Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011."

Transcripción

1 Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones, exresds en teorems y/o roieddes, lguns de ells son ls siguientes: i) L sum de los ángulos interiores de un triángulo es 180. γ Es deir: α + β + γ 180 Not: esto umle on l fórmul generl r otener l sum S de los ángulos interiores de un olígono de n ldos: S 180 (n ) ii) Los ldos de un triángulo Se un triángulo de ldos, y. α β Se el ldo myor y y los ldos menores, entones se umle ue el ldo myor siemre es menor ue l sum de los ldos menores: < + iii) Teorem de l isetriz Se el triángulo ( ) de l figur y l isetriz del ángulo uyo vértie es ( ). x x iv) Teorem de Pitágors Este es, uizás, el teorem más fmoso de l geometrí, y or ierto uno de los más utilizdos. Es lile solo triángulos retángulos. Se el, en donde el vértie orresonde l ángulo reto. Los ldos ue formn el ángulo reto se denominn tetos ( y en l figur) y el ldo ouesto l ángulo reto se denomin iotenus (el ldo en l figur). Un triángulo retángulo es uel en ue uno de sus ángulos interiores es reto. Ángulo reto es uel ue mide 90 Teorem de Pitágors: + Hernán Verdugo Fini Profesor de mtemáti y físi 1

2 Not: Pr todo tio de triángulos, retángulos o no, existe un teorem l ue suele llmársele teorem generlizdo de Pitágors, ero r omrenderlo se neesitn onoimientos de trigonometrí, ue es mteri de otro nivel de rendizje, ero si lo dese verigur se denomin teorem del oseno. v) Teorem de Eulides Eulides fue un mtemátio griego muy imortnte, tnto ue rátimente tod l geometrí ue se estudi en un nivel ásio y seundrio se le denomin geometrí eulidin. Y, uriosmente, el únio teorem ue está signdo Eulides es, en relidd, el teorem de Pitágors. Los llmdos teorems de Eulides son dos, y son los siguientes: Primer teorem de Eulides, o teorem del teto "En un triángulo retángulo el udrdo de uno de sus tetos es igul l áre del retángulo ue tiene or ldos l iotenus y l royeión del mismo teto en l iotenus". Proyeión de un segmento sore otro Se y dos segmentos omo se muestr en l figur. El segmento EF es l royeión de sore. E y son los tetos y es l iotenus del triángulo retángulo. F es l ltur del triángulo, reseto l vértie, del ángulo reto. es l royeión del teto en l iotenus. es l royeión del teto en l iotenus. El teorem se exres de dos forms, uno or d teto: e lo nterior se dedue l siguiente roorión: Otrs rooriones ue se otienen son: y Hernán Verdugo Fini Profesor de mtemáti y físi

3 Segundo teorem de Eulides o teorem de l ltur "En un triángulo retángulo el udrdo de su ltur es igul l áre del retángulo ue tiene or ldos ls royeiones de los tetos en l iotenus". Un roorión ue se tiene es: vi) Áre y erímetro Sen un triángulo uluier de ldos, y y de ltur. Perímetro En todo triángulo su erímetro orresonde l sum de sus ldos: P + + Se llm semierímetro l semisum del los ldos de un triángulo, es deir: P + + Áre El áre de un triángulo se otiene or el semiroduto entre l se y l ltur del tringulo, es deir: Otr form de onoer el áre de un triángulo, y es útil r uluier tio de triángulo sin neesidd de onoer su ltur, es l ue viene dd or l fórmul de Herón. onde es el semierímetro del triángulo. ( )( )( ) Hernán Verdugo Fini Profesor de mtemáti y físi 3

4 Rzón del áre entre dos triángulos semejntes Sen dos triángulos retángulos semejntes,, mos on el ángulo reto en, omo los de l figur siguiente: Si los triángulos son semejntes, entones: k (1) donde k es l rzón de roorionlidd entre mos triángulos. ' ' ' El áre del es: El áre del es:, ' '' Si se dividen ms áres, se tiene: ' '' '' e l roorión lnted l omienzo (1), se tiene ue k y k, or lo tnto, k' k' se tendrá k k ' '' '' k Por lo tnto, l rzón entre ls áres de dos triángulos semejntes, de áres y, es: ' k Si fuern dos triángulos ulesuier en donde en donde los ldos y tún omo ses y tienen resetivmente lturs y, se tendrá l roorión k (), ' ' '' or lo tnto, sus resetivs áres serán: y ' Y, l lnter l rzón entre ls áres, se tendrá: ' ' '' onsiderndo ue de l rzón dd () se tiene ue k y k Se deduirá, igul ue en el so del triángulo retángulo, ue ' k Hernán Verdugo Fini Profesor de mtemáti y físi 4

5 Ejeriios lgunos ejeriios fueron tomdos de: Texto Terero Medio, Ed. Sntilln, We: guí del rofesor José Jiménez Nieto. 1.- En el, retángulo en, de l figur, 1,8 m, 3, m. etermine los vlores de, y..- En el, retángulo en, se tiene ue 5 m y 1 m. etermine los vlores de,, y. 3.- emuestre ue en un triángulo retángulo, el reíroo del udrdo de l longitud de l ltur es igul l sum de los reíroos de ls longitudes de los tetos Hy ue demostrr ue +. Se sugiere utilizr los teorems de Eulides. 4.- Un esler de 10 m de longitud está oyd ontr un red vertil. Si el ié de l esler dist 6 m de l red, en un suelo orizontl y lno, ué ltur está el extremo suerior de l esler? 5.- etermine l longitud de l digonl d de un udrdo de ldo. 6.- etermine l rzón de ls áres de dos triángulos semejntes si l rzón de sus erímetros es : L rzón de ls áres de dos olígonos semejntes es 9 : 5. Si un ldo del rimero mide 18 m, uánto medirá su ldo orresondiente en el segundo olígono? 8.- Se el triángulo del rolem. Enuentre lo ue se ide en d so siguiente: i) Si 30 m y 50 m, llr. ii) Si 1 m y 9 m, llr. iii) Si 8 m y 1 m, llr. iv) Si 14 m y 35 m, llr. v) Si 7 5 m y 14 m, llr. vi) Si 6 5 m y 3 5 m, llr. 9.- El ldo de un triángulo euilátero mide m. etermine l longitud de su ltur. Hernán Verdugo Fini Profesor de mtemáti y físi 5

6 10.- En un triángulo retángulo, l ltur orresondiente l iotenus determin en ést dos segmentos de longitudes 3 m y 1 m. lul ls longitudes de sus tetos lule l digonl de un retángulo de 34 m de erímetro y 5 m de ltur. 1.- lul l medid de l digonl de los retángulos uyos ldos, en entímetros, mide: ) 0 y 1; ) 15 y L digonl de un retángulo mide 6 m y su erímetro 68 m. etermine l medid de los ldos del retángulo (se neesit l soluión de l euión de segundo grdo) Sen los siguientes tríos de medids, uáles orresonden los ldos de un triángulo retángulo?: ) 4 m, 5 m y 6 m, ) 6 m, 8 m y 10 m, ) 9 m, 10 m y 11 m, d) m, y m Un irunfereni tiene 50 m de rdio. Un uerd erendiulr l diámetro l divide en dos segmentos, uno de los ules mide 0 m. etermine l medid de l uerd En el siguiente triángulo de ldos 30 m, 40 m y 50 m, determine l ltur sore l iotenus y ls royeiones de los tetos sore l mism. m 0 m n 30 m 50 m 17.- L seión del tejdo de un s tiene l form de un triángulo retángulo, en Y, y sus dimensiones están indids en l figur. Si se uiere olor un vig desde X Y r ue resist mejor, llr su medid y l distni desde su ié st sus extremos ( y ). 4 m Y X 5,8 m 18.- En un triángulo retángulo ls royeiones de los tetos sore l iotenus miden 4 m y 16 m. etermine l iotenus, l ltur sore l iotenus y los tetos En un triángulo retángulo l iotenus mide 0 m y uno de sus tetos 10 m. etermine el otro teto, ls royeiones de los tetos sore l iotenus y l ltur sore l iotenus. Hernán Verdugo Fini Profesor de mtemáti y físi 6

7 0.- Un lind ormig roj está reorriendo or un írulo de 60 m de rdio. En un momento min sore un diámetro y se detiene 30 m del entro. Si entones deide ir i l irunfereni en un mino erendiulr l diámetro en ue se moví, ué distni reorrerá? lguns resuests: m; 3 m;,4 m.- 15 m; 0 m; 9 m (o 16 m); 16 m (o 9 m) m 5.- d : m m m y 6 5 m m 1.- ) 9 m; ) 5 m m y 4 m 14.- ) no, ) si, ) no, d) si m m; 18 m y 3 m 17.- Resultdos roximdos:,90 m;,76 m y 3,.04 m m; 8 m, y roximdmente los tetos miden 5,66 m y 11,31 m m; 0 m; 5 3 m; 5 m; 15 m 0.- roximdmente 5 m. Hernán Verdugo Fini Profesor de mtemáti y físi 7

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

Triángulos congruentes

Triángulos congruentes Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

11La demostración La demostración en matemáticas (geometría)

11La demostración La demostración en matemáticas (geometría) L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1.- El ldo de un udrdo mide 10 m. Cuánto mide su digonl? (Aproxim el resultdo hst ls déims)..- Ls digonles de un romo miden 15 m y 17 m, respetivmente. Cuánto miden sus ldos? (Aproxim

Más detalles

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen. 9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

cos sa, a 10 cm. Calcula el valor de los ángulos agudos, y la c) Factorizando y expresando cos 2 1 sen 2,se obtiene: medida de los catetos.

cos sa, a 10 cm. Calcula el valor de los ángulos agudos, y la c) Factorizando y expresando cos 2 1 sen 2,se obtiene: medida de los catetos. 0 Demuestr, de form rzond, ls siguientes igulddes: lul el ángulo de elevión del Sol sore el orizonte, se ) ( sen ) ose o se siendo que un esttu proyet un somr que mide otg os tres vees su ltur. ) ( sen

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99

Más detalles

Qué tipo de triángulo es? Prof. Enrique Díaz González

Qué tipo de triángulo es? Prof. Enrique Díaz González Universidd Intererin de Puerto Rio Reinto de Pone 1 Revist 360 / N o. 6/ 011 Qué tipo de triángulo es? Prof. Enrique Díz González En lguns situiones de tipo prátio, se neesit onoer si un deterindo triángulo

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área?

C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área? 4 Resoluión de triángulos. Resoluión de triángulos retángulos Piens y lul lul mentlmente l inógnit que se pide en los siguientes triángulos retángulos: ) = 6 m, = 8 m; ll l ipotenus ) = 35 ; ll el otro

Más detalles

Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor?

Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor? ONTENIDOS Ls reliones trigonométris en un triángulo retángulo Seno y oseno de un ángulo Tngente de un ángulo Relión entre l tngente y l pendiente de un ret Teorems del seno y del oseno Existen vris situiones

Más detalles

Razones trigonométricas de un ángulo agudo. Relaciones fundamentales

Razones trigonométricas de un ángulo agudo. Relaciones fundamentales B C Mtemátis I - º Billerto Rzones trigonométris de un ángulo gudo. Reliones fundmentles En todo triángulo retángulo BC ls rzones trigonométris (seno, oseno y tngente) de uno de sus ángulos gudos, en este

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS MISIÓN 010-I GEOMETRÍ SEMEJNZ E TRIÁNGULOS 1. EFINIIÓN os triángulos se llmn semejntes uno tienen sus ángulos respetivmente ongruentes y los los homólogos proporionles. Los los homólogos son los opuestos

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

Semejanza. Teoremas de Thales y Pitágoras

Semejanza. Teoremas de Thales y Pitágoras 11 Semejnz. Teorems de Thles y Pitágors 1. Figurs semejntes P I E N S Y L U L Si l Torre del Oro mide proximdmente 0 m de lto, uánto mide proximdmente de lto l Girld de Sevill? Si l Torre de Oro mide 1

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo . PROLEMS DE OLIMPIDS MTEMÁTIS SORE GEOMETRÍ El triángulo ELISETH GONZÁLEZ FUENTES Máster de Mtemátis Universidd de Grnd. 014 Prolems sore triángulos Trjo Fin de Máster presentdo en el Máster Interuniversitrio

Más detalles

GEOMETRÍA DEL TRIÁNGULO

GEOMETRÍA DEL TRIÁNGULO GEOMETRÍA DEL TRIÁNGULO Definiión de triángulo Se llm triángulo un onjunto { ABC,, } de tres puntos no linedos del plno. Los puntos A, B y C reien el nomre de vérties del triángulo. Los segmentos (o en

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

Álgebra Vectorial Matemática

Álgebra Vectorial Matemática I- Introduión En diverss oortuniddes nos hemos enontrdo en tems reliondos on l Físi, on mgnitudes que quedn definids medinte un número, ls denominds mgnitudes eslres. Entre ells, odemos itr l longitud,

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

BLOQUE IV. Geometría. 11. Semejanza. Teorema de Thales y Pitágoras 12. Cuerpos en el espacio 13. Áreas y volúmenes

BLOQUE IV. Geometría. 11. Semejanza. Teorema de Thales y Pitágoras 12. Cuerpos en el espacio 13. Áreas y volúmenes LOQUE IV Geometrí 11. Semejnz. Teorem de Thles y Pitágors 1. uerpos en el espio 13. Áres y volúmenes 11 Semejnz. Teorems de Thles y Pitágors 1. Figurs semejntes P I E N S Y L U L Si l Torre del Oro mide

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Teorema de Pitágoras

Teorema de Pitágoras Profr. Efrín Soto Apolinr. Teorem de Pitágors En geometrí, uno de los teorems más importntes es el teorem de Pitágors porque se pli muy freuentemente pr resolver prolems. En todo triángulo retángulo que

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

RELOJ SOLAR ANALEMÁTICO Esteban Esteban Atrévete con el Universo

RELOJ SOLAR ANALEMÁTICO Esteban Esteban Atrévete con el Universo RELOJ SOLAR ANALEMÁTICO Estebn Estebn Atrévete on el Universo Un reloj solr pr el ptio del instituto Puede ser muy motivdor pr el lumndo olborr en l elborión de un reloj solr permnente situdo en el exterior

Más detalles

Criterios de igualdad entre triángulos.

Criterios de igualdad entre triángulos. TRIÁNGULO Triángulo. Superfiie pln liitd por tres línes (ldos). Polígono ás pequeño. lsifiión de los triángulos. Ldos Ángulos UTÁNGULO Tiene los tres ángulos gudos. RTÁNGULO Tiene un ángulo reto y dos

Más detalles

Razones trigonométricas de un ángulo agudo. Denominación Definición Propiedad básica. cos α = c a. tg α = tan α = b c. Propiedad fundamental

Razones trigonométricas de un ángulo agudo. Denominación Definición Propiedad básica. cos α = c a. tg α = tan α = b c. Propiedad fundamental Trigonometrí 1 Trigonometrí Rzones trigonométris de un ángulo gudo Denominión Definiión Propiedd ási Seno sen = 0 sen 1 Coseno Tngente os = tg = tn = Propiedd fundmentl sen + os = 1 Rzones trigonométris

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo

Area Académica: Licenciatura en Sistemas Computacionales. Profesor: I.E.C. Roxana Sifuentes Carrillo Are Adémi: Lienitur en Sistems Computionles Asigntur: Álger Linel Profesor: I.E.C. Ron Sifuentes Crrillo Periodo: Julio-Diiemre 0 Tem: Determinnts Astrt A determinnt is mthemtil nottion onsists of squre

Más detalles

UNIDAD 2 Geometría 2.2 Triángulos 10

UNIDAD 2 Geometría 2.2 Triángulos 10 UNI Geometrí. Triánguos 10. Triánguos OJETIVOS ur e áre e perímetro de triánguos. Otener os dos ánguos de triánguos utiizndo s reiones entre otros ánguos en figurs geométris. ur os dos de un triánguo usndo

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Superfiie pln limitd por tres segmentos o ldos que se ortn dos dos en tres vérties. NOMNLTUR: Los vérties se nombrn on letrs minúsuls y los ldos on letrs myúsuls emplendo l mism letr que el

Más detalles

MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE

MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE Fultd de ontdurí dministrión. UN lipse utor: r. José nuel Beerr spinos TÁTIS BÁSIS LIPS FINIIÓN LIPS Un elipse es el lugr geométrio de todos los puntos P del plno, tles que l sum de sus distnis dos puntos

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

Geometría y trigonometría: Educación Matemática Segundo Nivel o Ciclo de Educación Media para Educación para Personas Jóvenes y Adultas

Geometría y trigonometría: Educación Matemática Segundo Nivel o Ciclo de Educación Media para Educación para Personas Jóvenes y Adultas Guí de prendizje Nº 4 Geometrí y trigonometrí: Herrmients pr resolver prolems Eduión Mtemáti Segundo Nivel o ilo de Eduión Medi pr Eduión pr Persons Jóvenes y dults DE_6016.indd 1 25-01-13 17:44 DE_6016.indd

Más detalles

Resolución de Triángulos Rectángulos

Resolución de Triángulos Rectángulos PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) exigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión

Más detalles

2. Integrales iteradas dobles.

2. Integrales iteradas dobles. 2 Integrles prmétris e integrles dobles y triples. Eleonor Ctsigers. 9 Julio 26. 2. Integrles iterds dobles. 2.. Integrles iterds en dominios simples respeto de x. Se omo en l subseión.2, el retángulo

Más detalles

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2) Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)

Más detalles

Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7

Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7 Colegio Dioesno Asunión de Nuestr Señor Ávil Tem 7 Pr onoer l sidurí de Tles de Mileto (646 546.C.), se uent que los serdotes de Egipto lo sometieron un dur prue: verigur l ltur de l pirámide de Kéops.

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

Lados Vértice complementarios CONVEXO CÓNCAVO suplementarios

Lados Vértice complementarios CONVEXO CÓNCAVO suplementarios Geometrí Ánguos Un ánguo es región de pno imitd por dos semirrects con e origen común. IES Rmiro de Meztu Mdrid Ldos Vértice Csificción de os ánguos Compementrios y supementrios CÓNCAVO CONVEXO Dos ánguos

Más detalles

Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2)

Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2) Segundo Periodo ELEMENTOS DE TRIGONOMETRIA (2) Derehos ásios de prendizje: Comprende y utiliz l ley del seno y el oseno pr resolver prolems de mtemátis y otrs disiplins que involuren triángulos no retángulos.

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

Resolución de Triángulos Rectángulos

Resolución de Triángulos Rectángulos PÍTULO 5 Resoluión de Triángulos Retángulos En l ntigüedd l rquitetur (pirámides, templos pr los dioses,...) eigió un lto grdo de preisión. Pr medir lturs se sn en l longitud de l somr el ángulo de elevión

Más detalles

Los polígonos y la circunferencia

Los polígonos y la circunferencia l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =

Más detalles

ALGUNOS TEOREMAS OLVIDADOS

ALGUNOS TEOREMAS OLVIDADOS LGUNOS TEOEMS OLVDDOS Jean-Louis YME Lyée Lislet Geoffroy, 97400 St-Denis, Île-de-la-éunion, Frane esumen. "No prolem is ever permanently losed" omo reuerda la seíón Soluiones de la revista anadiense ruxmathematiorum.

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

Profr. Efraín Soto Apolinar. Ley de senos

Profr. Efraín Soto Apolinar. Ley de senos Profr. Efrín Soto Apolinr. Ley de senos Hst hor hemos resuelto triángulos retángulos, pero tmién es omún enontrr prolems on triángulos que no son retángulos, omo utángulos u otusángulos. Pr resolver estos

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07 MATEMÁTICAS II Cónis en oorens olres Curso 06-07 ) El omet Hlley esribe un orbit elíti e exentrii e 07 l longitu el eje myor e l órbit es, roximmente, 68 unies stronómis (un u, istni mei entre l Tierr

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación:

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación: Ley del Coseno 1 Ley del Coseno Dado un triángulo ABC, on lados a, b y, se umple la relaión: = a + b abosc (Observe que la relaión es simétria para los otros lados del triángulo.) Para demostrar este teorema,

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos.

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos. AREAS L noción de áre está socid l extensión o superficie de un figur. El áre es un número que nos dice que tn extens es un región y l expresmos en kilómetros cudrdos (Km ); metros cudrdos (m ); centímetros

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles