de Thales y Pitágoras
|
|
|
- Esperanza Gil Morales
- hace 9 años
- Vistas:
Transcripción
1 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874, , , Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división: 583,25 : 79 + Ò 3. Reliz l siguiente operción: : = Reliz l siguiente operción: (3x 5) 2 = 5. Reliz l siguiente operción: (2x + 7)(2x 7) = Problem 6 En un pquete de cereles de 500 g hy 150 g de trigo integrl. Cuál es el tnto por ciento de trigo en el pquete? 48 CUDERNO 2º ESO
2 8.2. Teorem de Thles 1. El teorem de Thles dice: si se trz un conjunto de rects prlels entre sí,, b, c, que cortn otrs dos rects r y s, lo segmentos que se determinn sobre ls rects r y s son proporcionles. 'B' B'C' = B BC 2 cm B 1,5 cm C r s ' b B' 1,2 cm c C' Ejemplo: Sbiendo que B = 2 cm, BC = 1,5 cm y B C = 1,2 cm. Hll l longitud del segmento 'B' 'B' B B'C' 'B' 1,2 1,2 2 = ò = ò 'B' = = 1,6 cm BC 2 1,5 1,5 2,2 cm r s ' Ejercicio 7 Clcul l longitud de B en l figur djunt. 1,2 cm B C B' b 1,5 cm C' c 2. Dos triángulos están en posición de Thles si tienen un ángulo común y los ldos opuestos ese ángulo son prlelos. B B' B' C' B'C' = = B C BC BC = 3,34 cm C = 4 cm C C' = 6 cm C' Ejemplo: Clcul B'C' con los dtos de l figur C' C B'C' 6 B'C' 6 3,34 = ò = ò B'C' = = 5,01 cm BC 4 3,34 4 Ejercicio 8 Clcul l longitud de B en l figur djunt. B' = 4 cm B B' C = 2 cm C C' = 5 cm C' Problem 9 h Un árbol proyect un sombr de 6 m y, l mism hor y en el mismo sitio, un plo de 1,5 m proyect un sombr de 2 m. Clcul l ltur del árbol. 1,5 m 6 m 2 m 8. TEOREM DE THLES Y PITÁGORS 49
3 8.3. Cuents y problem del dí 10. Reliz l siguiente operción: 7 504, ,7 11. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división: 48 : 0,78 Ò 12. Reliz l siguiente operción: : + = Reliz l siguiente operción: 5(2x 3) = 8x Reliz l siguiente operción: 3x 2(4x 1) = 7x + 5 Problem 15 Pr hcer un trbjo tres pintores hn tenido que comprr mteril por 896 y hn cobrdo Cuánto dinero qued pr cd uno de los tres obreros? 50 CUDERNO 2º ESO
4 8.4. El teorem de Pitágors 1. El teorem de Pitágors dice: en un triángulo rectángulo el cudrdo de l hipotenus es igul l sum de los cudrdos de los ctetos. 2 = b 2 + c 2 c: cteto b: cteto : hipotenus c = 3 cm b = 4 cm Ejemplo: Clcul l hipotenus en el triángulo de l figur 2 = b 2 + c 2 ò 2 = = = 25 = 25 = 5 cm Ejercicio 16 Clcul l hipotenus en el triángulo de l figur. c = 3,6 cm b = 4,8 cm 2. Pr clculr un cteto en un triángulo rectángulo, se sigue este procedimiento: Ejemplo: Clcul el cteto b en el triángulo de l figur c = 6 cm = 10 cm b 2 + c 2 = 2 ò b =10 2 ò b = 100 b 2 = = 64 ò b = 64 = 8 cm b Ejercicio 17 Clcul el cteto c en el triángulo de l figur. = 13 cm c b = 12 cm Ejercicio 18 Clcul l hipotenus en un triángulo rectángulo cuyos ctetos miden 6,6 cm y 8,8 cm Ejercicio 19 Clcul l longitud de un cteto en un triángulo rectángulo cuy hipotenus mide 20 m, y el otro cteto 16 m 8. TEOREM DE THLES Y PITÁGORS 51
5 8.5. Cuents y problem del dí 20. Reliz l siguiente operción: 786,54 Ò 9,05 Ò 9, Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división: 52,7 : 8,6 8, 6 Ò 8, Reliz l siguiente operción: 3 ( 7 5 ) = Reliz l siguiente operción: 3x 1 5 4x + 2 = Reliz l siguiente operción: 3x 1 5 x = 2x Problem 25 L fctur de un hotel sciende 840.Si plicn un 16% de IV, cuánto se pgrá en totl? 52 CUDERNO 2º ESO
6 8.6. plicciones del teorem de Pitágors L plicción del teorem de Pitágors es l resolución de triángulos rectángulos en los que se conocen dos dtos y hy que hllr el tercero. Ejemplo: Clcul l digonl de un rectángulo en el que l bse mide 12 m y l ltur 5 m. d 2 = = = 169 d = 5 m d = 169 = 13 m b = 12 m Problem 26 2 cm 1,5 cm Clcul l longitud del ldo de un rombo en el que ls digonles miden 4 cm y 3 cm Problem 27 H G = 15 m Clcul l ltur de un cono en el que el rdio de l bse mide 9 m y l genertriz mide 15 m R = 9 m Problem cm h 16 cm h Clcul l potem de un pirámide cudrd en l que el ldo de l bse mide 24 cm, y l ltur de l pirámide, 16 cm 12 cm 24 cm 8. TEOREM DE THLES Y PITÁGORS 53
2 Números reales: la recta real
Unidd. Números reles ls Enseñnzs Aplicds Números reles: l rect rel Págin. ) Justific que el punto representdo es. 0 Represent 7 (7 ) y 0 (0 + ). ) Aplicndo Pitágors: x x + x + x x 0 7 7 0 0 7 0 0 7. Qué
En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA)
RAZONES TRIGONOMÉTRICAS Recordmos los siguientes conceptos: ABC es un triángulo rectángulo en A : BC : hipotenus AB : cteto dycente B ó cteto opuesto C AC : cteto opuesto B ó cteto dycente C Propiedd de
Geometría. RESOLUCIÓN Sea n el número de lados de la base del prisma: C: Números de caras del prima V: Número de vértices A: Número de aristas
Geometrí SEMN PRISMS Y PIRÁMIDE. Clcule el número de crs de un prism donde el número de vértices más el número de rists es 50. ) 0 B) 0 C) 0 D) E) 8 V ' BSE Dto: L 86 Perimetro 86 = BSE V 6 V 59 Se n el
EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL
Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015
BLOQUE III Geometría
LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40
ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN
Pág. 1 ENUNCIADOS 1 En el punto C hy td un cuerd de 5 m que sujet un cbr. Hll l superficie de l cs y l superficie de hierb que puede comer l cbr. m CASA m 10 m C 45 Investig: Qué relción hy entre ls superficies
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRÍA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRÍ 1. n l figur: ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 60 ) 5. n un triángulo se trz l ltur H tl que m < = m < H. Hlle si
1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad?
PÁGIN 164 El director del equipo nliz un plno en el cul 1 cm corresponde 20 m en l relidd. Su mquet de l moto es l décim prte de lrg que l moto rel. L moto de l fotogrfí es l mism que se ve en l mquet.
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRI 01. n l figur, ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo, se trz l ltur H, tl que m = m H. Hlle,
12. Los polígonos y la circunferencia
l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEMINARIO FINAL DE GEOMETRIA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SINRI INL GTRI 01. n l figur: ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo se trz l ltur H tl que m = m H. Hlle si
. Triángulos: clasificación
. Triángulos: clsificción Propieddes básics importntes En todo tringulo se verific: 1.- l sum de los ángulos interiores es 180º 2.- l sum de los ángulos exteriores es 360º 3.-un Angulo exterior es siempre
11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO
SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS ASESORÍA FINAL DE GEOMETRIA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SSRÍ INL GTRI 01. n l figur, ls rects L y son prlels. Hlle el vlor de x. ) 18 ) 0 ) 5 ) 0 ) 5 0. n un triángulo, se trz l ltur H, tl que m = mh. Hlle, si
P I E N S A Y C A L C U L A
Áres y volúmenes. Uniddes de volumen P I E N S Y C C U L Clcul mentlmente el volumen de ls siguientes figurs teniendo en cuent que cd cubo es un unidd. ) b) c) d) e) ) 7 u b) 4 u c) 8 u d) 6 u e) 8 u Crné
MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º E.S.O.
4º E.S.O. UNIDAD 1: LOS NÚMEROS REALES Ejercicio nº 1.- ) Escribe en form de intervlo, di su nombre y represent en cd cso:.1) { R / x 4}.) { R / < x } x (0.5 puntos) x (0.5 puntos) b) Escribe en form de
Clasifica los siguientes polígonos. a) b) c) d)
1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr
7 ACTIVIDADES DE REFUERZO
7 ACTIVIDADES DE REFUERZO Nombre: Curso: Fech: 1. Dibuj un segmento AB de 2 cm de longitud. Trz un circunferenci con centro A y otr con centro B de 2 cm de rdio. Dibuj l rect que ps por los puntos de corte
1.6 Perímetros y áreas
3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente
1. Ejercicios Primera parte. 1. Clasifique en verdadero (V) o falso (F):
PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ Progrm de Perfeccionmiento pr Profesores de Mtemátics del Nivel Secundrio Curso Piloto-Etp distnci 1. Ejercicios 1.1. Primer prte 1. Clsifique en verddero (V) o
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4
EJERCICIOS DE REPASO
EJERCICIOS DE REPASO 8 9 : 8 8 8 : - Epres en form de notción científic: 8 c, d,9 e, f, - Clcul: 8 :, 8 e d c Hllr f e d c - Cuánto hemos de pgr por un progrm de ordendor si tiene un precio de, pero nos
RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO
TUTORIAL DE PREPARAIÓN MATEMATIA 009 RELAIONES MÉTRIAS EN EL TRIÁNGULO RETÁNGULO I.- MARO TEORIO DEPTO. DE MATEMATIA Ls relciones métrics en un triángulo rectángulo son 5 relciones plicles sólo este tipo
9Soluciones a los ejercicios y problemas PÁGINA 196
PÁGIN 196 Pág. 1 P RCTIC Ángulos 1 Hll el vlor del ángulo en cd uno de estos csos: ) b) 11 37 48 48 c) d) 35 40 ) 37 b 11 b 180 11 68 180 37 68 75 b) 360 48 8 13 c) 40 b b 180 90 40 50 180 50 130 d) 35
ACTIVIDADES VERANO 4º ESO opción A a b) 3 2 x. 121x 169y. 8 y. a Expresa en forma de potencia: a) Expresa en forma de radical:
ACTIVIDADES VERANO º ESO opción A 01 NOMBRE: Grupo: 1.- Expres en form de potenci: ) 1 x c) b b.- Expres en form de rdicl: ) = =.- Reduce común índice: ) x,, 8.- Clcul ls siguientes ríces: 1 ) 81 0, 000081.-
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI ÁR RGINS URNGULRS 0. n l figur, G // y el áre del prlelogrmo es 8. Hlle el áre de l región sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ),
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es m. Hlle el áre sombred. ) m ) m ) 9 m ) m ) 6m G 0. n un trpecio (
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1
GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,
P I E N S A Y C A L C U L A
Áres y volúmenes. Uniddes de volumen P I E N S Y C C U L Clcul mentlmente el volumen de ls siguientes figurs teniendo en cuent que cd cubo es un unidd. ) b) c) d) e) ) 7 u b) 4 u c) 8 u d) 6 u e) 8 u Crné
PLANTEL Iztapalapa V
Colegio Ncionl de Educción Profesionl Técnic PLANTEL Iztplp V Modulo: Representción Simbólic y Angulr del Entorno Docente: Turno: Mtutino Resuelve y Gráfic x+1 ) x 6 x b) < x+ c) 5 x d) x + x + 7 e) +
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"
NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad.
NOTA IMPORTANTE L segund mitd de ls págins corresponden ls soluciones de l primer mitd. SEMEJANZAS Mnuel Blcázr Elvir TEOREMA DE THALES Sen ls rects r y t cortds por vris rects prlels según el siguiente
Introducción: La palabra polígono está formada por el prefijo POLI= mucho y el sufijo GONOS que significa ángulos. Luego polígonos = muchos ángulos.
TEMA 2. LOS POLÍGONOS Introducción: L plbr polígono está formd por el prefijo POLI= mucho y el sufijo GONOS que signific ángulos. Luego polígonos = muchos ángulos. 1.- DEFINICIÓN: form pln delimitd por
Compilado por CEAVI: Centro de Educación de Adultos
olígonos Un polígono es l región del plno limitd por tres o más segmentos. lementos de un polígono Ldos: on los segmentos que lo limitn. Vértices: on los puntos donde concurren dos ldos. Ángulos interiores
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI 0. n l figur, G es prlelo y el áre del prlelogrmo es 8 m. Hlle el áre sombred. ) m ) 8 m ) 9 m ) m ) 6m 0. n un trpecio ( // ), se tom punto
GEOMETRÍA 2º DE ESO CURSO
EJERCICIOS DE GEOMETRÍ 2º ESO Profesors: Mónic Mrtínez Espín Inmculd Grcí Ruiz Mónic Mrtínez Espín Lámins GEOMETRÍ 2º DE ESO CURSO 2018-2019 1. CRTÓN. Indic el vlor de los ángulos que formn un crtón. Ángulo
HOJA 6 GEOMETRÍA Y TRIGONOMETRÍA
2x x + 30 x 2x x + 20 5x 2x x -2 x 3x + 18 x 4. Rects prlels cortds por un trnsversl. lculr los vlores de x e y en cd cso y fundmentr ls relciones estblecids Ejercicio 1 Ejercicio 2 3x -20º y 2x x + y
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA
UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es 8. Hlle el áre sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ), se
CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II)
CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIEÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II)
El teorema de Pitágoras y la demostración de Euclides
Mtemátics Págin 177 El teorem de Pitágors y l demostrción de Euclides Comprueb en est figur l propiedd nterior. Pr ello: A 1 9 A B 15 16 0 C ) Cuántos cudrditos tiene el cudrdo pequeño, B? Comprueb que
Los polígonos y la circunferencia
l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =
Teorema de pitágoras Rectas antiparalelas
pítulo 16 Teorem de pitágors emos visto que l rzón de segmentos es igul l de sus medids tomds con un mism unidd. Tod proporción entre segmentos puede interpretrse como proporción entre sus medids. iendo
RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 GEOMETRÍA DEL ESPACIO I RPTA.: D RPTA.: D C RPTA.: A RPTA.: D
SEMN 1 GEOMETRÍ E ESPO 1. lcule el máximo número de plnos que quedn determindos con puntos no coplnres. ) ) ) ) E) 6 * (F) Porque puntos colineles no determinn un plno. * (F) Porque rects que se cruzn
1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)
Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics
POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.
POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más
TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA
ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º
11 Perímetros y áreas de figuras planas
86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem
Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a
Perímetros EL PEÍMETO: udrdo: P El perímetro de ls figurs puede medirse usndo uniddes de medid de longitud. Por lo tnto se puede medir en centímetros, decímetros, metros. Ejemplo: El perímetro del triángulo
A B C D E F G H I J USOS DE LA ESCUADRA Y EL CARTABÓN TB1. Grupo. Apellido Apellido, Nombre. Fecha. Título de la lámina
Emplendo l escudr y el crtbón rellen los tres espcios continución con prlels ls direcciones dds. Procur que l distnci entre ls prlels se l mism que l que te d el ejercicio y preséntlo cbdo tint negr. continución,
1.- Simplificar las siguientes fracciones: h) 28/36 i) 84/126 j) 54/96 k) 510/850 l) 980/140
ACTIVITATS DE N ESO PER A ESTIU ACTIVIDADES CON NÚMEROS ENTEROS º ESO. Reliz ls siguientes operciones. + + + d + + b + + 6 e + 6 c + f 6 + + + 6. Reliz ls siguientes operciones. ( + + ( + + ( + d + ( +
12 Áreas. y volúmenes. 1. Área de figuras planas
Áres y volúmenes. Áre de figurs plns Hll mentlmente ls áres de un cudrdo de 7 m de ldo y de un rectángulo de 9 m de lrgo y 5 m de lto. Áre del cudrdo: 49 m Áre del rectángulo: 45 m P I E N S A Y C C U
UNIDAD DE APRENDIZAJE IV
UNIDAD DE APRENDIZAJE IV Seres procedimentles 1. Utiliz correctmente el lenguje lgerico, geométrico y trigonométrico.. Identific l simologí propi de l geometrí y l trigonometrí. 3. Identific ls uniddes
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del
8. Calcule el área de la superficie lateral y total de los sólidos construidos en los numerales 1, 2, 3, 4, 6 y 7.
8 CAPÍTULO OCHO Ejercicios propuestos 8. Cuerpos geométricos 1. Construy un tetredro regulr con rist de 10cm de longitud. 2. Construy un hexedro regulr con rist de 12cm de longitud.. Construy un octedro
INTRODUCCIÒN Solución de triángulos rectángulos
INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir
Identificación de propiedades de triángulos
Grdo 10 Mtemtics - Unidd 2 L trigonometrí, un estudio de l medid del ángulo trvés de ls funciones Tem Identificción de propieddes de triángulos Nombre: Curso: Ls ctividdes propuests continución se centrn
Ley de senos y cosenos
MB0003 _MAA1L_Ley Versión: Septiembre 01 Revisor: Ptrici Crdon Torres Ley de senos y cosenos por Oliverio Rmírez Juárez En l lectur nterior resolviste distintos problems que implicn triángulos rectángulos,
12 Áreas. y volúmenes. 1. Área de figuras planas
Áres y volúmenes. Áre de figurs plns Hll mentlmente ls áres de un cudrdo de 7 m de ldo y de un rectángulo de 9 m de lrgo y 5 m de lto. Áre del cudrdo: 49 m Áre del rectángulo: 45 m P I E N S A Y C C U
SOLUCIONARIO Poliedros
SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17
REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS
TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen
Guía -5 Matemática NM-4: Volumen de Poliedros
Centro Educcionl Sn Crlos de Argón. Coordinción Acdémic Enseñnz Medi. Sector: Mtemátic. Prof.: Ximen Gllegos H. 1 Guí -5 Mtemátic NM-4: Volumen de Poliedros Nombre: Curso: Fech: Unidd: Geometrí. Contenido:
SEMEJANZA FIGURAS SEMEJANTES. Dos figuras son semejantes cuando solo difieren en segmentos correspondientes son. a a' = b b' = c c' = k
10 Lo fundmentl de l unidd Nombre y pellidos:... Curso:... Fech:... SEMEJNZ FIGURS SEMEJNTES Dos figurs son semejntes cundo solo difieren en segmentos correspondientes son En tl cso, los c b c' b' ' =
2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería
Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros
Triángulos: Puntos notables y construcciones. Traza el ORTOCENTRO de este triángulo. Traza el INCENTRO de este triángulo y la circunferencia INSCRITA
Trz el INNTRO de este triángulo y l circunferenci INSRIT Trz el IRUNNTRO de este triángulo y l circunferenci IRUNRIT Trz el RINTRO de este triángulo. Trz el ORTONTRO de este triángulo. onstruye el triángulo
Cuaderno de Matemáticas para el Verano
Cuderno de Mtemátics pr el Verno ºESO Deprtmento de Mtemátics 0-0 .- Oper los siguientes rdicles, recordndo que cundo hy sums o rests dentro de un ríz hy que scr fctor común ntes de poder etrer. ) ) 0
Resolución de triángulos cualesquiera tg 15 tg 55
Resuelve los siguientes triángulos: ) 3 cm 17 cm 40 ) 5 cm c 57 cm 65 c) 3 cm 14 cm c 34 cm ) c 3 +17 3 17 cos 40 c 1,9 cm 17 3 + 1,9 3 1,9 cos 9 56' '' 10 ( + ) 110 3' 5'' ) 5 + 57 5 57 cos 65 79,7 cm
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un
UNIDAD 9 Aplicaciones de las derivadas
Pág. 1 de 6 1 El perímetro de l ventn del diujo mide 6 metros. Los dos ldos superiores formn entre sí un ángulo de 90. Clcul l longitud de los ldos y pr que el áre de l ventn se máim. L función que hy
Razones trigonométricas
LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos
tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112
MtemáticsI UNIDAD 5: Trigonometrí II ACTIVIDADES-PÁG.. L primer iguldd es verdder y ls otrs dos son flss. Pr probrlo bst con utilizr l clculdor.. El áre del círculo es π 0 = 56,64 cm. El ldo y l potem
EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD
EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg 6 6 - Comprueb:
UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS
UNIDAD 7. PROPORCIONALIDAD, SEMEJANZA Y RELACIONES MÉTRICAS RAZONES Y PROPORCIONES DEFINICIONES RAZÓN: L rzón entre dos números reles y, (0), es el cociente entre y, es decir. Tmién se escrie: /,, :. PROPIEDADES
TEMA 8 GEOMETRÍA ANALÍTICA
Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l
SOLUCIONARIO 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) 4. Calcula el área de un triángulo rectángulo en el que los catetos miden 22 m y 16 m
11 elige Mtemátics, curso y tem. 13. Perímetros y áres 4. Clcul el áre de un triángulo rectángulo en el que los ctetos miden m y 16 m 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) PIENSA Y CALCULA Hll mentlmente
Cuaderno de repaso 4º ESO: Matemáticas orientadas a las enseñanzas académicas. Tema 1:
Cuderno de repso 4º ESO: Mtemátics orientds ls enseñnzs cdémics Ejercicios pr resolver el profesor Ejercicio 1.- Extre fctores del rdicl: ) 12 b) 16 c) 64 d) 8 8 4 4 x y z t 6 Tem 1: Ejercicio 2.- Reliz
ESPA 2. es limitado longitud. que no lleguen. a tocarse. que son secantes y no se. cortan son. paralelas. origen. perpendiculares.
CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA 2 Mtemátics y Tecnologí Unidd 4 Línes rects. Ángulos. Polígonos. Teorem de Pitágors RECTAS, SEMIRRECTAS Y SEGMENTOS Dos puntos A y B determinnn un rect
Se traza la paralela al lado a y distancia la altura h a.
Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos
OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL
OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori
UNIDAD: GEOMETRÍA TRIÁNGULO RECTÁNGULO
u r s o : Mtemátic 3º Medio Mteril Nº MT-16 UNI: GOMTÍ TIÁNGULO TÁNGULO TOM ITÁGOS n todo triángulo rectángulo, l sum de ls áres de los cudrdos construidos sobre sus ctetos, es igul l áre del cudrdo construido
a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3
8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7
Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51
Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y
Resolución de triángulos
8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
Exámen Final B (resuelto)
Exámen Finl B (resuelto) Ejercicio nº.- Clcul: ) ( + + ) ( + ) b) ( + ) ( ) ( + ) ( ) c) ( ) ( + ) ( ) ( + ) ) ( + + ) ( + ) ( + ) ( + ) b) ( + ) ( ) ( + ) ( ) ( 0) ( ) 0 + c) ( ) ( + ) ( ) ( + ) ( ) (
Clase 21 Tema: Propiedades de los triángulos y expresiones algebraicas
Mtemátics 8 imestre: II Número de clse: 21 lse 21 Tem: Propieddes de los triángulos y expresiones lgebrics ctividd 72 1 Le l siguiente informción. L sum de los ángulos internos de un triángulo es 180º.
Unidad I: Números Reales. 1) Expresar como fracción y luego resolver: b) 5,08. a) 4,1 0, 21 1,2 0,6 0,7 0,3 1 0,027 0,3 0,05 2,3 1, 2 3, 4
MATEMATICA II Trbjo Práctico Unidd I: Números Reles ) Epresr como frcción y luego resolver: ) 4, 0,, 0,6 c) 0,07 0, 0,05 b) 0, 0, 0,4 0,5 d) 0,7 0,,, e), 4 f ),7,7 0,7 0,8 5, 4 ) Resolver ls siguientes
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
Operaciones. a a a a Ejercicios y Problemas de Matemáticas de 1º a 3º de ESO. 3.
74 Ejercicios y Problems de Mtemátics de 1º 3º de ESO 3. Tercero de ESO 3.1. Números, medids y operciones 3.1.1. Operciones 1. Reduce ls expresiones siguientes un sol potenci: ) 3 6 - -1 5-3 -3 3-3 3 3
7 Semejanza. y trigonometría. 1. Teorema de Thales
7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se
1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto.
13 Perímetros y áres 1. Perímetro y áre de los polígonos (I) Hll mentlmente el perímetro y el áre de un rectángulo que mide 60 m de lrgo y 40 m de lto. Perímetro: (60 + 40) = 00 m Áre = 60 40 = 400 m P
Trigonometría. Prof. María Peiró
Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo
