriláteros GUICEN022MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de ángulos, polígonos y cuadriláteros GUICEN022MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Conceptos generles de ángulos, polígonos y cudriláteros Progrm Entrenmiento Desfío En l figur I se muestr un crtulin cudrd PQRS de ldo 1. Se doln los ldos SP y RQ por ls línes

Más detalles

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ

Más detalles

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a Perímetros EL PEÍMETO: udrdo: P El perímetro de ls figurs puede medirse usndo uniddes de medid de longitud. Por lo tnto se puede medir en centímetros, decímetros, metros. Ejemplo: El perímetro del triángulo

Más detalles

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo pág.1 Medids de ángulos Ángulo es l porción del plno limitd por dos semirrects de origen común. Los ángulos se pueden medir en grdos sexgesimles o en rdines. Medids en grdos (uniddes sexgesimles): El grdo

Más detalles

7 ACTIVIDADES DE REFUERZO

7 ACTIVIDADES DE REFUERZO 7 ACTIVIDADES DE REFUERZO Nombre: Curso: Fech: 1. Dibuj un segmento AB de 2 cm de longitud. Trz un circunferenci con centro A y otr con centro B de 2 cm de rdio. Dibuj l rect que ps por los puntos de corte

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112 MtemáticsI UNIDAD 5: Trigonometrí II ACTIVIDADES-PÁG.. L primer iguldd es verdder y ls otrs dos son flss. Pr probrlo bst con utilizr l clculdor.. El áre del círculo es π 0 = 56,64 cm. El ldo y l potem

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRÍ 1. n l figur: ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 60 ) 5. n un triángulo se trz l ltur H tl que m < = m < H. Hlle si

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 9 Prolems métricos en el plno Recuerd lo fundmentl Nomre y pellidos:... Curso:... Fech:... GEOMETRÍ MÉTRIC PLN TEOREM DE PITÁGORS Se verific en los triángulos... c = EJEMPLO: Si en un cono l genertriz

Más detalles

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2 UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRI 01. n l figur, ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo, se trz l ltur H, tl que m = m H. Hlle,

Más detalles

GEOMETRÍA 2º DE ESO CURSO

GEOMETRÍA 2º DE ESO CURSO EJERCICIOS DE GEOMETRÍ 2º ESO Profesors: Mónic Mrtínez Espín Inmculd Grcí Ruiz Mónic Mrtínez Espín Lámins GEOMETRÍ 2º DE ESO CURSO 2018-2019 1. CRTÓN. Indic el vlor de los ángulos que formn un crtón. Ángulo

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRI 01. n l figur: ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo se trz l ltur H tl que m = m H. Hlle si

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º

Más detalles

(a) Aplicando el teorema de Pitágoras en el triángulo rectángulo PQR de la figura adjunta, verifica que la altura y del pistón en el instante t es :

(a) Aplicando el teorema de Pitágoras en el triángulo rectángulo PQR de la figura adjunta, verifica que la altura y del pistón en el instante t es : Unidd Resolución de triángulos generles! 1 RESUELVE TÚ (!!") () Aplicndo el teorem de Pitágors en el triángulo rectángulo PQR de l figur djunt, verific que l ltur y del pistón en el instnte t es : y OQ

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

TRAZADOS EN EL PLANO. Teoremas del cateto y de la altura. TEMA ti. Trazados fundamentales. Arco capaz Cuadrilátero inscriptible

TRAZADOS EN EL PLANO. Teoremas del cateto y de la altura. TEMA ti. Trazados fundamentales. Arco capaz Cuadrilátero inscriptible TRAZADOS EN EL PLANO en el plno Arco cpz Cudrilátero inscriptile Teorems del cteto y de l ltur Trzdos fundmentles TEMA ti. Ojetivos y orientciones metodológics El ojetivo de este tem es, en primer lugr,

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS ASESORÍA FINAL DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS ASESORÍA FINAL DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SSRÍ INL GTRI 01. n l figur, ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo, se trz l ltur H, tl que m = mh. Hlle, si

Más detalles

El teorema de Pitágoras y la demostración de Euclides

El teorema de Pitágoras y la demostración de Euclides Mtemátics Págin 177 El teorem de Pitágors y l demostrción de Euclides Comprueb en est figur l propiedd nterior. Pr ello: A 1 9 A B 15 16 0 C ) Cuántos cudrditos tiene el cudrdo pequeño, B? Comprueb que

Más detalles

9Soluciones a los ejercicios y problemas PÁGINA 196

9Soluciones a los ejercicios y problemas PÁGINA 196 PÁGIN 196 Pág. 1 P RCTIC Ángulos 1 Hll el vlor del ángulo en cd uno de estos csos: ) b) 11 37 48 48 c) d) 35 40 ) 37 b 11 b 180 11 68 180 37 68 75 b) 360 48 8 13 c) 40 b b 180 90 40 50 180 50 130 d) 35

Más detalles

Página 1 de 5 COLEGIO TECNICO LORENZO DE SALAZAR ÁREA DE MATEMATICA GRADO DÉCIMO PLAN DE MEJORAMIENTO ANUAL

Página 1 de 5 COLEGIO TECNICO LORENZO DE SALAZAR ÁREA DE MATEMATICA GRADO DÉCIMO PLAN DE MEJORAMIENTO ANUAL Págin 1 de 5 COLEGIO TECNICO LORENZO DE SALAZAR ÁREA DE MATEMATICA GRADO DÉCIMO PLAN DE MEJORAMIENTO ANUAL Profesor: Crmen Cecili Bllesteros Q Estudinte: Grdo: Fech: Ls pregunts de 1 1, se contestrán de

Más detalles

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II)

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II) CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIEÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II)

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite

Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite INTEGRALES LECCIÓN Índice: El prolem del áre. Ejemplos. Prolems..- El prolem del áre Se f un función continu y no negtiv en [,]. Queremos clculr el áre S de l región del plno limitd por l gráfic de f,

Más detalles

NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad.

NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad. NOTA IMPORTANTE L segund mitd de ls págins corresponden ls soluciones de l primer mitd. SEMEJANZAS Mnuel Blcázr Elvir TEOREMA DE THALES Sen ls rects r y t cortds por vris rects prlels según el siguiente

Más detalles

OBJETIVOS MÍNIMOS REQUERIDOS

OBJETIVOS MÍNIMOS REQUERIDOS MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operciones cominds con números enteros. - Potencis ríces cudrds. - Operciones con frcciones. - Operciones con números decimles. - Ecuciones de primer segundo

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

MANEJAR UNIDADES DE LONGITUD Y SUPERFICIE

MANEJAR UNIDADES DE LONGITUD Y SUPERFICIE 12 MANEJAR UNIDADES DE LONGITUD Y SUPERICIE REPASO Y APOYO OBJETIVO 1 Nombre: Curso: ech: UNIDADES DE LONGITUD El metro es l unidd principl de longitud. Abrevidmente se escribe m.?????? dm m dm cm mm ACTIVIDADES

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

P I E N S A Y C A L C U L A

P I E N S A Y C A L C U L A Áres y volúmenes. Uniddes de volumen P I E N S Y C C U L Clcul mentlmente el volumen de ls siguientes figurs teniendo en cuent que cd cubo es un unidd. ) b) c) d) e) ) 7 u b) 4 u c) 8 u d) 6 u e) 8 u Crné

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. 1 ENUNCIADOS 1 En el punto C hy td un cuerd de 5 m que sujet un cbr. Hll l superficie de l cs y l superficie de hierb que puede comer l cbr. m CASA m 10 m C 45 Investig: Qué relción hy entre ls superficies

Más detalles

TRIGONOMETRÍA (Primera parte) Realizado por Mª Jesús Arruego Bagüés

TRIGONOMETRÍA (Primera parte) Realizado por Mª Jesús Arruego Bagüés TRIGONOMETRÍA (Primer prte) Relizdo por Mª Jesús Arruego Bgüés INTRODUCCIÓN Trigonometrí signific, etimológicmente, medid de triángulos. En los trbjos topográficos y de l construcción es necesrio conocer

Más detalles

IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA

IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA DE LA FÍSICA Índice 1. Símolos del lenguje mtemático 2. Álger 3. Geometrí 4. Trigonometrí 5. Cálculo vectoril 6. Cálculo diferencil 2 1 Símolos del lenguje mtemático = es igul, equivle x 0 incremento de

Más detalles

UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS

UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS RAZONES Y PROPORCIONES DEFINICIONES RAZÓN: L rzón entre dos números reles y, (0), es el cociente entre y, es decir. Tmién se escrie: /,, :. PROPIEDADES

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI 0. n l figur, G es prlelo y el áre del prlelogrmo es 8 m. Hlle el áre sombred. ) m ) 8 m ) 9 m ) m ) 6m 0. n un trpecio ( // ), se tom punto

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

SEMEJANZA FIGURAS SEMEJANTES. Dos figuras son semejantes cuando solo difieren en segmentos correspondientes son. a a' = b b' = c c' = k

SEMEJANZA FIGURAS SEMEJANTES. Dos figuras son semejantes cuando solo difieren en segmentos correspondientes son. a a' = b b' = c c' = k 10 Lo fundmentl de l unidd Nombre y pellidos:... Curso:... Fech:... SEMEJNZ FIGURS SEMEJNTES Dos figurs son semejntes cundo solo difieren en segmentos correspondientes son En tl cso, los c b c' b' ' =

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

12. Los polígonos y la circunferencia

12. Los polígonos y la circunferencia l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes

Más detalles

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f. CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d

Más detalles

Unidad 5 Trigonometría II

Unidad 5 Trigonometría II Unidd Trigonometrí II PÁGINA SOLUCIONES. Ls tres igulddes son flss. Pr probrlo bst con utilizr l clculdor.. Clculmos el áre del octógono circunscrito y le restmos el áre del octógono inscrito obteniendo

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles