Taller Nº 1 Matematica P.S.U.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Taller Nº 1 Matematica P.S.U."

Transcripción

1 Unidad : Taller Nº 1 Matematica P.S.U. Conjuntos Numéricos Objetivos: i) Aplicar definiciones y operatoria entre conjuntos. ii) Resolver problemas aritméticos que involucren las cuatro operaciones. 1) Determine los elementos de los siguientes conjuntos numéricos: Números Naturales IN = { Números Cardinales IN o = { Determine los elementos de los siguientes subconjuntos de IN o : Números pares = { Números impares = { Números dígitos = { Números primos = { 2) Determine los elementos de los conjuntos: A = { x IN / x 4 } A = { B = { x IN / x 6 } B = { C = { x IN / x 3 } C = { D = { x IN / x 9 } D = { E = { x IN / 5 x 9 } E = { F = { x IN / 2 x 6 } F = { G = { x IN / 7 x 12 } G = { H = { x IN / 5 x 10 } H = { I = { x IN / x es par 6 x 18 } I = { J = { x IN / x es impar 5 x 17 } J = { K = { x IN / x es dígito 3 x 8 } K = { L = { x IN / x es primo 7 x 23 } L = { 3) Complete los términos faltantes para cada una de las siguientes operaciones: 23 + = = = = = = = 84 : 6 = 9 85 : = 5 9 = = 216 : 12 = 8 4) Calcular aplicando prioridad entre las operaciones y eliminación de paréntesis: a) : = b) 24 : : 3 = c) 48 [53 ( )] = d) [8 (17 9) 2(3 + 11)] : [3 ( )]= (1)

2 Problemas aritméticos: 1) Los botones grandes tienen 4 agujeros y los botones chicos 2 agujeros. Cuántos agujeros hay en 7 docenas de botones grandes y 4 docenas de botones chicos? A) 96 B) 132 C) 336 D) 432 E) Otra cantidad 2) En un tablero de ajedrez se coloca una bolita en el 1 er cuadrito; en el 2º el doble del primero, en el 3º el triple del 2º y en el 4º el cuádruplo del 3º. Cuántas bolitas corresponden al 7º cuadrito? A) 28 B) 120 C) 128 D) 720 E) ) En base a la siguiente sucesión: 12, 20, 17, 25, 22,... se tiene que su séptimo término es: A) 19 B) 27 C) 30 D) 32 E) Otro número 4) Si n veces 2 p veces 3 Esta proposición es verdadera si: A) n = 3 ; p = 3 B) n = 4 ; p = 3 C) n = 5 ; p = 4 D) n = 6 ; p = 4 E) n = 7 ; p = 5 5) En un grupo hay 13 hombres y 12 mujeres, Si 8 hombres fuman y 5 mujeres no fuman. Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)? l) 6 hombres no fuman ll) 11 personas no fuman lll) 15 personas fuman A) Sólo l B) Sólo l y ll C) Sólo l y lll D) Sólo ll y lll E) Las tres 6) Un país de Europa tiene una diferencia de 6 horas respecto de Chile (cuándo en Chile son las 6 A.M. en dicho país son las 12 A.M.). Si un viajero sale de Chile a las 15 horas de un día Lunes y el vuelo demora 18 horas. A que hora llegará a dicho país según su hora local? A) 3 horas B) 6 horas C) 9 horas D) 12 horas E) 15 horas 7) En un supermercado por cada tres unidades de un mismo artículo que se compran se pagan dos. Si el valor de la caja de leche es $720. Cuántas cajas de leche llevé si en total pagué $5.760? A) 8 cajas B) 12 cajas C) 15 cajas D) 18 cajas E) 21 cajas 8) Pedro dispone de $900 para comprar galletas y chocolates. Si cada galleta vale $50 y al comprar 6 galletas y 6 chocolates recibe $60de vuelto. Cuánto le costó cada chocolate? A) $50 B) $50 C) $90 D) $100 E) $120 (2)

3 9) Sea el número de tres cifras 53. Qué cifras puede(n) ser la tercera para que este número sea primo? l) 1 ll) 3 lll) 7 A) Sólo l B) Sólo ll C) Sólo lll D) Sólo l y ll E) Las tres 10) Al escribir todos los números del 1 a 100 en forma continuada, sin saltarse ninguno. Cuántas veces se repite el número 9? A) 9 B) 10 C) 18 D) 19 E) 20 11) Se definen las operaciones y tal que a b = a (a + b) ; c d = (c d):d luego el resultado de (5 7) 10 es: A) 1 B) 3 C) 5 D) 7 E) 9 12) En qué operación el resultado de operar dos números no cambia, si el 1º aumenta en 1 y el 2º disminuye en 1? A) Al sumarlos B) Al restarlos C) Al multiplicarlos D) Al dividirlos E) Para ninguna de las anteriores. 13) Al reducir eliminando paréntesis: [5 + 3 (23 15) ] + [35 5 (21 17) ] =? A) 44 B) 79 C) 149 D) 184 E) Otro valor 14) Al reducir aplicando prioridad entre operaciones: 48 : : 3 =? A) 20 B) 22 C) 32 D) 52 E) ) Qué variación experimenta el producto entre dos números naturales si cada uno de estos aumenta al doble? A) No varía B) Aumenta al doble C) Aumenta al triple D) Aumenta 4 veces E) Aumenta 8 veces 16) Compro 75 lápices pagando en total $ Cuánto dinero ganaré si vendo cada uno de ellos en $120? A) $2.250 B) $4.050 C) $4.500 D) $6.750 E) $ ) Se puede determinar la edad de una persona si: (1) En 10 años más tendrá 25 años. (2) Hace 5 años tenía 10 años. 18) Qué edad tendrá Luis cuando su hermano Juan cumpla 15 años? (1) En 3 años más Juan cumplirá 15 años (2) Hace 7 años Luis tenía 6 años (3)

4 19) Cuál es el menor de tres hermanos? (1) Pedro es menor que Juan (2) Mario es mayor que Juan y Pedro 20) Se tiene que la expresión 3 n 1 es siempre un número par si: (1) n es número par positivo (2) n es número impar positivo Recordando teoría de conjuntos: Un conjunto es una lista, colección o agrupación de objetos bien definidos, los que se llaman elementos, los que se escriben entre llaves separados por comas. Un conjunto puede quedar definido de dos formas: i) Por Extensión: Cuándo se escriben todos los elementos que lo forman. ii) Por Comprensión: Cuándo se indican sus elementos por medio de una propiedad precisa, que permita identificarlos. El conjunto A que posee por elementos a los números dígitos definido por: i) Extensión es: A = { 0,1,2,3,4,5,6,7,8,9 } ii) Comprensión es: A = { x/x es número positivo de una cifra } 1) Defina por extensión: A = { x/x es letra vocal } A = { B = { x/ x 2 = 9 } B = { C = { x/ 4 x = 64 } C = { D = { x/2x 1 = 9 } D = { 2) Defina por comprensión: A = { a,b,c,d,e } A = { x/x B = { -2,2 } B = { x/x C = { 0 } C = { x/x D = { 2,3,5,7 } D = { x/x Pertenencia: Si x es un elemento de un conjunto A se tiene que x pertenece a A; lo que se denota por x A ; de no cumplirse la condición anterior x no pertenece a A ; lo que se denota por x A. 3) Sea el conjunto: A = { x/x es letra de la palabra estudiar } Escrito por extensión y en orden alfabético sería: A = { Complete colocando o según corresponda entre: a A r A s A y A u A b A c A t A Subconjuntos: Si todo elemento de un conjunto A es elemento de un conjunto B; se tiene que A es subconjunto de B lo que se denota por A B ; de no cumplirse la condición anterior A no es subconjunto de B ; lo que se denota por A B. (4)

5 4) Sean los conjuntos: R = { 1,3,5 } S = { 1,5,7 } T = { 1,3,5,7,9 } Complete colocando o según corresponda entre: R T R S T R Diagramas: S T S R T S a) Si A B con A B ; se representa por: B A B A b) Si A B ; se representa por: A B A B 5) En base al diagrama, identifique los elementos de los siguientes conjuntos: R f P = { a c Q = { P e Q b d R = { g Donde: P...R Q...R Conjunto vacío: Es todo conjunto que carece de elementos, el que suele llamarse conjunto nulo, denotándose por el símbolo. 6) Determine si es vacío cada uno de los siguientes conjuntos; de no serlo indique sus elementos para: A = { x/x es letra del abecedario anterior a la letra "a" } A = B = { x/x + 3 = 3 } B = C = { x/x x } C = D = { x/2 x = 32 } D = E = { x/x 3 =-8 } E = Conjunto Universal: Es el conjunto formado por todos los elementos que componen una lista, colección o agrupación de objetos, denotándose por U y representándose gráficamente por un rectángulo. Ejemplos: a u i e o U El conjunto de las vocales, el del abecedario, el conjunto de los números dígitos, primos, etc. son conjuntos universales. (5)

6 Operaciones entre Conjuntos: 1) Unión: La unión de los conjuntos A y B es el conjunto formado por todos los elementos que pertenecen a A o a B o a ambos conjuntos; es decir considera a todos los elementos. La unión de los conjuntos A y B se denota por A B. Si A = { a,b,c,d } y B = { b,d,e,f } ; luego A B = { a,b,c,d,e,f } 2) Intersección: La intersección de los conjuntos A y B es el conjunto de todos los elementos que pertenecen a ambos conjuntos a la vez. La intersección de los conjuntos A y B se denota por A B. Si A = { a,b,c,d } y B = { b,d,e,f } ; luego A B = { b,d } 3) Diferencia: La diferencia de los conjuntos A y B es el conjunto de todos los elementos de A que no pertenecen a B. La diferencia entre el conjunto A y B se denota por A - B. Si A = { a,b,c,d } y B = { b,d,e,f } ; luego A - B = { a,c } Recíprocamente: B - A = { e,f } Notar que A B B A. 4) Complemento: El complemento de un conjunto A con respecto a un conjunto universal U, es el conjunto de todos los elementos de U que no pertenecen a A. El complemento del conjunto A se denota por A. Si U = { x/x es número dígito } y A = { 2,5,7,9 } ; luego U = { 0,1,2,3,4,5,6,7,8,9 } A = { 0,1,3,4,6,8 } 7) Sea U = { 1,2,3,4,5,6 } ; A = { 1,3,4,6 } y B = { 1,4,5,6 } ; calcular: (a) A B = (b) A B = (c) A B = (d) B A = (e) A = (f) B = (g) A B = (h) A B = (i) A - B = (j) B - A = (k) (A B) = (l) (A B) = (m) (A - B) = (n) (B - A) = (6)

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se

Más detalles

Teoría de Conjuntos y Conjuntos Numéricos

Teoría de Conjuntos y Conjuntos Numéricos Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia

Más detalles

Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto.

Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto. TEORÍ DE CONJUNTOS. Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto. Ejemplos: Los libros de una biblioteca. Los alumnos de una escuela.

Más detalles

Los Números Enteros (Z)

Los Números Enteros (Z) Los Números Enteros (Z) Los números enteros: representación gráfica, orden, modulo o valor absoluto. Operaciones en Z, procedimientos y propiedades de estas. Prioridades de operaciones y paréntesis. Problemas

Más detalles

Profesor: Rubén Alva Cabrera

Profesor: Rubén Alva Cabrera Profesor: Rubén lva Cabrera INDICE INTRODUCCIÓN RELCION DE PERTENENCI DETERMINCION DE CONJUNTOS DIGRMS DE VENN CONJUNTOS ESPECILES RELCIONES ENTRE CONJUNTOS CONJUNTOS NUMÉRICOS UNION DE CONJUNTOS INTERSECCIÓN

Más detalles

mi la sol fa si Un conjunto está bien definido si se puede establecer sin dudar si un elemento pertenece o no al conjunto.

mi la sol fa si Un conjunto está bien definido si se puede establecer sin dudar si un elemento pertenece o no al conjunto. CONJUNTOS LENGUJE SIMÓLICO Cada día, en nuestra conversación, por la televisión, en la lectura de por ejemplo un diario, o en el trabajo está presente la idea de conjunto. En matemática utilizaremos la

Más detalles

TEORÍA DE CONJUNTOS.

TEORÍA DE CONJUNTOS. TEORÍA DE CONJUNTOS. NOCIÓN DE CONJUNTO: Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos.

Más detalles

Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 45

Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 45 Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 3 de febrero de 2013 1/ 45 Parte I 2/ 45 Definición intuitiva de conjunto Definición Un conjunto

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 2015 Lic. Manuel

Más detalles

Teoría de Conjuntos y Conjuntos Numéricos

Teoría de Conjuntos y Conjuntos Numéricos Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra.

Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra. Colegio Antil Mawida Departamento de Matemática Profesora: Nathalie Sepúlveda Guía nº1 Taller PSU Refuerzo Contenido y Aprendizaje N Fecha Tiempo 2 Horas Nombre: Unidad Nº Núcleos temáticos de la Guía

Más detalles

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora.

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. CAPÍTULO 1 INTRODUCCIÓN Construcción con tijeras y papel Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. La caja1. De una hoja de papel vamos a recortar un cuadrito

Más detalles

UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN

UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN UNDD : TEORÍ DE CONJUNTOS 2.1. NTRODUCCÓN Según Georg Cantor un conjunto es la reunión, agrupación o colección de elementos bien definidos que tienen una propiedad en común, concepto que ha penetrado y

Más detalles

CONJUNTOS Y SISTEMAS NUMÉRICOS

CONJUNTOS Y SISTEMAS NUMÉRICOS 1. CONJUNTOS. 1.1 Conceptos básicos Medir y contar fueron las primeras actividades matemáticas del hombre y ambas nos conducen a los números. Haciendo marcas, medían el tiempo y el conteo de bienes que

Más detalles

ELEMENTOS DE LA TEORÍA DE CONJUNTOS

ELEMENTOS DE LA TEORÍA DE CONJUNTOS ELEMENTOS DE LA TEORÍA DE CONJUNTOS 1 CONJUNTO EJEMPLOS NOTACIÓN NOTACIÓN TABULAR O POR EXTENSIÓN DE UN CONJUNTO Cuando se define el conjunto por la efectiva enumeración de sus elementos separándolos por

Más detalles

Matemáticas aliadas a la salud MATE3035

Matemáticas aliadas a la salud MATE3035 Matemáticas aliadas a la salud MATE3035 TEMA: Introducción a la teoría de conjuntos Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Profa. Yuitza T. Humarán Martínez Adaptado por Profa.

Más detalles

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA COLEGIO NUESTRO SEÑOR DE L UEN ESPERNZ signatura: NÁLISIS MTEMÁTICO 11º Profesor: Lic. EDURDO DURTE SUESCÚN TLLER OPERCIONES CON CONJUNTOS OPERCIONES CON CONJUNTOS En aritmética se suma, resta y multiplica,

Más detalles

MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS

MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS 2 de marzo de 2009 Parte I Conjuntos Definición intuitiva de conjunto Definición Un conjunto es una colección de objetos. Ejemplos A = {a, e, i, o, u} B = {blanco, gris, negro} C = {2, 4, 6, 8, 9} D =

Más detalles

ARITMÉTICA MODULAR. Unidad 1

ARITMÉTICA MODULAR. Unidad 1 Unidad 1 ARITMÉTICA MODULAR 9 Capítulo 1 DE LA TEORÍA DE CONJUNTOS Objetivo general Presentar y afianzar algunos conceptos de la Teoría de Conjuntos relacionados con el estudio de la matemática discreta.

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

Introducción al Álgebra

Introducción al Álgebra Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos

Más detalles

TEMA 3 Elementos de la teoría de los conjuntos. *

TEMA 3 Elementos de la teoría de los conjuntos. * TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto

Más detalles

Guía de conjuntos. 1ero A y B La importancia del lenguaje.

Guía de conjuntos. 1ero A y B La importancia del lenguaje. Guía de conjuntos. 1ero A y B La importancia del lenguaje. El lenguaje nos permite salir de nosotros mismos y comunicarnos con el mundo; a veces un gesto nos transmite un pensamiento o un sentimiento.

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

CONJUNTOS UNIDAD II. a A. En caso I.1 CONCEPTOS BÁSICOS DE CONJUNTOS

CONJUNTOS UNIDAD II. a A. En caso I.1 CONCEPTOS BÁSICOS DE CONJUNTOS CONJUNTOS UNIDAD II I.1 CONCEPTOS BÁSICOS DE CONJUNTOS Un conjunto es la agrupación en un todo de objetos bien definidos y diferenciables entre si, que se llaman elementos del mismo. Los conjuntos se denotan

Más detalles

Conjuntos Numéricos I

Conjuntos Numéricos I Conjuntos Numéricos I En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización

Más detalles

Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1

Liceo Nº 35, Instituto Dr. Alfredo Vázquez Acevedo. Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 TEORÍA DE CONJUNTOS CONOCIMIENTOS BÁSICOS Cuando decimos: "un elemento

Más detalles

Unidad II. Conjuntos. 2.1 Características de los conjuntos.

Unidad II. Conjuntos. 2.1 Características de los conjuntos. Unidad II Conjuntos 2.1 Características de los conjuntos. Es la agrupación en un todo de objetos bien diferenciados en el la mente o en la intuición, por lo tanto, estos objetos son bien determinados y

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS

CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

CONJUNTOS CONJUNTOS NUMÉRICOS

CONJUNTOS CONJUNTOS NUMÉRICOS CONJUNTOS CONJUNTOS NUMÉRICOS 1. CONJUNTOS Un conjunto es una colección de elementos de cualquier índole. Describimos el conjunto escribiendo sus elementos entre llaves y separados por comas. Por ejemplo,

Más detalles

CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie.

CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. RESUMEN DE MATEMATICAS I PARTE I CONJUNTOS CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. A= {números pares} B= { banda de rock} ELEMENTO: Son las ideas u objetos cualesquiera

Más detalles

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética 12345678901234567890 M ate m ática Tutorial MT-b1 Matemática 2006 Tutorial Nivel Básico Elementos básicos de Aritmética Matemática 2006 Tutorial Algunos elementos básicos de Aritmética Marco teórico: 1.

Más detalles

TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B.

TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B. TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos se llaman elementos

Más detalles

Tutorial MT-b2. Matemática Tutorial Nivel Básico. Números Racionales

Tutorial MT-b2. Matemática Tutorial Nivel Básico. Números Racionales 78907890 M ate m ática Tutorial MT-b Matemática 00 Tutorial Nivel Básico Números Racionales Matemática 00 Tutorial Números Racionales Marco teórico:. Definición: Los racionales son los números que puede

Más detalles

TEMA N 1 LÓGICA Y CONJUNTOS

TEMA N 1 LÓGICA Y CONJUNTOS TEMA N 1 LÓGICA Y CONJUNTOS DEFINICIÓN Y NOTACIÓN DE CONJUNTOS OBJETIVOS Comprenderás, o repasarás, la idea intuitiva de conjunto. Definirás conjuntos por enumeración y por comprensión, así como su forma

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

{ } Listado de elementos del conjunto

{ } Listado de elementos del conjunto CONJUNTOS Qué es un conjunto? Un conjunto es un grupo no ordenado de elementos que comparte una o más características. Nomenclatura en los conjuntos Los conjuntos siempre se nombran con letras mayúsculas,

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos:

1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos: Repaso Prueba-01 Clase-14 1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos: i) Números naturales: IN = { iii) Los números enteros: Z = { iv) Los números Racionales: Q = { v)

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros GUICEN023MT21-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros GUICEN023MT21-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros Programa Entrenamiento Desafío Un número n, en los enteros positivos, tiene un total de p divisores positivos distintos. Luego,

Más detalles

Algunos ejemplos de conjuntos pueden ser los siguientes:

Algunos ejemplos de conjuntos pueden ser los siguientes: 1. CONJUNTOS Y PRODUCTO CRTESINO. OBJETIVOS: 1) Establecer los conceptos básicos y las distintas notaciones para conjuntos. 2) Descripción de conjuntos en distintas formas: Lista, expresión verbal, expresión

Más detalles

CONJUNTOS TEORIA BASICA DE CONJUNTOS

CONJUNTOS TEORIA BASICA DE CONJUNTOS Repasamos CONJUNTOS TEORIA BASICA DE CONJUNTOS Cualquier colección de objetos o individuos se denomina conjunto. El termino conjunto no tiene una definición matemática, sino que es un concepto primitivo.

Más detalles

Teoría de Conjuntos y Conjuntos Numéricos

Teoría de Conjuntos y Conjuntos Numéricos Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

MATEMÁTICAS II CICLO COMÚN INBAC UNIDAD DIDÁCTICA #5

MATEMÁTICAS II CICLO COMÚN INBAC UNIDAD DIDÁCTICA #5 UNIDAD DIDÁCTICA #5 INDICE PÁGINA Números Irracionales -------------------------------------------------------------------------------------2 Los Pitagóricos y 2 ----------------------------------------------------------------------3

Más detalles

Guía Nº 1(B) ALGEBRA

Guía Nº 1(B) ALGEBRA Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 19 Contenido 1 Teoria de

Más detalles

Ensayo 2:

Ensayo 2: 1. Si (x -2) + (x - 3) = 1, entonces el valor de x es: ) -5 ) 6/5 ) 5 D) -6 E) 3 2. Dados los siguientes números racionales, tres quintos y siete novenos, ordenados de menor a mayor, cuál de los siguientes

Más detalles

MATEMÁTICA UNIDAD N 1: CONJUNTOS 1 AÑO

MATEMÁTICA UNIDAD N 1: CONJUNTOS 1 AÑO MTEMÁTI NIDD N 1: ONJNTOS 1 ÑO onjunto Elemento Pertenencia Eisten conceptos-términos que por ser muy primitivos se aceptan sin definir. En la teoría de conjuntos los términos primitivos son: ONJNTO, ELEMENTO,

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

open green road Guía Matemática tutora: Jacky Moreno .cl

open green road Guía Matemática tutora: Jacky Moreno .cl Guía Matemática ÁNGULOS tutora: Jacky Moreno.cl 1. Geometría La geometría es una de las ramas de las matemáticas más antiguas que se encarga de estudiar las propiedades del espacio, principalmente las

Más detalles

MATEMÁTICAS II CC III PARCIAL

MATEMÁTICAS II CC III PARCIAL UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una

Más detalles

Continuación Números Naturales:

Continuación Números Naturales: Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:

Más detalles

Aritmética para 6.º grado (con QuickTables)

Aritmética para 6.º grado (con QuickTables) Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

1 Conjuntos y propiedades de los números naturales

1 Conjuntos y propiedades de los números naturales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #1: martes, 31 de mayo de 2016. 1 Conjuntos y propiedades de los números

Más detalles

Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10:

Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10: Logarítmos en base diez: El 10 se omite como base; es decir: log 10 a = log a. Clase-1 Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10: (a) log 10.000 = (f) log 0,1 =

Más detalles

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole.

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole. Tema 1: Teoría de Conjuntos. Logica proposicional y lgebras de oole. 1.1 Teoria de conjuntos Objetivo específico: Operar con conjuntos y aplicar sus propiedades para resolver problemas reales. Piensa Elabora

Más detalles

TEMA Nº 1. Conjuntos numéricos

TEMA Nº 1. Conjuntos numéricos TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales

Más detalles

Guía de estudio Introducción a la teoría de conjuntos Unidad A: Clase 4

Guía de estudio Introducción a la teoría de conjuntos Unidad A: Clase 4 Guía de estudio Introducción a la teoría de conjuntos Unidad A: Clase 4 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. 3. Teoría de

Más detalles

MATEMÁTICAS CONJUNTOS (OPERACIONES)

MATEMÁTICAS CONJUNTOS (OPERACIONES) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS CONJUNTOS (OPERACIONES) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 10 / 02 / 15 TALLER: 1-3 Desempeño: * Realiza operaciones

Más detalles

SEMINARIO MENOR DIOCESANO SAN JOSE DE CUCUTA LA JUVENTUD A JESUCRISTO QUEREMOS DEVOLVER PLAN DEMEJORAMIENTO 2012

SEMINARIO MENOR DIOCESANO SAN JOSE DE CUCUTA LA JUVENTUD A JESUCRISTO QUEREMOS DEVOLVER PLAN DEMEJORAMIENTO 2012 NOMBRE:. AREA: MATEMATICAS A. SELECCIONA LA RESPUESTA CORRECTA: 1. Una proposición es : a) Una afirmación que comunica una idea verdadera o falsa. b) Una idea que es verdadera. c) Una afirmación que es

Más detalles

Clase 1 Números Reales. Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales

Clase 1 Números Reales. Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Clase 1 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Introducción Muchas veces, en actividades cotidianas, es necesario dar respuesta a preguntas relacionadas con números,

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,...

1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,... Clase-04 Temas: Operatoria entre números naturales (IN) y enteros (Z), múltiplos, divisores, mínimo común múltiplo (M.C.M.) y máximo común divisor (M.C.D.). 1) Indique los primeros elementos de los siguientes

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 1 Conjuntos Numéricos COMPETENCIA Reconocer los diferentes conjuntos numéricos,

Más detalles

1) Adición: Se colocan los sumandos uno bajo de los otros, dejando coma bajo coma para luego sumar y colocar en el resultado la coma bajo las otras.

1) Adición: Se colocan los sumandos uno bajo de los otros, dejando coma bajo coma para luego sumar y colocar en el resultado la coma bajo las otras. Clase-07 Operaciones con decimales finitos: Los decimales finitos, por ejemplo: 0,75; 3,07; 5,105 ; etc. se pueden operar directamente, aplicando los siguientes procedimientos: 1) Adición: Se colocan los

Más detalles

TEMA 17: PROBABILIDAD

TEMA 17: PROBABILIDAD TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.

Más detalles

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos 12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las

Más detalles

El concepto de Conjunto es una constante de las Matemáticas; se habla de conjuntos de números, conjuntos de líneas, conjuntos de rectas, etc.

El concepto de Conjunto es una constante de las Matemáticas; se habla de conjuntos de números, conjuntos de líneas, conjuntos de rectas, etc. L TEORÍ DE CONJNTOS En Odontología, conocer la teoría de los conjuntos es esencial para cualquier proyecto de investigación, principalmente los que involucran disciplinas como: Estadística y ioestadística,

Más detalles

Ejercicios Tema 1. Profesora: Carmen López Esteban. Curso: 1ª Magisterio. Esp. Educación Infantil. Grupo: A.

Ejercicios Tema 1. Profesora: Carmen López Esteban. Curso: 1ª Magisterio. Esp. Educación Infantil. Grupo: A. Profesora: Carmen López Esteban Curso: 1ª Magisterio. Esp. Educación Infantil Grupo: A. Ejercicios de CONJUNTOS Ejercicio 1: 1.1) A = {x/x es país fronterizo con Perú} El conjunto esta por... 1.2) B =

Más detalles

Las ideas básicas sobre conjuntos las desarrollaron Georg Cantor ( ) y George Boole ( ).

Las ideas básicas sobre conjuntos las desarrollaron Georg Cantor ( ) y George Boole ( ). TEORÍA DE CONJUNTOS. La teoría de conjuntos es un sistema matemático y un lenguaje específico para el manejo de ciertos problemas. Al igual que otros sistemas matemáticos, como el álgebra y la geometría,

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad. nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas

Más detalles

PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO

PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO MODALIDAD FLEXIBLE DECRETO Nº211 1. En el siguiente sistema de ecuaciones: Cuál es el valor de y? A. 4 B. 0 C. 6 D. 8 2. Cuál es el resultado de ( 5)

Más detalles

Secuencia didáctica para 5 grado Números naturales

Secuencia didáctica para 5 grado Números naturales Secuencia didáctica para 5 grado Números naturales Actividad 1 LOS CENSOS Un censo de población es el recuento de la cantidad de habitantes de una zona. El primer censo en nuestro país se realizó en 1869

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

Capítulo 3. Conjuntos. Continuar

Capítulo 3. Conjuntos. Continuar Capítulo 3. Conjuntos Continuar Introducción Georg Cantor definió el concepto de conjunto como una colección de objetos reales o abstractos e introdujo el conjunto potencia y las operaciones entre conjuntos.

Más detalles

UNIDAD 1 CONJUNTOS. Prof. Patricia Roballo MATEMÁTICA 5º Año Página 1

UNIDAD 1 CONJUNTOS. Prof. Patricia Roballo MATEMÁTICA 5º Año Página 1 UNIDAD 1 CONJUNTOS Conceptos primitivos: conjunto, elemento y la relación pertenecer. Conjuntos bien determinados. Igualdad de conjuntos. Relación de inclusión. Diagramas de Venn. Operaciones entre conjuntos:

Más detalles

Problemas de ecuaciones de primer grado

Problemas de ecuaciones de primer grado Problemas de ecuaciones de primer grado 1. La suma de dos números pares consecutivos es 102. Halla esos números. (50 y 52) 2. La suma de tres números impares consecutivos es 69. Busca los números. (21,23

Más detalles

TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 }

TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 } TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt [email protected] Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Primer Año EL CONJUNTO DE LOS NÚMEROS ENTEROS

Primer Año EL CONJUNTO DE LOS NÚMEROS ENTEROS EL CONJUNTO DE LOS NÚMEROS ENTEROS Contenidos a desarrollar: Producción de fórmulas en N. Elaboración de fórmulas para calcular el paso n de un proceso que cumple cierta regularidad (suma de los n primeros

Más detalles

CAPÍTULO II TEORÍA DE CONJUNTOS

CAPÍTULO II TEORÍA DE CONJUNTOS TEORÍ DE ONJUNTOS 25 PÍTULO II TEORÍ DE ONJUNTOS 2.2 INTRODUIÓN Denotaremos los conjuntos con letras mayúsculas y sus elementos con letras minúsculas, si un elemento p pertenece a un conjunto escribiremos

Más detalles

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.

Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales. Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.

Más detalles