DIVISIBILIDAD: Problemas
|
|
|
- Isabel Soler Aguilar
- hace 8 años
- Vistas:
Transcripción
1 DIVISIBILIDAD: resueltos propuestos Página 1 de 10
2 resueltos Problema 1 Un problema clásico, propuesto en la Olimpiada de Brasil: Demostrar que, para todo n natural, n 2, n nunca es entero. Problema 2 Un problema de la Olimpiada holandesa: Calcular la suma Página 2 de 10 S = 2001 n=1 1 n + n2 1.
3 Problema 3 Problema 6, O.M.E. 2001, Fase Final: Determinar la función f : N N, siendo N = {1, 2, 3, } el conjunto de los números naturales, que cumple, para cualesquiera s, n N, las dos condiciones siguientes: a) f(1) = f(2 s ) = 1, y b) si n < 2 s, entonces f(2 s + n) = f(n) + 1. Calcular el valor máximo de f(n) cuando n Hallar el menor número natural n tal que f (n) = Observaciones (Es aconsejable ver antes las Observaciones) Problema 4 El siguiente ejemplo fué presentado por Bulgaria en la I.M.O. de 1985, pero no resultó elegido. Es un caso ligeramente más general de otros problemas similares. Página 3 de 10
4 Sean a y b números enteros, y n un entero positivo. Demostrar que es entero. Problema 5 b n 1 a (a + b) (a + 2b)... (a + (n 1) b) n! Generalización del teorema de Sophie Germain: Si n > 1, entonces n n no es primo.(competición Kürschak 1978 y antes en Mathematics Magazine 1950, propuesto por A. Makowski) Siguen dos ejemplos de solución automática Problema 6 Ejemplo 1 de solución automática: Sean α y β dos números irracionales tales que 1 α + 1 β = 1. Entonces las sucesiones f(n) = [αn] y g(n) = [βn] son disjuntas y su unión es N. Página 4 de 10
5 Problema 7 Ejemplo 2 de solución automática: La función f(n) = [n + n + 1/2] toma todos los valores enteros a excepción de los cuadrados perfectos. Página 5 de 10
6 propuestos 1. Dados n+1 enteros positivos a 1, a 2,, a n, a n+1, todos ellos menores que 2n, demostrar que : i) al menos dos de ellos son primos entre sí. ii)al menos uno de ellos es divisible por algún otro del conjunto (P.Erdös, 1937) 2.El producto de k enteros positivos, cuya suma es N, con N = kp + h, es máximo cuando h de los factores son iguales a p + 1 y los otros k h son iguales a p.(v.t hébault, 1947) 3.Dado cualquier entero positivo k, existen k enteros consecutivos que no son primos. 4.Demostrar que el número de divisores de n = a α b β c γ l λ Página 6 de 10
7 es el número de términos del polinomio ( 1 + a + a a α) ( 1 + b + + b β) (1 + l + + l λ). Hallar la suma y el producto de esos divisores. 5.(OME 1986)Demostrar que, cualesquiera que sean los números reales x, y, z se verifica sin ( x 3) + sin ( y 3) + sin ( z 3) sin (xyz) < 4. 6.Encontrar todas las funciones f : N N tales que : f(xy) = f(x)+ f(y), f(30) = 0 f(x) = 0 si la cifra de las unidades de x es 7. (Olimp. de Brasil 1988) 7.Resolver la ecuación [ x 2 x 2 ] = [x] 8.Probar que el conjunto de las soluciones de la ecuación [ ] mx 1 = 2x + 1, (m Z parámetro) 2 5 tiene sólo 5 elementos. Página 7 de 10
8 9.Los enteros positivos a, b, c, d verifican ab = cd. Probar que el número es compuesto (Agnis Andzans) a b c d Si a, b son naturales, demostrar que el número no puede ser cuadrado perfecto. M = 4 a + 4 b + 2 a + 2 b + 2 a+b+1 11.Simplificar el producto ( ) ( ) ( ) P = (2 2n + 1 ) (AMMonthly 1935) 12. En cuántos ceros termina N!, si N = 5n 1 4? Página 8 de 10
9 13.Hallar los números reales positivos x, y sabiendo que las cuatro medias a = x + y 2, g = xy, h = 2xy x + y, k = x2 + y 2 2 son números naturales cuya suma vale 66 (Olimp. Checa) 14. Sean n, k primos entre sí. Demostrar que [ n ] [ ] [ ] 2n (k 1) n = k k k (n 1) (k 1) 2 15.Hallar la parte entera de Página 9 de (IMO 92,#1,Nueva Zelanda) Hallar todas las ternas (p, q, r) de enteros tales que 1 < p < q < r y de modo que (p 1) (q 1) (r 1) divida a pqr 1.
10 17.Determinar los enteros positivos x, y, z, v, t tales que 2 x 3 y 5 2+z 7 v = t! 18. Es siempre posible convertir un entero en primo, modificando una sola de sus cifras? (W.Sierpinski) 19.Sea a 1 a 2 a n una permutación de 1, 2,, n. Demostrar que, si n es impar, entonces el producto es par. (Eötvös Competition 1906) (a 1 1) (a 2 2) (a n n) 20. Sea b un entero fijo, m = 1, 2, 3,... y q un irracional 0 < q < 1. Diremos que el intervalo (m, m + 1) es un salto si no contiene un múltiplo de b + q. Probar que todo conjunto de b saltos sucesivos contiene exactamente un múltiplo de 1 + b q. (AMMonthly 1949) Ir a la sección de soluciones Página 10 de 10
TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS
TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las
(x ) (x ) = x 2 + px + q. ( + ) = p = q: El método de completamiento de cuadrado aplicado al polinomio. P (x) = ax 2 + bx + c. P (x) = a x + b 2.
PROBLEMAS CUADRÁTICOS DE OLIMPIADAS Francisco Bellot Rosado Presentamos a continuación una serie de problemas de Olimpiadas con la característica común de hacer intervenir en ellos, en mayor o menor medida,
Números primos I. Número primo o primo absoluto. Principales fórmulas. Número compuesto. Números primos entre sí (PESI) Donde:
N = A Números primos I Número primo o primo absoluto Es aquel número entero positivo que tiene sólo dos divisores: la unidad y el mismo número. Número compuesto 2; 3; 5; 7; 11; 13; 17; 19;... Son aquellos
DIVISIBILIDAD: Resultados
DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:
Ejercicios del tema 7
U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos
Enunciados de problemas de números.
Nº. Enunciados de problemas de números. Hallar un número de 4 cifras que sea igual al cubo de la suma de las cifras. 2 Demostrar que si a, b y c son números racionales arbitrarios, los polinomios: n -2
Multiplicación División
Aritmética CAPÍTULO V Multiplicación División 01. Calcule m + n + p + r, si mnpr 27 tiene como suma de sus productos parciales 3946. A) 13 B) 15 C) 16 D) 12 E) 11 02. En una multiplicación al multiplicando
CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2
CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el
Divisibilidad y primos
Divisibilidad y primos Números primos y compuestos Entre los números naturales podemos distinguir números primeros y compuestos. Un número es compuesto si es igual al producto de dos números naturales
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas
Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Algebra y Trigonometría Taller 6: Funciones Polinomiales y Racionales Teorema del residuo y del factor. Hallar los valores que se piden
Tarea 2 de Álgebra Superior II
Tarea 2 de Álgebra Superior II Divisibilidad 1. Sean a, b, c, d Z. Determine si los siguientes enunciados son verdaderos o falsos. Si son verdaderos, probar el resultado, y si son falsos, dar un contraejemplo.
Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre
Teoría de números Herbert Kanarek Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía The theory of numbers Ivan Nivan H. Zuckerman H. Montgomery Temario I. Divisibilidad
PROBLEMAS CUADRÁTICOS Seminario ESTALMAT 2010 Valladolid, 11 de diciembre de Francisco Bellot Rosado
PROBLEMAS CUADRÁTICOS Seminario ESTALMAT 2010 Valladolid, 11 de diciembre de 2010 Francisco Bellot Rosado [email protected] Introducción Los problemas cuadráticos que voy a presentar pueden plantearse
Relaciones de recurrencia
MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de recurrencia F. Informática. UPM 1 / 7 Relaciones de recurrencia Relaciones de recurrencia Definición Una relación de recurrencia
TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.
NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +
EL CUERPO ORDENADO REALES
CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.
Tema 2: Determinantes
Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto
Ejercicios de Estructuras Algebraicas 1
Ejercicios de Estructuras Algebraicas 1 Números enteros y polinomios 1. Para cada una de las siguientes parejas de números enteros, hallar el máximo común divisor, el mínimo común múltiplo y una identidad
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
MATRICES Y DETERMINANTES 1- Sea m un número real y considere la matriz: 1 0 0 1 2 1 1 a) Determine todos los valores de m para los que la matriz A tiene inversa. b) Determine, si existe, la inversa de
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de
Plan de Animación para la enseñanza de las Matemáticas
DIVISIBILIDAD NUMERICA Criterios de divisibilidad por 2, 3 y 5 (5 y 6 grado de primaria y educación media general) Los criterios o caracteres de divisibilidad son ciertas señales de los números que nos
El ejercicio de la demostración en matemáticas
El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa(hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo
TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS
TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS En este eje intentaremos continuar desarrollando en los estudiantes la competencia básica de Resolución de Problemas y además las siguientes competencias específicas
Ejercicios de Álgebra Básica. Curso 2015/16
Ejercicios de Álgebra Básica. Curso 2015/16 Tema 3: El anillo de los números enteros Divisibilidad en Z Ejercicio 1. Probar que para todo número n, n y n + 1 son primos entre sí. Ejercicio 2. Probar que
Problemas tipo examen
Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A
PROGRESIONES ARITMÉTICAS
PROGRESIONES ARITMÉTICAS 1. La suma de los tres primeros términos de una progresión aritmética es 12 y la razón 16. Calcula el primer término. : a 1 + a 2 + a 3 = 12 d = 16 a1 =? a2 = a1 + d a3 = a2 +
TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD
Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
1. NÚMEROS PRIMOS Y COMPUESTOS.
. NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene
Funciones polinómicas
Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado
Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico
UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números
GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
Trabajo de Matemáticas AMPLIACIÓN 3º ESO
Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito
. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1
ÁLGEBRA 1 (Junio, 1994) Comprueba que el determinante 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 es nulo sin desarrollarlo Explica el proceso que sigues (Junio, 1994) Considerar la matriz A = 1 1 1 reales e I la
UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS
C u r s o : Matemática Material N 02 GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS ENTEROS ( ) Los elementos del conjunto enteros. OPERATORIA EN ADICIÓN = {, -3,
ARITMÉTICA. Un número será (k 2 ) si los exponentes en su D.C. son impares
TEMA: POTENCIACION Y RADICACIÓN POTENCIACIÓN Es una operación matemática que consiste en multiplicar un numero por si mismo varias veces En general Donde: * * Además: * es la base * es el exponente * es
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN MCD (A; B) = C SEMANA 10 MCD - MCM. q = MCM( A;B) MCD ( A,B) = 7 1 MCD A,B = 7 1
SEMANA MCD - MCM. La suma de dos números A y B es 65, el cociente entre su MCM y su MCD es 8. Halle (A - B). A) 8 B) 6 C) 7 D) 48 E) 48 MCD (A; B) C A dq B dq Donde q y q son números primos entre sí. Luego:
Seminario de problemas-bachillerato. Curso Hoja 6
Seminario de problemas-bachillerato. Curso 2012-13. Hoja 6 37. Dada una cuerda AB de una circunferencia de radio 1 y centro O, se considera la circunferencia γ de diámetro AB. Sea P es el punto de γ más
Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009
Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine
Adición y sustracción
Adición y sustracción ADICIÓN Es la operación aritmética que asocia cantidades de la misma especie (homogéneas) en una sola, llamada suma. a 1 + a + a +... + a n = s sumandos suma SUMAS NOTABLES Suma de
Divisibilidad. Rafael F. Isaacs G. * Fecha: 14 de abril de 2005
Divisibilidad Rafael F. Isaacs G. * Fecha: 14 de abril de 2005 El máximo común divisor La relación n divide a m tiene sentido cuando n y m son enteros o naturales, pero no para fraccionarios o reales (por
OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS
OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS UNA - UCR - TEC - UNED - MEP - MICITT Álgebra e iπ + φ φ 0 III Nivel I Eliminatoria Marzo 06 Índice. Presentación. Contenidos 3. Algunos consejos útiles 4. Problemas
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES 1. ECUACIONES. Una ecuación es una igualdad entre dos expresiones algebraicas. Las variables en este caso se denominan incógnitas. Las soluciones de una ecuación
Capitulo IV - Inecuaciones
Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o
BOLETINES DE PROBLEMAS DE
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN BOLETINES DE PROBLEMAS DE INTRODUCCIÓN A LA MATEMÁTICA DISCRETA Curso 2008/2009 DEPARTAMENTO DE MATEMÁTICA
Soluciones Fase Local Viernes 13 y sábado 14 de enero de m 7 = n 2
LIII Olimpiada Matemática Española Soluciones Fase Local Viernes 3 y sábado 4 de enero de 07 Olimpiada Matemática Española RSME. Describir todas las soluciones enteras positivas (m, n) de la ecuación 8m
Conjuntos Numéricos I
Conjuntos Numéricos I En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización
Cuatro Problemas de Algebra en la IMO.
Cuatro Problemas de Algebra en la IMO. Rafael Sánchez Lamoneda UCV. Escuela de Matemáticas Barquisimeto, 10 de Marzo de 2008 Introducción. El objetivo de esta conferencia es analizar cuatro problemas de
Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E
Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de
Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas
Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
A-PDF Page Cut DEMO: Purchase from to remove the watermark Ejercicios resueltos 29
wwwapuntesdematesweeblycom A-PDF Page Cut DEMO: Purchase from wwwa-pdfcom to remove the watermark Ejercicios resueltos 29 Qué coste conlleva el cálculo de la inversa de una matriz A R n n? Calculando A
Tema 11.- Autovalores y Autovectores.
Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica
3er Concurso Unversitario de Matemáticas Galois-Noether 2013 Segunda Etapa
3er Concurso Unversitario de Matemáticas Galois-Noether 013 Segunda Etapa Sábado 17 de agosto 013 Bienvenido a la Segunda Etapa del Concurso Universitario de Matemáticas Galois-Noether Responde a las preguntas
Números reales Conceptos básicos Conjuntos numéricos
Números reales Conceptos básicos Conjuntos numéricos En la presente sección se hace una revisión de los principales conjuntos númericos, que se necesitan en un primer curso de Matemática de nivel universitario.
1. GENERALIDADES SOBRE LOS POLINOMIOS.
GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2
Podemos pues formular los dos problemas anteriores en términos de matrices.
Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión
Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma
Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad
GBG ejerciciosyexamenes.com 1
PROGRESIONES PROGRESIONES ARITMÉTICAS 1. Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El término 20 en: 1, 6, 11, 16... b) El término 6 en: 3, 7, 11, 15... c) El 12
Matrices y Determinantes
Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a
Problemas propuestos. Simplificar las siguientes expresiones lógicas
Razonar en base a los postulados y teoremas del álgebra de Boole si es posible o no definir un álgebra de Boole para tres elementos B = {0, a, 1} Demostrar los teoremas T1, T2, T7 y T9 mediante los postulados
Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones
Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno:
Unidad 6 Raíces de polinomios Objetivos Al finalizar la unidad, el alumno: Comprenderá el Teorema Fundamental del Álgebra. Aplicará los teoremas del residuo y del factor en la obtención de las raíces de
Tema 1. Espacios Vectoriales Definición de Espacio Vectorial
Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.
XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008
XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008 SOLUCIONES 1 2 2008 1. Calcular la suma 2 h + h +... + h, 2009 2009 2009 siendo Se observa que la función
Anillo de polinomios con coeficientes en un cuerpo
Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.
Indica el coeficiente, parte literal y grado de estos monomios.
Polinomios EJERCICIOS 001 Indica el coeficiente, parte literal y grado de estos monomios. a) y z 4 b) 5b c c) 15 y d) y 5 a) Coeficiente: Parte literal: y z 4 Grado: + + 4 9 b) Coeficiente: 5 Parte literal:
Continuación Números Naturales:
Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
COMBINATORIA. Manuel Cortés Izurdiaga. Preparación Olimpiada RSME
COMBINATORIA Manuel Cortés Izurdiaga Preparación Olimpiada RSME COMBINATORIA Combinatoria Consiste en contar el número de elementos de un conjunto finito. COMBINATORIA Combinatoria Consiste en contar el
BLOQUE 1. LOS NÚMEROS
BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Recursión Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 15 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema 2. Lógica
DIVISIBILIDAD Y NÚMEROS PRIMOS I
DIVISIBILIDAD Y NÚMEROS PRIMOS I LUZ MARÍA SÁNCHEZ GARCÍA 1. NÚMEROS PRIMOS Todas las cosas que pueden ser conocidas tienen número, pues no es posible que, sin número, nada pueda ser conocido ni concebido.
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema
2 Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay
DERIVADAS PARCIALES Y APLICACIONES
CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras
Expresiones algebraicas
Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las
(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)
TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que
Ejercicios de Teoría de conjuntos
Ejercicios de Teoría de conjuntos José A. Alonso Jiménez Mario J. Pérez Jiménez Sevilla, Octubre de 1992 Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla 1 Contenido
Ejercicios de Teoría de conjuntos
Dpto. de Álgebra, Computación, Geometría y Topología Universidad de Sevilla Ejercicios de Teoría de conjuntos José A. Alonso Jiménez ([email protected]) Sevilla, 1991 Contenido 1 La teoría de conjunto de Zermelo
2. Continuidad y derivabilidad. Aplicaciones
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto
Teoría de Números. 22 de julio de 2012
Teoría de Números Naoi Sato 22 de julio de 2012 Resumen Estas notas sobre teoría de números fueron originariamente escritas en 1995 para estudiantes de nivel OIM. Cubre sólo
Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.
DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla
1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2).
1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(,3,5) y B(-1,0,).. Dados los puntos A(,3,-1) y B(-4,1,-), hallar las coordenadas de un punto C perteneciente
Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.
Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones
Polinomios en R[x] - Función Polinómica
Polinomios en R[x] - Función Polinómica. Indicar cuáles de las siguientes expresiones son polinomios: a) A( x) = x 6x + b) B( x) = x 6x c) C( x) = x + x + x d) D( x) = + x +. Determinar el grado y el término
Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios
61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial
Un número natural a es múltiplo de otro número b si la división a : b es una división exacta.
Divisibilidad en MÚLTIPLOS DE UN NÚMERO Un número natural a es múltiplo de otro número b si la división a : b es una división exacta Ejemplo: 60 es múltiplo de 4 porque la división 60 : 4 = 5 es exacta
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K
