Triángulos y generalidades
|
|
|
- Ernesto San Martín Acuña
- hace 9 años
- Vistas:
Transcripción
1 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp ) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro y su semiperímetro. = 9 m = 7 m = 6 m Pr onstruir el triágulo pedido, se estleen los segmentos, y on sus respetivs longitudes. Tomndo el ldo omo se del triángulo se diujn dos irunferenis. L primer de rdio on entro en el punto y l segund de rdio on entro en el punto. Ests dos irunferenis se ortn en el punto del ul se trzn los segmentos = y =. El triángulo tiene los ldos ddos. Por definiión el perímetro es l sum de ls longitudes de los ldos. sí, 2 p = + + = = 22 m de donde p= 11 m (semiperímetro) (3) onstruir un triángulo que teng un ángulo de 50 y los dos ldos que lo formn midn 5 m y 3.5 m. Sore el ldo myor orrespondiente l segmento = = 5 m, se olo el origen del trnsportdor pr mrr el ángulo 50 de 50 omo un punto sore l irunfereni que form el orde del trnsportdor (quí se h elegido ulquier de ls dos irunferenis onéntris trzds en olor mordo). Luego, sore l ret se mide el otro ldo ddo (menor) que orresponde l segmento = = 3.5 m. Uniendo los extremos y se form el terer ldo ompletndo sí el triángulo. = 3.5 m Este trnsportdor primitivo está dividido d 10, ls línes en nrnj señln los ángulos múltiplos de = 5 m
2 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/2 pítulo 5. Ejeriios Resueltos (pp ) (5) onstruir un triángulo que teng un ldo que mid 7 m y los dos ángulos dyentes midn 30 y 70. Trzr ls tres lturs y señlr el ortoentro. Sore el ldo ddo orrespondiente l segmento = = 7 m, se olo el origen del trnsportdor primero en pr mrr el ángulo de 30 on el punto y luego en pr mrr el ángulo de 70 on el punto. Después se trzn ls rets y ls ules, l prolongrls se ortn en el punto que orresponderá l terer vértie. Hipótesis: = 7, = 30, = Uniendo los extremos, y formn los ldos fltntes, respetivmente igules y, formndo sí el triángulo requerido que se muestr jo l izquierd. Ls lturs orresponden ls perpendiulres trzds de d vértie, y l ldo opuesto respetivo, y (ver Definiión, pág. 57) y onurren en el punto O que es el ortoentro. Pr trzr un ltur dee usrse l onstruión uxilir siguiente: por un punto exterior (vértie) un segmento ddo jr un perpendiulr del punto l segmento. O ien, empler un esudr linendo el ángulo reto l segmento en uestión. h O h h = 7 m
3 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/3 pítulo 5. Ejeriios Resueltos (pp ) (7) onstruir un triángulo equilátero de 5 m de ldo. Trzr ls meditries y señlr el irunentro. Sore l se (ulquier ldo, y que por hipótesis se trt de un triángulo equilátero) se olo el origen del trnsportdor primero en pr mrr el ángulo de on el punto y luego en pr mrr el mismo ángulo () on el punto. Después, se trzn ls rets y ls ules l prolongrls se ortn en el vértie. Hipótesis: = = y = = Not: puede resolverse este prolem usndo l onstruión heh en el Prolem (1) y en tl so solo se neesit el ompás y no el trnsportdor. Ls irunferenis olods en y se diujn d un on un rdio de 5 m. Uniendo los puntos extremos se formn los ldos fltntes = y =, formndo sí el triángulo equilátero requerido que se muestr jo l izquierd. Ls meditries orresponden ls perpendiulres trzds en el punto medio de d ldo, y (ver Definiión, pág. 57) y onurren en el punto K que es el irunentro. El trzo de ests perpendiulres emple l onstruión geométri 2) del rt. 57 (pág. 38). = 5 m = 5 m K M M M = 5 m
4 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/4 pítulo 5. Ejeriios Resueltos (pp ) (9) onstruir un triángulo retángulo que teng un teto que mid 8 m y uy hipotenus mid 10m. Diujr ls tres lturs. Sore el teto ddo se olo el origen del trnsportdor en pr mrr el ángulo de 90 on el punto. Se prolong l ret hi rri y del extremo se trz un punto sore, l hipotenus on l longitud dd. 90 Uniendo los puntos y se form el otro teto =, formndo sí el triángulo retángulo requerido que se muestr jo. En este so, ls lturs h y h son igules respetivmente los tetos y y l úni perpendiulr que se trz es l que v del vértie (ángulo reto) l hipotenus (ldo es opuesto). El ortoentro es O =. = h h = 10 m O = 90 = h = 8 m
5 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/5 pítulo 5. Ejeriios Resueltos (pp ) (11) onstruir un triángulo retángulo que teng un hipotenus que mid 5 m y un ángulo que mid 45. Diujr ls tres medins. Sore el teto horizontl (sin longitud dd) se olo el origen del trnsportdor en pr mrr el ángulo de 45 on el punto. Se prolong el segmento (hipotenus) hst que mid 5 m y de su extremo se j l perpendiulr (teto vertil) l teto sore el ul se oloó el trnsportdor. 45 = 5 m Uniendo los puntos y se form el teto horizontl =, formndo sí el triángulo retángulo requerido que se muestr rri l dereh. Ls medins son los segmentos que vn de d vértie l punto medio del ldo opuesto (ver definiión, pág. 56) donde el punto medio P (pr el ul, p. ej., P = P ) puede determinrse por l onstruión geométri 1) del rt. 57 (pág. 38). El punto G de onurreni es el rientro. m m G P m m
6 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/6 pítulo 5. Ejeriios Resueltos (pp ) (13) Dos ángulos de un triángulo miden 40 y 30 respetivmente. uánto mide el terer ángulo y d uno de los ángulos exteriores? Según el Teorem 18 (pág. 58), l sum de los tres ángulos interiores de un triángulo vle dos ángulos retos, es deir, si, y son los ángulos del triángulo, entones + + = 2 R. Por hipótesis, = 40 y = 30, de donde = 2 R ( + ) = = 110 omo 110 > R, el terer ángulo es otuso y se trt de un triángulo otusángulo. L onstruión del triángulo se muestr ontinuión Los ángulos exteriores son los que se formn por uno de los ldos del triángulo y l prolongión de otro (ver Definiión rt. 84, pág 58). Por ejemplo, el ángulo exterior X se form on el ldo = y l prolongión del ldo =. omo X, Y, Z son ángulos dyentes los respetivos ángulos interiores,, del triángulo, se otiene inmeditmente que: 30 Z Y X X = 2R = = 140 Y = 2R = = 150 Z = 2R = = 70 y se omprue que X + Y + Z = 360 = 4 R.
7 Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/7 pítulo 5. Ejeriios Resueltos (pp ) (15) Puede ser otuso el ángulo en l se de un triángulo isóseles? Rzonmos por el método de reduión l surdo. sí, supóngse que el ángulo de l se en un triángulo isóseles es un ángulo otuso, por tnto, es myor un ángulo reto. Por hipótesis, trtándose de un triángulo isóseles, el otro ángulo de l se es igul on, de modo que (ver esquem jo l izquierd) + > R+ R= 2 R de donde + + > 2R+ > 2 R, desiguldd que ontrdie l Teorem 18 que estlee que l sum de los ángulos interiores de ulquier triángulo, en prtiulr de un triángulo isóseles, es igul un ángulo llno. onseuentemente, lo que se supuso omo verddero es flso y el ángulo en l se de un triángulo isóseles no puede ser otuso (ni ni ). No ostnte, el ángul0 opuesto l se si puede ser otuso y que si el ángulo > R (myor un reto), entones + = 2R < R R y = < 2 (17) Puede ser equilátero un triángulo retángulo? Por onstruión geométri, todos los ángulos de un triángulo equilátero son igules y omo sumn dos ángulos retos (Teorem 18) se dedue que d uno vle. omo un triángulo retángulo tiene un ángulo reto igul 90 (ver Definiión, pág. 56), result lro que este ángulo no es igul ningún ángulo de un triángulo equilátero (ver riterio de iguldd de triángulos en pág. 60). Por lo tnto, un triángulo retángulo no puede ser equilátero. triángulo retángulo triángulo equilátero = 90 ; + = 90 = = = 60
2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general)
2.7. POLÍGONO REGULR INSRITO EN UN IRUNFERENI (Método generl) Reuerd: Ddo el rdio del polígono de n ldos (3 m) 1. Diuj un irunfereni de 3 m. de rdio. 2. Trz su diámetro, y divídelo en n prtes igules. 3.
Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO
Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:
3- Calcula la amplitud de los ángulos interiores de los siguientes cuadriláteros. b c s t
3- Clul l mplitud de los ángulos interiores de los siguientes udriláteros. s t 36 r u rstu trpeio isóseles û x 16 tˆ x 30 TRIÁNGULOS Se llm triángulo tod figur de tres ldos. Un triángulo tiene tres vérties,
Lección 10: TRIÁNGULOS. Un triángulo es un polígono de tres ángulos y tres lados. También tiene tres vértices.
1.- QUÉ ES UN TRIÁNGULO? Leión 10: TRIÁNGULOS Un triángulo es un polígono de tres ángulos y tres ldos. Tmién tiene tres vérties. ELEMENTOS DE UN TRIÁNGULO Ldo: Cd uno de los tres segmentos que limitn l
DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE
DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí
CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III)
PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI
TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal
. ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los
Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.
Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso
XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje
XVI Enuentro Deprtmentl de Mtemátis: L innovión en el proeso doente edutivo en Mtemátis prtir de diferentes medios de prendizje y I Enuentro Deprtmentl de GeoGer Netmente intuitivos. Inextitud de los
LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS
LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr
b=c hipotenusa cateto
1. nstruir un triángul equiláter nid l ltur. 2. nstruir un triángul isóseles nid l ltur y ls lds igules y.. 1. Diujr un triángul equiláter ulquier n ld ulquier 2. Prlngr l ltur st 50 mm (punt ) 3. Prlngr
Definición: Llamamos triángulo a la figura determinada por la intersección de tres semiplanos.
Mtemáti ª Año ESB Triángulos Cpítulo IV: Triángulos Definiión: Llmmos triángulo l figur determind por l interseión de tres semiplnos. Spl(R;o) Spl(S;o) Spl(T;o)= R Elementos: Vérties :son los puntos de
RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO
Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto
Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51
Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y
Tema 5. Semejanza. Tema 5. Semejanza
Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión
Unidad didáctica 4. Trigonometría plana
Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y
7 Semejanza. y trigonometría. 1. Teorema de Thales
7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se
SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA
Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio
APUNTE: TRIGONOMETRIA
APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo
1. Definición de Semejanza. Escalas
Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión
Se tiene tres satélites geo-estacionarios A, B y C alrededor de la Tierra como se muestra en la figura. A B
Triángulos Se tiene tres stélites geo-estionrios, y lrededor de l Tierr omo se muestr en l figur. señl que v del stélite psndo por se demor 0,28 s, l señl que v del stélite psndo por se demor 0,35 s y
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS
TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
α A TRIGONOMETRÍA PLANA
TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.
MATEMÁTICA MÓDULO 3 Eje temático: Geometría
MATEMÁTICA MÓDULO 3 Eje temátio: Geometrí 1. SEGMENTOS PROPORCIONALES EN EL TRIÁNGULO RECTÁNGULO En el ABC retángulo en C de l figur: Se pueden estbleer ls siguientes semejnzs: 1) De est semejnz, se obtienen
22. Trigonometría, parte II
22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por
RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS
Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo
GEOMETRÍA DEL TRIÁNGULO
GEOMETRÍA DEL TRIÁNGULO Definiión de triángulo Se llm triángulo un onjunto { ABC,, } de tres puntos no linedos del plno. Los puntos A, B y C reien el nomre de vérties del triángulo. Los segmentos (o en
Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.
TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos
TEMA 39. Geometría del triángulo.
TEM 9. Geometrí del triángulo. TEM 9. Geometrí del triángulo.. Introduión. El triángulo es el polígono ms estudido, su importni reside en ls múltiples propieddes que estos tienen y que todos los polígonos
1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS
T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ
TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA
ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º
Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll
Mtemáti Diseño Industril Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de
d) Área del triángulo = mitad de la base por la altura. Área del rectángulo = base por altura.
CAPÍTULO VI 9 RELACIONES MÉTRICAS EN EL TRIÁNGULO Conoimientos previos: ) L líne más ort que puede trzrse entre dos puntos, es el segmento de ret que los une. ) El menor segmento que une un punto P on
Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.
Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,
SEGÚN LA LONGITUD RELATIVA DE SUS LADOS
TRIÁNGULOS DEFINIIÓN Un triángulo es un polígono errdo y onvexo, ompuesto por tres ldos. 1 ELEMENTOS ÁSIOS Los triángulos tienen muhs propieddes importntes pr el diujo y l geometrí, pero los más elementles
10 Figuras planas. Semejanza
10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,
11La demostración La demostración en matemáticas (geometría)
L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es
GEOMETRÍA DEL ESPACIO
Mtemáti Diseño Industril Poliedros Ing. Gustvo Moll GEOMETRÍA DEL ESPACIO L geometrí pln estudi el onjunto de todos los puntos del plno, l geometrí del espio se refiere l onjunto de puntos del espio, es
11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO
SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de
CAPÍTULO 22: INTRODUCCIÓN A LA TRIGONOMETRÍA ESFÉRICA (III)
CAPÍTULO 22: INTRODUCCIÓN A LA TRIGONOMETRÍA ESFÉRICA (III) Dnte Guerrero-Chnduví Piur, 2015 FACULTAD DE INGENIERÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 22: INTRODUCCIÓN A LA TRIGONOMETRÍA
UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE
UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.
La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ
Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn
PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo
. PROLEMS DE OLIMPIDS MTEMÁTIS SORE GEOMETRÍ El triángulo ELISETH GONZÁLEZ FUENTES Máster de Mtemátis Universidd de Grnd. 014 Prolems sore triángulos Trjo Fin de Máster presentdo en el Máster Interuniversitrio
Criterios de igualdad entre triángulos.
TRIÁNGULO Triángulo. Superfiie pln liitd por tres línes (ldos). Polígono ás pequeño. lsifiión de los triángulos. Ldos Ángulos UTÁNGULO Tiene los tres ángulos gudos. RTÁNGULO Tiene un ángulo reto y dos
UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA
UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.
Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1
Cudriláteros 1º Año Mtemáti C o r r e i ó n y d p t i ó n : P r o f. M r í d e l L u j á n M r t í n e z P r o f. M ó n i N p o l i t n o Cód. 1106-17 Dpto. de Mtemáti 1.1. PARALELOGRAMO Definiión Un prlelogrmo
10 Figuras planas. Semejanza
Figurs plns. Semejnz Qué tienes que ser? QUÉ tienes que ser? Atividdes Finles Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los tetos.
- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.
9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm
TRIGONOMETRÍA (4º OP. A)
SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente
Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS
TRIÁNGULO: Superfiie pln limitd por tres segmentos o ldos que se ortn dos dos en tres vérties. NOMNLTUR: Los vérties se nombrn on letrs minúsuls y los ldos on letrs myúsuls emplendo l mism letr que el
TRIANGULOS. Sus tres ángulos internos son iguales y miden 60 cada uno
LSIFIION LOS TRINGULOS. TRINGULOS Los triángulos se lsifin según sus ldos y sus ángulos.. lsifiión de los triángulos según sus ldos.. Triángulo equilátero. s el que tiene sus tres ldos igules Sus tres
UNIDAD 7 Trigonometría
UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier
Haga clic para cambiar el estilo de título
Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles
UNIDAD 7 Trigonometría
UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier
Triángulos congruentes
Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors
CALCULAR LA RAZÓN DE DOS SEGMENTOS
9 LULR L RZÓN DE DOS SEGMENTOS REPSO Y POYO OJETIVO 1 RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un punto
Guía - 4 de Matemática: Trigonometría
1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:
1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.
º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems
Repartido 1. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016
Repartido 1 Profesor Fernando Díaz Matemática II 5to cient. I.D..L. 2016 ONTEXTO : JUSTIFIIÓN : La ciencia utiliza el método deductivo, que consiste en encadenar los saberes de manera tal que se obtengan
RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO
TUTORIAL DE PREPARAIÓN MATEMATIA 009 RELAIONES MÉTRIAS EN EL TRIÁNGULO RETÁNGULO I.- MARO TEORIO DEPTO. DE MATEMATIA Ls relciones métrics en un triángulo rectángulo son 5 relciones plicles sólo este tipo
RESOLUCIÓN DE TRIÁNGULOS
RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1
GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,
Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor?
ONTENIDOS Ls reliones trigonométris en un triángulo retángulo Seno y oseno de un ángulo Tngente de un ángulo Relión entre l tngente y l pendiente de un ret Teorems del seno y del oseno Existen vris situiones
Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES
8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =
Departamento de Matemáticas
Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1
GEOMETRÍA TRIÁNGULOS. 1. DEFINICIÓN: Si A, B y C son tres puntos no colineales entonces la unión de los segmentos
MISIÓN 2011-2 ONGRUENI E TRIÁNGULOS GEOMETRÍ TRIÁNGULOS 1. EFINIIÓN: Si, y son tres puntos no oinees entones unión de os segmentos, y se denomin triánguo y se denot omo. = /, y son puntos no oinees 1.1.
Clasifica los siguientes polígonos. a) b) c) d)
1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr
SenB. SenC. c SenC = 3.-
TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,
COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad
OLEGIO PEDGOGIO DE LOS NDES GUI DE TRIGONOMETRÍ REUPERION PERIODO UNO EIMO GRDO Los ángulos se pueden medir en grdos sexgesimles y rdines Un ángulo de 1 rdián es quel uyo ro tiene longitud igul l rdio
A B Trazo AB se denomina AB
PITULO I.- GEOMETRI SI.- EL punto es un ente matemático creado por el hombre para poder representar las figuras geométricas. El punto no tiene peso, ni forma ni olor ni sabor; sólo tiene posición. Se representa
TRIEDROS. B c C O. A escribimos A. 0 A + B + C 360 Por otro lado una cara ha de ser menor que la suma de las otras dos mayor que su diferencia.
TRIEDRS triedro. TRIEDR tres rists,, y tres seiplnos deliitdos, d uno, por dos rists que llreos rs,,. Teniendo en uent que los plnos,,. Por ser de l rist es de los plnos,. triedro is y ontenids un en d
GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. TRIGONOMETRÍA. EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS. PROBLEMAS.
GYMNÁZIUM BUDĚJOVICKÁ MATEMÁTICAS TRIGONOMETRÍA EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS PROBLEMAS - Determinr ls longitudes de los ldos y los tmños de los ángulos interiores del triángulo ABC si semos:
Seminario de problemas. Curso Soluciones Hoja 18
Seminrio de problems. Curso 015-16. Soluiones Hoj 18 10. Sen, b, y d utro números enteros. Demostrr que el produto de ls seis diferenis b,, d, b, d b, d es múltiplo de 1. Soluión Vemos que diho produto
344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:
LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un
Relaciones Métricas 1º Año Cód Matemática Dpto. de Matemática
Reliones Métris 1º Año Cód. 1104-16 Mtemáti Dpto. de M t emáti 1. SISTEMA DE MEDICIÓN DE ÁNGULOS Prolems de Revisión 1) Clul el vlor de ˆ, expresdo en grdos, minutos y segundos: ) ˆ 2,8 1735' ) 5ˆ 83'
Algunos resultados importantes de Geometría Euclidiana en el plano:
lgunos resultados importantes de Geometría Eulidiana en el plano: Grados y radianes El despeje de la siguiente euaión permite realizar la onversión de la unidad angular: grados 180º radianes π Triángulo
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como
