Divisibilidad y primos
|
|
|
- Ignacio Santos Morales
- hace 9 años
- Vistas:
Transcripción
1 Divisibilidad y primos Números primos y compuestos Entre los números naturales podemos distinguir números primeros y compuestos. Un número es compuesto si es igual al producto de dos números naturales más pequeños, por ejemplo, 6 = 3. En caso contrario, y si el número no es igual a 1, se le llama primo. El número 1 no es ni primo ni compuesto. Los números primeros son como los ladrillos, que puedes utilizar para construir todos los números naturales. Cómo se puede hacer esto? Consideremos el número 40. Es ciertamente compuesto. Puede ser representado, por ejemplo, como Pero cada uno de los números 4 y 10 es compuesto, también. De hecho, 4 = 6 7, y 10 = 5. Puesto que 6 = 3, tenemos 40 = 4 10 = = = (ver la figura). Esta es la descomposición completa de nuestro número (su representación como producto de números primos). Está claro que podemos factorizar cualquier número natural mayor que 1 de la misma forma. Basta descomponer los números que tenemos en pares de números más pequeños mientras podamos (y si uno de los factores no se puede representar como tal producto, entonces es un factor primo). Pero qué ocurre si intentamos factorizar el número 40 de una forma distinta? Por ejemplo, podemos comenzar con 40 = Puede sorprenderte que terminemos siempre con la misma representación (los productos que se diferencian solamente en el orden de sus factores son considerados idénticos, habitualmente ponemos los factores en orden creciente). 1
2 Esto puede parecer evidente, pero no es fácil de probar. Se llama el Teorema Fundamental de la Aritmética: cualquier número natural distinto de 1 puede ser representado de forma única como producto de números primos en orden creciente. Intentemos resolver una primera tanda de problemas fáciles: Sabiendo que el número 1536 se descompone como 1536 = 9 3, contestar razonadamente a lo siguiente: 1. Es 1536 divisible por?. Es 1536 divisible por 5? 3. Es 1536 divisible por 4? 4. Es 1536 divisible por 9? 5. Es 1536 divisible por 6? Avancemos un poco más: 6. Es verdad que si un número natural es divisible por 4 y por 3, entonces él debe ser divisible por 4 3 = 1?
3 7. Es verdad que si un número natural es divisible por 4 y por 6, entonces debe ser divisible por 4 6 = 4? 8. El número A no es divisible por 3. Es posible que el número A sea divisible por 3? 9. El número A es par. Es verdad que 3A debe ser divisible por 6? 10. El número 5A es divisible por 3. Es verdad que A debe ser divisible por 3? 11. El número 15A es divisible por 6. Es verdad que A debe ser divisible por 6? Dos números naturales se llaman relativamente primos, o coprimos, si no tienen divisores comunes mayores que 1. Por ejemplo, dos números primos distintos son, por supuesto, relativamente primos. También, el número 1 es relativamente primo con cualquier otro número natural. Usando un razonamiento similar al usado en los ejercicios 6 y 10, podemos probar los dos siguientes hechos. a) Si un cierto número natural es divisible por dos números relativamente primos p y q, entonces es divisible por su producto pq. b) Si el número pa es divisible por q, siendo p y q relativamente primos, entonces A es divisible por q también. Máximo común divisor y mínimo común múltiplo Dados dos números naturales x e y, se llama máximo común divisor de x e y y se denota por mcd(x, y) al mayor de entre los divisores comunes de x e y. Así, por ejemplo para 40 y 60, tenemos: Los divisores de 40 son: 40, 0, 10, 8, 5, 1. Los divisores de 60 son: 60, 30, 0, 15, 1, 10, 6, 5, 4, 3,, 1. Los divisores comunes de 40 y 60 son, por tanto: 0, 10, 5, 1 y el mayor de ellos es 0, es decir mcd(40, 60) = 0.
4 De igual forma, el mínimo común múltiplo de x e y es el menor número natural que es divisible ambos y se denota por mcm(x, y). Por ejemplo, mcm(40, 60) = Dados los números A = y B = determinar mcd(a, B). 13. Dados los números A = y B = determinar mcm(a, B). Problemas Problema 1. Dados dos números primos distintos p y q, encontrar el número de divisores distintos del número a)pq; b) p q; c) p q ; d)p n q m. Problema. Probar que el producto de tres números naturales consecutivos cualesquiera es divisible por 6. Pista. Hay por lo menos un número par, y por lo menos un número divisible por 3, entre cualesquiera tres números consecutivos.
5 Problema 3. Probar que el producto de cinco números naturales consecutivos cualquiera es a) divisible por 30 b) divisible por 10. Problema 4. Dado un número primo p, encontrar el número de números naturales que son a) menores que p y relativamente primos con él b) menores que p y relativamente primos con él. Problema Encontrar el número natural más pequeño n tal que n! es divisible por Problema 6. número 100!? Cuántos ceros aparecen al final de la representación decimal del
6 Problema 7. Para un cierto número n, puede el número n! tener exactamente cinco ceros en el final de su representación decimal? Problema 8. es un cuadrado perfecto. Probar que si un número tiene un número impar de divisores, entonces Problema 9. Antonio multiplicó dos números de dos dígitos en la pizarra. Entonces cambió todos los dígitos por letras (dígitos diferentes fueron cambiados a letras diferentes, y los dígitos iguales fueron cambiados a la misma letra). Él obtuvo AB CD = EEFF Probar que Antonio se equivocó en alguna parte. Problema 10. Puede un número escrito con cien 0, cien 1, y cien ser un cuadrado perfecto? Pista. Este número es divisible por 3, pero no por 9.
7
Divisibilidad (en N = N {0})
Divisibilidad (en N = N {0}) Dados dos números naturales a y c, se dice que c es un divisor de a si existe q N tal que a = q c (es decir, si en la división a c el resto es 0). c a significa que c es divisor
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de
Introducción a la Teoría de Números
Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó
Teorema Fundamental de la Aritmética y Residuos
Teorema Fundamental de la Aritmética y Residuos Entrenamiento #2 para 3 a etapa 12-18 de marzo de 2016 Por: Lulú Resumen En este documento podrás encontrar la información necesaria para poder resolver
Conjuntos Numéricos I
Conjuntos Numéricos I En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 3 Números Naturales y Enteros COMPETENCIA Reconoce operaciones. los conjuntos
Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas
Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,
DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.
MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo
Ejercicios del tema 7
U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos
(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)
TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que
DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.
DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número
Ampliación Tema 3: Múltiplo y divisores
- Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)
OLIMPIADA MEXICANA DE MATEMÁTICAS Mayo 2016 TEORÍA DE NÚMEROS
OLIMPIADA MEXICANA DE MATEMÁTICAS Mayo 016 TEORÍA DE NÚMEROS 1. El conjunto de los números reales Dígitos:1,,3,4...,9,0. Naturales:1,,3,4,5,... Enteros:..., 5, 4, 3,, 1,0,1,,3,4,5,... Racionales: Los números
DIVISIBILIDAD: Resultados
DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:
Gu ıa Departamento. Matem aticas U.V.
Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar
Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15
Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de
TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD
Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible
TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.
TEMA 1: LOS NÚMEROS ENTEROS Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 1. Los Números Enteros. 2. Suma y resta de números enteros.
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Tema 1: Los números naturales
N = {1, 2, 3, 4, 5...} Tema 1: Los números naturales Origen: necesidad de contar. Problema: representación (oral y escrita) de números grandes. 1 1. Sistemas aditivos Tipos de sistemas de numeración El
El Conjunto de los Números Naturales
Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos
El Conjunto de los Números Naturales
Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Ejercicios de Álgebra Básica. Curso 2015/16
Ejercicios de Álgebra Básica. Curso 2015/16 Tema 3: El anillo de los números enteros Divisibilidad en Z Ejercicio 1. Probar que para todo número n, n y n + 1 son primos entre sí. Ejercicio 2. Probar que
4.- Raíces cuadradas.
4.- Raíces cuadradas. DEFINICIÓN La raíz cuadrada exacta de un número entero es otro número entero cuyo cuadrado coincide con el primer número, es decir: 2 a = b b = a No todos los enteros tienen raíz
CONJUNTO DE LOS NÚMEROS NATURALES
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I
ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números
C U R S O : MATEMÁTICA
C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 1 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NATURALES Y ENTEROS NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos del conjunto ln = {1, 2, 3, } se denominan
4 ESO. Mat B. Polinomios y fracciones algebraicas
«El que pregunta lo que no sabe es ignorante un día. El que no lo pregunta será ignorante toda la vida» 4 ESO Mat B Polinomios y fracciones algebraicas ÍNDICE: 0. EL LENGUAJE SIMBÓLICO O ALGEBRAICO 1.
Objetivos. Antes de empezar
Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números primos. Descomponer un
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2
TEORÍA DE DIVISIBILIDAD
TEORÍA DE DIVISIBILIDAD MÚLTIPLOS Y DIVISORES.- Dados dos números naturales a y b, con a b, se dice que a es divisible por b o que a es múltiplo de b o que b es divisor de a, si la división de a : b es
NÚMEROS ENTEROS. OBSERVACION: En la división se cumple la regla de los signos de la multiplicación.
NÚMEROS ENTEROS Los elementos del conjunto = {, -3,-2,-1, 0, 1, 2, } se denominan Números Enteros. OPERATORIA EN ADICIÓN Al sumar números de igual signo, se suman los valores absolutos de ellos conservando
UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números
GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos
DIVISIBILIDAD: Problemas
DIVISIBILIDAD: resueltos propuestos Página 1 de 10 resueltos Problema 1 Un problema clásico, propuesto en la Olimpiada de Brasil: Demostrar que, para todo n natural, n 2, 1 + 1 2 + 1 3 + + 1 n nunca es
Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.
DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
FICHAS DE TRABAJO REFUERZO
FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias
TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS
TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS En este eje intentaremos continuar desarrollando en los estudiantes la competencia básica de Resolución de Problemas y además las siguientes competencias específicas
Preguntas propuestas. Aptitud Académica Matemática Cultura General Ciencias Naturales
Preguntas propuestas 4 2015 Aptitud Académica Matemática Cultura General Ciencias Naturales NIVEL BÁSICO Clasificación de los Z + III 1. Si 4 2n tiene 81 divisores, halle el valor de n. A) 20 B) 10 C)
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto
Índice general. Pág. N. 1. Capítulo 1. Capítulo 2. Capítulo 3. Capítulo 4. Teoría de Conjuntos. Razones y Proporciones. Magnitudes Proporcionales
Pág. N. 1 Índice general Capítulo 1 Teoría de Conjuntos 2. Notación y representación 3. Relación de pertenencia 4. Relación de Inclusión) 5. Subconjunto Propio 6. Representación Gráfica de un Conjunto
1. NÚMEROS PRIMOS Y COMPUESTOS.
. NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 75 PRACTICA Operaciones con polinomios Efectúa las operaciones y simplifica las siguientes epresiones: ( ) ( ) ( ) ( ) ( ) 6( ) 4( 4) ( ) ( 5) ( ) ( ) ( ) 9 ( 4 ) 9 4 4 4 5 8 ( ) ( ) 6( ) 6
Matemática Conjuntos Numéricos I CUADERNILLO N 1
Matemática Conjuntos Numéricos I CUADERNILLO N 1 Contenidos - Números Naturales, Cardinales, Enteros, Primos, Pares e Impares. - Notación sucesor y antecesor. - Descomposición en Factores Primos. - Múltiplos,
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. I Nivel I Eliminatoria
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números I Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación. 2 2. Contenidos de Teoría de Números. 3 3. Concepto
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
CONJUNTO DE LOS NÚMEROS NATURALES
CONJUNTO DE LOS NÚMEROS NATURALES 1.- DEFINICIÓN DEL CONJUNTO DE LOS NÚMEROS NATURALES (Conjunto N): Un número natural es cualquier número que se puede usar para contar los elementos de un conjunto finito.
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS DIVISIBILIDAD
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 6 TALLER 3 SEMESTRE II DIVISIBILIDAD RESEÑA HISTÓRICA La división es una operación aritmética de descomposición que consiste en
Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces.
Clase-02 Continuación Números Naturales: Múltiplos: Si n IN ; múltiplo de un número n es todo número natural que contiene a n un número entero de veces. Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene
1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1
FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 A la vista de
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de
TEMA 2: DIVISIBILIDAD
TEMA 2: DIVISIBILIDAD Conceptos de múltiplo y divisor (ejemplos): Del 2 2,4,6,8,10,12,14,16, Del 3 3,6,9,12,15,18,21,24, Por ejemplo: Diremos que 8 es múltiplo de 2 o que 2 es divisor de 8 Conceptos de
mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel [email protected]
mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Divisores de un número entero 2 2. Máximo común divisor
DIVISIBILIDAD Y NÚMEROS PRIMOS I
DIVISIBILIDAD Y NÚMEROS PRIMOS I LUZ MARÍA SÁNCHEZ GARCÍA 1. NÚMEROS PRIMOS Todas las cosas que pueden ser conocidas tienen número, pues no es posible que, sin número, nada pueda ser conocido ni concebido.
Introducción a la Teoría de Números
Introducción a la Teoría de Números Elaborado por: Jeff Maynard Guillén Eliminatoria II Julio, 2011 Introducción a la Teoría de Números A manera de repaso vamos a recordar algunos conjuntos N = {1, 2,
Números primos I. Número primo o primo absoluto. Principales fórmulas. Número compuesto. Números primos entre sí (PESI) Donde:
N = A Números primos I Número primo o primo absoluto Es aquel número entero positivo que tiene sólo dos divisores: la unidad y el mismo número. Número compuesto 2; 3; 5; 7; 11; 13; 17; 19;... Son aquellos
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E
Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de
La asignatura de Matemática estimula el desarrollo de diversas habilidades:
La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,
1 NÚMEROS REALES Representación sobre la recta Entre dos números cualesquiera pertenecientes a él hay infinitos números racionales.
1 NÚMEROS REALES 1.1 NÚMEROS RACIONALES Contiene a los Naturales (N), que son los números usados para contar, y a los enteros (Z), que son los naturales y sus opuestos, y se pueden representar por una
UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez
UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 Página 44 Conviene recordar que: V CILINDRO πr 2 h A TOTALDEUNCILINDRO 2πr h + 2πr 2 Expresa, mediante un polinomio, el volumen de cada una de las velas cilíndricas en función del radio de su base,
TEMA: MULTIPLOS- DIVISORES CRITERIOS DE DIVISIBILIDAD PRIMOS- COMPUESTO
TEMA: MULTIPLOS- DIVISORES CRITERIOS DE DIVISIBILIDAD PRIMOS- COMPUESTO Los múltiplos de un número natural son los números naturales que resultan de multiplicar ese número por otros números naturales.
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
En una recta numérica el punto que representa el cero recibe el nombre de origen.
1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la
UNIDAD 2. MÚLTIPLOS Y DIVISORES
UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..
ACTIVIDADES DE MATEMÁTICAS SECUNDARIA Divisibilidad- mcm y mcd Hoja Nº 2
Teoría: Criterios de divisibilidad Podemos saber fácilmente si un número es divisible por otro sin necesidad de hacer la división, observando estas características: Los múltiplos de 2 terminan en 0, 2,
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
. Un polinomio con raíces únicas, 0, 2, 2, 3 es: a) 4 +4 3 + 2 6 b) 4 +6 3 +9 2 42 c) 5 6 4 +9 3 +4 2 2 d) 5 +6 4 +9 3 4 2 2 e) 4 4 3 + 2 +6 2. Calcula cociente y resto en la siguiente división de polinomios:
Plan de Animación para la enseñanza de las Matemáticas
DIVISIBILIDAD NUMERICA Criterios de divisibilidad por 2, 3 y 5 (5 y 6 grado de primaria y educación media general) Los criterios o caracteres de divisibilidad son ciertas señales de los números que nos
MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD
MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD 1 DIVISIBILIDAD La divisibilidad es una parte de la teoría de los números que analiza cada una de las condiciones que debe tener un número para que sea divisible por
CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález
CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos
Tarea 2 de Álgebra Superior II
Tarea 2 de Álgebra Superior II Divisibilidad 1. Sean a, b, c, d Z. Determine si los siguientes enunciados son verdaderos o falsos. Si son verdaderos, probar el resultado, y si son falsos, dar un contraejemplo.
MINI ENSAYO DE MATEMÁTICA Nº 1
MINI ENSAYO DE MATEMÁTICA Nº 1 1. Si 25 = k, entonces 2k = A) 5 B) 10 C) 50 D) 625 E) 1.250 2. El número 3, puede obtenerse operando solamente el dígito 3. La opción correcta es A) (3 3) : 3 3 : 3 B) (3
SOLUCIÓN II ELIMINATORIA NACIONAL
XXVII OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT SOLUCIÓN II ELIMINATORIA NACIONAL (10 11 1 ) 015 I Parte: Selección única Valor 4 puntos, pts c/u 1. Maya y Nicolás comen
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.
Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
2. Determine los números enteros n que satisfacen la relación planteada:
ÍÒ Ú Ö Æ ÓÒ Ð Ä Å Ø ÒÞ Ä Ò ØÙÖ Ò Å Ø Ñ Ø ÔÐ Ì ÓÖ Æ Ñ ÖÓ ÈÖÓ ÓÖ ÊÓ ÖØÓ ÇÚ Ó Å ÖØ Ò Ê ÑÓ 1 1. Divisibilidad. 1. a) ( ) El producto de dos números naturales m y n aumenta en 132 si cada uno de ellos aumenta
Continuación Números Naturales:
Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:
Polinomios y Fracciones Algebraicas
Polinomios y Fracciones Algebraicas UNIDAD DIDÁCTICA 2 1 o de Bachillerato CCSS Diana Barredo Blanco 1 1 Profesora de Matemáticas 1 o Bachiller (CCSS) 1. POLINOMIOS 1. POLINOMIOS Polinomio: Un polinomio
= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21
Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está
PROGRAMACIÓN DIDÁCTICA
PROGRAMACIÓN DIDÁCTICA Materia Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Los números enteros y fraccionarios. Créditos 3 (30 horas) Bloque II Proporcionalidad y álgebra. Áreas y perímetros
Funciones aritméticas, Fermat,Euler, Wilson y teorema chino del residuo
Funciones aritméticas, Fermat,Euler, Wilson y teorema chino del residuo Entrenamiento #3 para el nacional 1-4 de Octubre del 2015 Por: Argel Resumen Bienvenidos sean de nuevo al mágico mundo de la teoría
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
TEMA 2: DIVISIBILIDAD. Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. 28 es divisible entre 4
Alonso Fernández Galián TEMA : DIVISIBILIDAD Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. LA RELACIÓN DE DIVISIBILIDAD. MÚLTIPLOS Y DIVISORES La divisibilidad
Capítulo 4: Polinomios
Capítulo 4: Polinomios Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de
UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS
C u r s o : Matemática Material N 02 GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS ENTEROS ( ) Los elementos del conjunto enteros. OPERATORIA EN ADICIÓN = {, -3,
Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra.
Colegio Antil Mawida Departamento de Matemática Profesora: Nathalie Sepúlveda Guía nº1 Taller PSU Refuerzo Contenido y Aprendizaje N Fecha Tiempo 2 Horas Nombre: Unidad Nº Núcleos temáticos de la Guía
1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1
FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 A la vista de
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
Teoría de Números. Factorización en Primos. Olimpiada de Matemáticas en Tamaulipas
Teoría de Números Factorización en Primos Olimpiada de Matemáticas en Tamaulipas 1. Introducción Nota para el entrenador: A lo largo del entrenamiento estaremos trabajando únicamente con enteros positivos,
1. GENERALIDADES SOBRE LOS POLINOMIOS.
GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2
TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS.
TEMA : DIVISIBILIDAD Y NÚMEROS ENTEROS.. La relación de divisibilidad Ejemplos de multiplos y divisores: Determina si las siguientes parejas de números son múltiplos o divisores: a) 5 y 25 Lo primero será
