Operaciones con fracciones
|
|
|
- María Jesús Crespo Espinoza
- hace 8 años
- Vistas:
Transcripción
1 Operaciones con fracciones Operaciones con fracciones. Suma de fracciones, resta, producto y división de fracciones. Suma y resta de fracciones 1. Cuando tienen el mismo denominador Se suman o se restan los numeradores y se deja el mismo denominador. Después si podemos se simplifica. Ejemplos 2. Cuando tienen distinto denominador Hay que reducir a común denominador. 1º Se calcula el m.c.m. de los denominadores. Descomponemos en factores los denominadores y cogemos los factores comunes de mayor exponente y los no comunes. 2º Dividimos el m.c.m. obtenido entre cada uno de los denominadores y lo que nos dé lo multiplicamos por el número que haya en el numerador. 3º Ya tenemos todas las fracciones con el mismo denominador, sumamos o restamos los numeradores y dejamos el mismo denominador. 4º Si podemos simplificamos. Para comparar fracciones de distinto denominador, primero debemos reducirlas a común denominador, luego ya las podemos ordenar y comparar. Ejemplos de suma de fracciones con distinto denominador
2 Producto de fracciones 1º Se multiplican los numeradores, este producto es el nuevo numerador. 2º Se multiplican los denominadores, su producto es el nuevo denominador. 3º Después se simplifica. Fracción de un número: Es una multiplicación de fracciones, el número tiene como denominador uno. Fracción de una fracción: Se multiplican las dos fracciones. Fracción inversa: Se le da la vuelta, el numerador pasa a ser el denominador y el numerador es el nuevo denominador. Una fracción multiplicada por su inversa da la unidad. Ejemplos
3 División de fracciones 1º Multiplicamos el numerador de la primera por el denominador de la segunda, el producto es el nuevo numerador. 2º Multiplicamos el denominador de la primera por el numerador de la segunda, el producto es el nuevo denominador. 3º Después si podemos se simplifica. Ejemplos de división de fracciones Operaciones con números decimales 1- Suma o resta de números decimales Para sumar o restar dos o más números decimales, debes ordenarlos en columnas haciendo coincidir las comas. Después se suman o restan como si fuesen números naturales (de derecha a izquierda) y se pone la coma en el resultado, bajo la columna de las comas. Ejemplo:
4 Si los números no tienen la misma cantidad de cifras decimales, puedes añadir a la derecha los ceros necesarios, para que tengan la misma cantidad de cifras decimales. Luego, se suma o resta como lo mostramos en el ejemplo anterior. Veamos un ejemplo de resta e incluyamos los ceros que corresponda: 2- Multiplicación de números decimales Para multiplicar números decimales, se multiplican como si fueran números naturales y, en el producto, se separan con una coma, contando desde la derecha, tantas cifras decimales como tengan en total los dos factores. Resolvamos las siguientes situaciones: 1 - Multiplicación de un decimal por un número natural: Para multiplicar un número decimal por un número natural debes multiplicar prescindiendo de la coma y luego en el resultado o producto se le agrega la coma comenzando a contar desde la derecha tantas cifras como decimales había: 2 - Multiplicación de un número decimal por otro número decimal Para multiplicar un número decimal por otro numero decimal, debes multiplicar prescindiendo de la coma y luego en el resultado o producto se pondrá la coma, comenzando a contar por la derecha, tantas cifras decimales como había en los dos números juntos:
5 3- División con decimales 3.1- División de un número decimal por un número natural Para dividir números decimales se debe identificar cuál de ellos posee más dígitos decimales y luego multiplicar ambos ( dividendo y divisor) por un múltiplo de 10 con tantos ceros como dígitos decimales posee el número identificado. Finalmente, se realiza la división de los números naturales obtenidos tras la multiplicación. Ejemplo:
6 Otra opción para dividir un número decimal entre un número natural, es hacer la división como si fueran números naturales y, al bajar la primera cifra decimal del dividendo, se pone la coma en cociente División de un número natural entre un decimal Para dividir un número natural entre un numero decimal, se multiplican ambos por la unidad seguida de tantos ceros como cifras decimales tenga el divisor, y después se hace la división de números naturales obtenida. Ejemplo: 1 Convierte el divisor en un número natural. Para ello, multiplica el dividendo y el divisor por la unidad seguida de tantos ceros como cifras decimales tenga el divisor. 2 Haz la división de números naturales que has obtenido.
7 3.3- División de un número decimal por un decimal Para dividir un número decimal entre un número decimal, se multiplican ambos por la unidad seguida de tantos ceros como cifras decimales tenga el divisor, y después se hace la división obtenida. Lo importante es saber que el dividendo de la división obtenida puede ser un número natural o decimal, pero el divisor siempre es un número natural Qué pasa cuando divido un número decimal entre 10, 100, 1.000, ? Al dividir un número decimal por 10, 100, , movemos la coma a la izquierda tantas unidades como ceros tiene el divisor. Si es necesario añade ceros a la izquierda.
8
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal
Qué son los decimales? Los decimales son una manera distinta de escribir fracciones con denominadores como 10, 100 y 1,000. Tanto los decimales como las fracciones indican una parte de un entero. Un decimal
UNIDAD 6 AULA 360. Números decimales
UNIDAD 6 Números decimales 1. Números decimales. Ordenación y representación 2. Tipos de números decimales 3. Conversión de decimal a fracción 4. Operaciones con números decimales 1. Números decimales
NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28
Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa
Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción
Fracción decimal Una fracción decimal tiene por denominador la unidad seguida de ceros. Número decimal decimal. Es aquel que se puede expresar mediante una fracción Consta de dos partes: entera y decimal.
TEMA 1: NÚMEROS REALES
TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en
Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =
Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria:
TEMA 0: REPASO DE NÚMEROS. Vamos a repasar cómo se hacen las operaciones básicas con los distintos números que seguro has estudiado en secundaria: Suma de números enteros 1. Si los sumandos son del mismo
NÚMEROS 1º E.S.O. NÚMEROS DECIMALES ÓRDENES DE UNIDADES DECIMALES NÚMEROS DECIMALES. 1 U = 10 d = 100 c = 1000 m =...
NÚMEROS DECIMALES NÚMEROS DECIMALES 1º E.S.O. NÚMEROS DECIMALES ÓRDENES DE UNIDADES DECIMALES Los números decimales se componen de dos partes separadas por una coma. La parte entera, formada por las cifras
FRACCIONES. La fracción se utiliza para representar las partes que se toman de un objeto que ha sido dividido en partes iguales.
FRACCIONES La fracción se utiliza para representar las partes que se toman de un objeto que ha sido dividido en partes iguales. Por ejemplo, dividimos una pizza en 8 partes iguales y cogemos tres. Esto
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales
1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I
Fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b a denominador, indica el número de partes en que se ha dividido la unidad. numerador, indica
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
Tema 6: Fracciones. Fracciones
Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta
Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN
CURSO UNICO DE INGRESO 2010
INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para
CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.
CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
UNIDAD III NÚMEROS FRACCIONARIOS
UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza
TEMA 2. FRACCIONES Y NÚMEROS DECIMALES
TEMA 2. FRACCIONES Y NÚMEROS DECIMALES ÍNDICE 1. Operaciones con fracciones 2. Operaciones con números decimales 3. Fracciones y números decimales 4. Fracción generatriz Tema 2. Fracciones y números decimales
DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57).
DIVISION: Dividir es repartir un número en grupos iguales (del tamaño que indique el divisor). Por ejemplo: 45/ 5 es repartir 45 en grupos de 5. Los términos de la división son: Dividendo: es el número
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
Operaciones básicas con números enteros y con fracciones
Curso de Acceso CFGS Operaciones básicas con números enteros y con fracciones OPEACIONES CON NÚMEOS ENTEOS Suma de números enteros Cuando tienen el mismo signo Se suman los valores y se deja el signo que
TEMA 1 FRACCIONES NOMBRE Y APELLIDOS... HOJA 1 -FECHA...
Nueva del Carmen,. 0 Valladolid. Tel Fax e-mail [email protected] Matemáticas º ESO TEMA FRACCIONES NOMBRE Y APELLIDOS... HOJA -FECHA... SUMA DE FRACCIONES Para sumar o restas fracciones, deben
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA :
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL PERIODO: GRADO FECHA N DURACION 2 7 ABRIL 10 /2015 UNIDADES
Operaciones con fracciones I
Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
POTENCIAS Y RAÍZ CUADRADA
POTENCIAS Y RAÍZ CUADRADA 1. POTENCIAS. 1.1. CONCEPTO DE POTENCIA. ELEMENTOS. Una potencia es un producto de factores iguales. Las potencias están formadas por: Base: factor que se repite. Exponente: número
CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA
QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción
TEMA 1 CONJUNTOS NUMÉRICOS
TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones
Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. = 4: 8 = 0,5
TEMA FRACCIONES. FRACCIONES EQUIVALENTES Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. 8 Dos fracciones equivalentes tienen el mismo valor numérico. = : = 0, = : 8 = 0,
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre
Apuntes de matemáticas 2º ESO Curso
Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde a un número menor
2 Números racionales
008 _ 0-000.qxd 9//08 9:06 Página Números racionales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide
Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.
DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números
Institución Educativa Distrital Madre Laura
Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones
Aritmética: Fracciones
Antes de comenzar la unidad de fracciones algebraicas es preciso tener muy bien cimentados los conocimientos relativos a fracciones aritméticas adquiridos en cursos anteriores. a. Si un objeto se divide
LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006
LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas
TEMA 4: LAS FRACCIONES
TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio
Operaciones con fracciones
Operaciones con fracciones Para efectuar operaciones con fracciones, o con números enteros y fracciones, no podemos actuar como cuando todos los números que intervienen son enteros; hemos de tener en cuenta
Conjunto de Números Racionales.
Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números
TEMA 3: NÚMEROS DECIMALES
TEMA 3: NÚMEROS DECIMALES 1. NÚMEROS DECIMALES Para expresar cantidades comprendidas entre dos números enteros, utilizamos los números decimales. Los números decimales se componen de dos partes separadas
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
ESCUELA SECUNDARIA OFICIAL No MIGUEL LEON PORTILLA. GUIA DE EXAMEN DE RECUPERACION 3er. BIMESTRE MATEMATICAS I
ESCUELA SECUNDARIA OFICIAL No. 00 MIGUEL LEON PORTILLA GUIA DE EXAMEN DE RECUPERACION er. BIMESTRE MATEMATICAS I NOMBRE DEL ALUMNO: GRADO: _º_GRUPO: _B_ REPRESENTACIÓN DE NÚMEROS FRACCIONARIOS Y DECIMALES
Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones
Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos
1.- NÚMEROS NATURALES Y DECIMALES
1.- NÚMEROS NATURALES Y DECIMALES 1.1 Posición de las cifras de un número natural. Los números naturales son los números que conocemos (0, 1, 2, 3 ). Los números naturales están ordenados, lo que nos permite
Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac
FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...
OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima.
OBJETIVO COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: unidades de un orden forman unidad del orden siguiente..
Sumar y restar radicales
Sumar y restar radicales Radicales semejantes Decimos que dos radicales son semejantes si tienen el mismo índice y el mismo radicando. Ejemplos: Los siguientes pares de radicales son semejantes. 5 y y
UNIDAD 3: NÚMEROS DECIMALES
UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.
Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos
UNIDAD DIDÁCTICA #1 CONTENIDO
UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA
Potencias de exponente entero o fraccionario y radicales sencillos
Potencias de exponente entero o fraccionario y radicales sencillos I. Potencias de exponente entero La potencia es una operación matemática que sirve para representar la multiplicación de un número por
LAS FRACCIONES. Si el numerador es menor que el denominador, la fracción es menor que
LAS FRACCIONES 1. Las fracciones y sus términos.. Nº mixto.. La fracción de un número.. Cálculo de una cantidad, cuando sabemos la fracción de ella.. Fracciones equivalentes.. Fracción irreducible.. Reducción
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
8 _ 0-0.qxd //0 : Página Números reales INTRODUCCIÓN Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que
UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES
UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA
NÚMEROS RACIONALES. Tendremos en cuenta el cociente de potencias de la misma base: ( b ) b 12 ( 6)
NÚMEROS RACIONALES 3 4 2 3 1. ( b ) /( b ) es igual a: a) b -18 b) b 18 c) b -6 (Convocatoria junio 2001. Examen tipo E) Tendremos en cuenta el cociente de potencias de la misma base: 3 4 12 3 4 2 3 (
Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.
NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de
Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.
Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
TEMA 2 FRACCIONES MATEMÁTICAS 2º ESO
TEMA 2 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,
SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES
SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES 1. REPASAMOS LA SUMA Y LA RESTA 1.1. SUMA. La suma o adición consiste en añadir dos números o más para conseguir una cantidad total. Los números
Números decimales. 1.1. Lectura de las fracciones decimales
Números decimales 1. Fracción decimal Son de uno muy frecuente y se las representa con la notación particular, que consiste en escribir sólo el numerador y recordar el número de ceros que siguen a la unidad
Potencias (1) Nombre Curso: Fecha: 1. Concepto de potencia.
Potencias (1) Nombre Curso: Fecha: 1. Concepto de potencia. Observando el dibujo nos preguntamos: cuántos remeros participan en las regatas? Son 4 remeros en cada una de las 4 traineras, luego en total
Polinomios III. I. Fracciones algebraicas con polinomios. 1. Simplificación de fracciones algebraicas. 2. Amplificación de fracciones algebraicas
Polinomios III Finalmente veremos en esta última ficha lo correspondiente a fracciones terminando de esta manera con los polinomios. I. Fracciones algebraicas con polinomios Definiremos como una fracción
Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2
Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución
FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador.
FRACCIONES FRACCION Una fracción es una epresión formada por dos números separados por una raa horizontal, al número de abajo se le llama denominador nos indica el número de partes iguales en que se divide
Operaciones de números racionales
Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste
Los Conjuntos de Números
Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes
Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción
1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original
Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS
8 _ 0-088.qxd //0 09: Página Números decimales INTRODUCCIÓN El estudio de los números decimales comienza recordando el sistema de numeración decimal, que es la base de la expresión escrita de los números
Fracciones numéricas enteras
Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El
SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período
Los números Decimales, esas comas SISTEMA DE NUMERACIÓN DECIMAL Relación Fracción-Nº Decimal. Parte entera Parte decimal 2.533 Ante período Período Toda fracción se puede escribir en forma decimal, para
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
Números Enteros. Introducción
Números Enteros Introducción Todos los conjuntos de números fueron de alguna manera "descubiertos" o sugeridos en conexión con problemas planteados en problemas físicos o en el seno de la matemática elemental
2. EXPRESIONES ALGEBRAICAS
2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división
FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.
FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos
TEMA 2 POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA...
Nueva del Carmen,. 011 Valladolid. Tel: 1 Fax: 1 Matemáticas º ESO TEMA POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... Comenzamos a trabajar con potencias. Son muy fáciles si las cogemos el tranquillo
Chapter Audio Summary for McDougal Littell Pre-Algebra
Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar
Fracciones equivalentes
Fracciones equivalentes Las fracciones equivalentes representan la misma parte de la unidad. Si dos fracciones son equivalentes, los productos de sus términos en cruz son iguales.. En cada caso, escribe
1.6 NOTACIÓN CIENTÍFICA.
1.6 NOTACIÓN CIENTÍFICA. 1.6.1 POTENCIAS DE DIEZ. Emplear múltiplos y submúltiplos de las unidades permite manejar números más sencillos y con los que es más difícil equivocarse. Pero puede ocurrir que
LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.
ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones
UNIDAD 5. FRACCIONES Y OPERACIONES
UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
Vamos a ver por separado las operaciones básicas con expresiones algebraicas para monomios y polinomios.
L as operaciones con expresiones algebraicas son las mismas operaciones que se realizan con los números reales. Es decir, que con las expresiones algebraicas podemos realizar las cuatro operaciones básicas
Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1
Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2
OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL
COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son
PRIORIDAD DE OPERACIONES:
PRIORIDAD DE OPERACIONES 1º Hay que resolver o quitar los paréntesis. º Se hacen las multiplicaciones y divisiones en el orden que aparezcan de izquierda a derecha º Se hacen las sumas y las restas en
Multiplicación y División de Números Naturales
Multiplicación y División de Números Naturales I. Multiplicación La multiplicación o producto, es una forma rápida de calcular la suma, cuando los sumandos son iguales. 2+2+2+2 = 2 x 4 = 8. También se
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
Tema 6 Lenguaje Algebraico. Ecuaciones
Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias
Fracciones y números mixtos
Fracciones y números mixtos Un número mixto está formado por un número natural y una fracción. Todas las fracciones mayores que la unidad que no son equivalentes a un número natural se pueden expresar
