Taller Nº 1 Matematica P.S.U.
|
|
|
- Jaime Villanueva Aguilera
- hace 8 años
- Vistas:
Transcripción
1 Unidad : Taller Nº 1 Matematica P.S.U. Conjuntos Numéricos Objetivos: i) Aplicar definiciones y operatoria entre conjuntos. ii) Resolver problemas aritméticos que involucren las cuatro operaciones. 1) Determine los elementos de los siguientes conjuntos numéricos: Números Naturales IN = { Números Cardinales IN o = { Determine los elementos de los siguientes subconjuntos de IN o : Números pares = { Números impares = { Números dígitos = { Números primos = { 2) Determine los elementos de los conjuntos: A = { x IN / x 4 } A = { B = { x IN / x 6 } B = { C = { x IN / x 3 } C = { D = { x IN / x 9 } D = { E = { x IN / 5 x 9 } E = { F = { x IN / 2 x 6 } F = { G = { x IN / 7 x 12 } G = { H = { x IN / 5 x 10 } H = { I = { x IN / x es par 6 x 18 } I = { J = { x IN / x es impar 5 x 17 } J = { K = { x IN / x es dígito 3 x 8 } K = { L = { x IN / x es primo 7 x 23 } L = { 3) Complete los términos faltantes para cada una de las siguientes operaciones: 23 + = = = = = = = 84 : 6 = 9 85 : = 5 9 = = 216 : 12 = 8 4) Calcular aplicando prioridad entre las operaciones y eliminación de paréntesis: a) : = b) 24 : : 3 = c) 48 [53 ( )] = d) [8 (17 9) 2(3 + 11)] : [3 ( )]= (1)
2 Problemas aritméticos: 1) Los botones grandes tienen 4 agujeros y los botones chicos 2 agujeros. Cuántos agujeros hay en 7 docenas de botones grandes y 4 docenas de botones chicos? A) 96 B) 132 C) 336 D) 432 E) Otra cantidad 2) En un tablero de ajedrez se coloca una bolita en el 1 er cuadrito; en el 2º el doble del primero, en el 3º el triple del 2º y en el 4º el cuádruplo del 3º. Cuántas bolitas corresponden al 7º cuadrito? A) 28 B) 120 C) 128 D) 720 E) ) En base a la siguiente sucesión: 12, 20, 17, 25, 22,... se tiene que su séptimo término es: A) 19 B) 27 C) 30 D) 32 E) Otro número 4) Si n veces 2 p veces 3 Esta proposición es verdadera si: A) n = 3 ; p = 3 B) n = 4 ; p = 3 C) n = 5 ; p = 4 D) n = 6 ; p = 4 E) n = 7 ; p = 5 5) En un grupo hay 13 hombres y 12 mujeres, Si 8 hombres fuman y 5 mujeres no fuman. Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)? l) 6 hombres no fuman ll) 11 personas no fuman lll) 15 personas fuman A) Sólo l B) Sólo l y ll C) Sólo l y lll D) Sólo ll y lll E) Las tres 6) Un país de Europa tiene una diferencia de 6 horas respecto de Chile (cuándo en Chile son las 6 A.M. en dicho país son las 12 A.M.). Si un viajero sale de Chile a las 15 horas de un día Lunes y el vuelo demora 18 horas. A que hora llegará a dicho país según su hora local? A) 3 horas B) 6 horas C) 9 horas D) 12 horas E) 15 horas 7) En un supermercado por cada tres unidades de un mismo artículo que se compran se pagan dos. Si el valor de la caja de leche es $720. Cuántas cajas de leche llevé si en total pagué $5.760? A) 8 cajas B) 12 cajas C) 15 cajas D) 18 cajas E) 21 cajas 8) Pedro dispone de $900 para comprar galletas y chocolates. Si cada galleta vale $50 y al comprar 6 galletas y 6 chocolates recibe $60de vuelto. Cuánto le costó cada chocolate? A) $50 B) $50 C) $90 D) $100 E) $120 (2)
3 9) Sea el número de tres cifras 53. Qué cifras puede(n) ser la tercera para que este número sea primo? l) 1 ll) 3 lll) 7 A) Sólo l B) Sólo ll C) Sólo lll D) Sólo l y ll E) Las tres 10) Al escribir todos los números del 1 a 100 en forma continuada, sin saltarse ninguno. Cuántas veces se repite el número 9? A) 9 B) 10 C) 18 D) 19 E) 20 11) Se definen las operaciones y tal que a b = a (a + b) ; c d = (c d):d luego el resultado de (5 7) 10 es: A) 1 B) 3 C) 5 D) 7 E) 9 12) En qué operación el resultado de operar dos números no cambia, si el 1º aumenta en 1 y el 2º disminuye en 1? A) Al sumarlos B) Al restarlos C) Al multiplicarlos D) Al dividirlos E) Para ninguna de las anteriores. 13) Al reducir eliminando paréntesis: [5 + 3 (23 15) ] + [35 5 (21 17) ] =? A) 44 B) 79 C) 149 D) 184 E) Otro valor 14) Al reducir aplicando prioridad entre operaciones: 48 : : 3 =? A) 20 B) 22 C) 32 D) 52 E) ) Qué variación experimenta el producto entre dos números naturales si cada uno de estos aumenta al doble? A) No varía B) Aumenta al doble C) Aumenta al triple D) Aumenta 4 veces E) Aumenta 8 veces 16) Compro 75 lápices pagando en total $ Cuánto dinero ganaré si vendo cada uno de ellos en $120? A) $2.250 B) $4.050 C) $4.500 D) $6.750 E) $ ) Se puede determinar la edad de una persona si: (1) En 10 años más tendrá 25 años. (2) Hace 5 años tenía 10 años. 18) Qué edad tendrá Luis cuando su hermano Juan cumpla 15 años? (1) En 3 años más Juan cumplirá 15 años (2) Hace 7 años Luis tenía 6 años (3)
4 19) Cuál es el menor de tres hermanos? (1) Pedro es menor que Juan (2) Mario es mayor que Juan y Pedro 20) Se tiene que la expresión 3 n 1 es siempre un número par si: (1) n es número par positivo (2) n es número impar positivo Recordando teoría de conjuntos: Un conjunto es una lista, colección o agrupación de objetos bien definidos, los que se llaman elementos, los que se escriben entre llaves separados por comas. Un conjunto puede quedar definido de dos formas: i) Por Extensión: Cuándo se escriben todos los elementos que lo forman. ii) Por Comprensión: Cuándo se indican sus elementos por medio de una propiedad precisa, que permita identificarlos. El conjunto A que posee por elementos a los números dígitos definido por: i) Extensión es: A = { 0,1,2,3,4,5,6,7,8,9 } ii) Comprensión es: A = { x/x es número positivo de una cifra } 1) Defina por extensión: A = { x/x es letra vocal } A = { B = { x/ x 2 = 9 } B = { C = { x/ 4 x = 64 } C = { D = { x/2x 1 = 9 } D = { 2) Defina por comprensión: A = { a,b,c,d,e } A = { x/x B = { -2,2 } B = { x/x C = { 0 } C = { x/x D = { 2,3,5,7 } D = { x/x Pertenencia: Si x es un elemento de un conjunto A se tiene que x pertenece a A; lo que se denota por x A ; de no cumplirse la condición anterior x no pertenece a A ; lo que se denota por x A. 3) Sea el conjunto: A = { x/x es letra de la palabra estudiar } Escrito por extensión y en orden alfabético sería: A = { Complete colocando o según corresponda entre: a A r A s A y A u A b A c A t A Subconjuntos: Si todo elemento de un conjunto A es elemento de un conjunto B; se tiene que A es subconjunto de B lo que se denota por A B ; de no cumplirse la condición anterior A no es subconjunto de B ; lo que se denota por A B. (4)
5 4) Sean los conjuntos: R = { 1,3,5 } S = { 1,5,7 } T = { 1,3,5,7,9 } Complete colocando o según corresponda entre: R T R S T R Diagramas: S T S R T S a) Si A B con A B ; se representa por: B A B A b) Si A B ; se representa por: A B A B 5) En base al diagrama, identifique los elementos de los siguientes conjuntos: R f P = { a c Q = { P e Q b d R = { g Donde: P...R Q...R Conjunto vacío: Es todo conjunto que carece de elementos, el que suele llamarse conjunto nulo, denotándose por el símbolo. 6) Determine si es vacío cada uno de los siguientes conjuntos; de no serlo indique sus elementos para: A = { x/x es letra del abecedario anterior a la letra "a" } A = B = { x/x + 3 = 3 } B = C = { x/x x } C = D = { x/2 x = 32 } D = E = { x/x 3 =-8 } E = Conjunto Universal: Es el conjunto formado por todos los elementos que componen una lista, colección o agrupación de objetos, denotándose por U y representándose gráficamente por un rectángulo. Ejemplos: a u i e o U El conjunto de las vocales, el del abecedario, el conjunto de los números dígitos, primos, etc. son conjuntos universales. (5)
6 Operaciones entre Conjuntos: 1) Unión: La unión de los conjuntos A y B es el conjunto formado por todos los elementos que pertenecen a A o a B o a ambos conjuntos; es decir considera a todos los elementos. La unión de los conjuntos A y B se denota por A B. Si A = { a,b,c,d } y B = { b,d,e,f } ; luego A B = { a,b,c,d,e,f } 2) Intersección: La intersección de los conjuntos A y B es el conjunto de todos los elementos que pertenecen a ambos conjuntos a la vez. La intersección de los conjuntos A y B se denota por A B. Si A = { a,b,c,d } y B = { b,d,e,f } ; luego A B = { b,d } 3) Diferencia: La diferencia de los conjuntos A y B es el conjunto de todos los elementos de A que no pertenecen a B. La diferencia entre el conjunto A y B se denota por A - B. Si A = { a,b,c,d } y B = { b,d,e,f } ; luego A - B = { a,c } Recíprocamente: B - A = { e,f } Notar que A B B A. 4) Complemento: El complemento de un conjunto A con respecto a un conjunto universal U, es el conjunto de todos los elementos de U que no pertenecen a A. El complemento del conjunto A se denota por A. Si U = { x/x es número dígito } y A = { 2,5,7,9 } ; luego U = { 0,1,2,3,4,5,6,7,8,9 } A = { 0,1,3,4,6,8 } 7) Sea U = { 1,2,3,4,5,6 } ; A = { 1,3,4,6 } y B = { 1,4,5,6 } ; calcular: (a) A B = (b) A B = (c) A B = (d) B A = (e) A = (f) B = (g) A B = (h) A B = (i) A - B = (j) B - A = (k) (A B) = (l) (A B) = (m) (A - B) = (n) (B - A) = (6)
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se
Teoría de Conjuntos y Conjuntos Numéricos
Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia
Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto.
TEORÍ DE CONJUNTOS. Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto. Ejemplos: Los libros de una biblioteca. Los alumnos de una escuela.
Los Números Enteros (Z)
Los Números Enteros (Z) Los números enteros: representación gráfica, orden, modulo o valor absoluto. Operaciones en Z, procedimientos y propiedades de estas. Prioridades de operaciones y paréntesis. Problemas
Profesor: Rubén Alva Cabrera
Profesor: Rubén lva Cabrera INDICE INTRODUCCIÓN RELCION DE PERTENENCI DETERMINCION DE CONJUNTOS DIGRMS DE VENN CONJUNTOS ESPECILES RELCIONES ENTRE CONJUNTOS CONJUNTOS NUMÉRICOS UNION DE CONJUNTOS INTERSECCIÓN
mi la sol fa si Un conjunto está bien definido si se puede establecer sin dudar si un elemento pertenece o no al conjunto.
CONJUNTOS LENGUJE SIMÓLICO Cada día, en nuestra conversación, por la televisión, en la lectura de por ejemplo un diario, o en el trabajo está presente la idea de conjunto. En matemática utilizaremos la
TEORÍA DE CONJUNTOS.
TEORÍA DE CONJUNTOS. NOCIÓN DE CONJUNTO: Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos.
Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 45
Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 3 de febrero de 2013 1/ 45 Parte I 2/ 45 Definición intuitiva de conjunto Definición Un conjunto
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 2015 Lic. Manuel
Teoría de Conjuntos y Conjuntos Numéricos
Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R
Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:
Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma
Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra.
Colegio Antil Mawida Departamento de Matemática Profesora: Nathalie Sepúlveda Guía nº1 Taller PSU Refuerzo Contenido y Aprendizaje N Fecha Tiempo 2 Horas Nombre: Unidad Nº Núcleos temáticos de la Guía
INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora.
CAPÍTULO 1 INTRODUCCIÓN Construcción con tijeras y papel Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. La caja1. De una hoja de papel vamos a recortar un cuadrito
UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN
UNDD : TEORÍ DE CONJUNTOS 2.1. NTRODUCCÓN Según Georg Cantor un conjunto es la reunión, agrupación o colección de elementos bien definidos que tienen una propiedad en común, concepto que ha penetrado y
CONJUNTOS Y SISTEMAS NUMÉRICOS
1. CONJUNTOS. 1.1 Conceptos básicos Medir y contar fueron las primeras actividades matemáticas del hombre y ambas nos conducen a los números. Haciendo marcas, medían el tiempo y el conteo de bienes que
ELEMENTOS DE LA TEORÍA DE CONJUNTOS
ELEMENTOS DE LA TEORÍA DE CONJUNTOS 1 CONJUNTO EJEMPLOS NOTACIÓN NOTACIÓN TABULAR O POR EXTENSIÓN DE UN CONJUNTO Cuando se define el conjunto por la efectiva enumeración de sus elementos separándolos por
Matemáticas aliadas a la salud MATE3035
Matemáticas aliadas a la salud MATE3035 TEMA: Introducción a la teoría de conjuntos Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Profa. Yuitza T. Humarán Martínez Adaptado por Profa.
COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA
COLEGIO NUESTRO SEÑOR DE L UEN ESPERNZ signatura: NÁLISIS MTEMÁTICO 11º Profesor: Lic. EDURDO DURTE SUESCÚN TLLER OPERCIONES CON CONJUNTOS OPERCIONES CON CONJUNTOS En aritmética se suma, resta y multiplica,
MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
2 de marzo de 2009 Parte I Conjuntos Definición intuitiva de conjunto Definición Un conjunto es una colección de objetos. Ejemplos A = {a, e, i, o, u} B = {blanco, gris, negro} C = {2, 4, 6, 8, 9} D =
ARITMÉTICA MODULAR. Unidad 1
Unidad 1 ARITMÉTICA MODULAR 9 Capítulo 1 DE LA TEORÍA DE CONJUNTOS Objetivo general Presentar y afianzar algunos conceptos de la Teoría de Conjuntos relacionados con el estudio de la matemática discreta.
Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.
NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida
Introducción al Álgebra
Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El
UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números
GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos
TEMA 3 Elementos de la teoría de los conjuntos. *
TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto
Guía de conjuntos. 1ero A y B La importancia del lenguaje.
Guía de conjuntos. 1ero A y B La importancia del lenguaje. El lenguaje nos permite salir de nosotros mismos y comunicarnos con el mundo; a veces un gesto nos transmite un pensamiento o un sentimiento.
Pregunta 1 Es correcta esta definición? Por qué?
TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta
personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12
Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo
CONJUNTOS UNIDAD II. a A. En caso I.1 CONCEPTOS BÁSICOS DE CONJUNTOS
CONJUNTOS UNIDAD II I.1 CONCEPTOS BÁSICOS DE CONJUNTOS Un conjunto es la agrupación en un todo de objetos bien definidos y diferenciables entre si, que se llaman elementos del mismo. Los conjuntos se denotan
Conjuntos Numéricos I
Conjuntos Numéricos I En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización
Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1
Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 TEORÍA DE CONJUNTOS CONOCIMIENTOS BÁSICOS Cuando decimos: "un elemento
Unidad II. Conjuntos. 2.1 Características de los conjuntos.
Unidad II Conjuntos 2.1 Características de los conjuntos. Es la agrupación en un todo de objetos bien diferenciados en el la mente o en la intuición, por lo tanto, estos objetos son bien determinados y
Introducción. El uso de los símbolos en matemáticas.
Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,
Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }
La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas
CONJUNTOS CONJUNTOS NUMÉRICOS
CONJUNTOS CONJUNTOS NUMÉRICOS 1. CONJUNTOS Un conjunto es una colección de elementos de cualquier índole. Describimos el conjunto escribiendo sus elementos entre llaves y separados por comas. Por ejemplo,
CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie.
RESUMEN DE MATEMATICAS I PARTE I CONJUNTOS CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. A= {números pares} B= { banda de rock} ELEMENTO: Son las ideas u objetos cualesquiera
Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética
12345678901234567890 M ate m ática Tutorial MT-b1 Matemática 2006 Tutorial Nivel Básico Elementos básicos de Aritmética Matemática 2006 Tutorial Algunos elementos básicos de Aritmética Marco teórico: 1.
TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B.
TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos se llaman elementos
Tutorial MT-b2. Matemática Tutorial Nivel Básico. Números Racionales
78907890 M ate m ática Tutorial MT-b Matemática 00 Tutorial Nivel Básico Números Racionales Matemática 00 Tutorial Números Racionales Marco teórico:. Definición: Los racionales son los números que puede
TEMA N 1 LÓGICA Y CONJUNTOS
TEMA N 1 LÓGICA Y CONJUNTOS DEFINICIÓN Y NOTACIÓN DE CONJUNTOS OBJETIVOS Comprenderás, o repasarás, la idea intuitiva de conjunto. Definirás conjuntos por enumeración y por comprensión, así como su forma
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS
C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir
SISTEMA DE NUMEROS REALES
SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto
{ } Listado de elementos del conjunto
CONJUNTOS Qué es un conjunto? Un conjunto es un grupo no ordenado de elementos que comparte una o más características. Nomenclatura en los conjuntos Los conjuntos siempre se nombran con letras mayúsculas,
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos:
Repaso Prueba-01 Clase-14 1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos: i) Números naturales: IN = { iii) Los números enteros: Z = { iv) Los números Racionales: Q = { v)
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros GUICEN023MT21-A16V1
GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros Programa Entrenamiento Desafío Un número n, en los enteros positivos, tiene un total de p divisores positivos distintos. Luego,
Algunos ejemplos de conjuntos pueden ser los siguientes:
1. CONJUNTOS Y PRODUCTO CRTESINO. OBJETIVOS: 1) Establecer los conceptos básicos y las distintas notaciones para conjuntos. 2) Descripción de conjuntos en distintas formas: Lista, expresión verbal, expresión
CONJUNTOS TEORIA BASICA DE CONJUNTOS
Repasamos CONJUNTOS TEORIA BASICA DE CONJUNTOS Cualquier colección de objetos o individuos se denomina conjunto. El termino conjunto no tiene una definición matemática, sino que es un concepto primitivo.
Teoría de Conjuntos y Conjuntos Numéricos
Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.
Tema 2. Fundamentos de la Teoría de Lenguajes Formales
Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones
MATEMÁTICAS II CICLO COMÚN INBAC UNIDAD DIDÁCTICA #5
UNIDAD DIDÁCTICA #5 INDICE PÁGINA Números Irracionales -------------------------------------------------------------------------------------2 Los Pitagóricos y 2 ----------------------------------------------------------------------3
Guía Nº 1(B) ALGEBRA
Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado
Probabilidad y Estadística Descripción de Datos
Descripción de Datos Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 19 Contenido 1 Teoria de
Ensayo 2:
1. Si (x -2) + (x - 3) = 1, entonces el valor de x es: ) -5 ) 6/5 ) 5 D) -6 E) 3 2. Dados los siguientes números racionales, tres quintos y siete novenos, ordenados de menor a mayor, cuál de los siguientes
MATEMÁTICA UNIDAD N 1: CONJUNTOS 1 AÑO
MTEMÁTI NIDD N 1: ONJNTOS 1 ÑO onjunto Elemento Pertenencia Eisten conceptos-términos que por ser muy primitivos se aceptan sin definir. En la teoría de conjuntos los términos primitivos son: ONJNTO, ELEMENTO,
Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño
ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan
Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:
2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,
open green road Guía Matemática tutora: Jacky Moreno .cl
Guía Matemática ÁNGULOS tutora: Jacky Moreno.cl 1. Geometría La geometría es una de las ramas de las matemáticas más antiguas que se encarga de estudiar las propiedades del espacio, principalmente las
MATEMÁTICAS II CC III PARCIAL
UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una
Continuación Números Naturales:
Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:
Aritmética para 6.º grado (con QuickTables)
Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
1 Conjuntos y propiedades de los números naturales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #1: martes, 31 de mayo de 2016. 1 Conjuntos y propiedades de los números
Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10:
Logarítmos en base diez: El 10 se omite como base; es decir: log 10 a = log a. Clase-1 Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10: (a) log 10.000 = (f) log 0,1 =
Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole.
Tema 1: Teoría de Conjuntos. Logica proposicional y lgebras de oole. 1.1 Teoria de conjuntos Objetivo específico: Operar con conjuntos y aplicar sus propiedades para resolver problemas reales. Piensa Elabora
TEMA Nº 1. Conjuntos numéricos
TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales
Guía de estudio Introducción a la teoría de conjuntos Unidad A: Clase 4
Guía de estudio Introducción a la teoría de conjuntos Unidad A: Clase 4 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. 3. Teoría de
MATEMÁTICAS CONJUNTOS (OPERACIONES)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS CONJUNTOS (OPERACIONES) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 10 / 02 / 15 TALLER: 1-3 Desempeño: * Realiza operaciones
SEMINARIO MENOR DIOCESANO SAN JOSE DE CUCUTA LA JUVENTUD A JESUCRISTO QUEREMOS DEVOLVER PLAN DEMEJORAMIENTO 2012
NOMBRE:. AREA: MATEMATICAS A. SELECCIONA LA RESPUESTA CORRECTA: 1. Una proposición es : a) Una afirmación que comunica una idea verdadera o falsa. b) Una idea que es verdadera. c) Una afirmación que es
Clase 1 Números Reales. Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales
Clase 1 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Introducción Muchas veces, en actividades cotidianas, es necesario dar respuesta a preguntas relacionadas con números,
Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.
Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,
1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,...
Clase-04 Temas: Operatoria entre números naturales (IN) y enteros (Z), múltiplos, divisores, mínimo común múltiplo (M.C.M.) y máximo común divisor (M.C.D.). 1) Indique los primeros elementos de los siguientes
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 1 Conjuntos Numéricos COMPETENCIA Reconocer los diferentes conjuntos numéricos,
1) Adición: Se colocan los sumandos uno bajo de los otros, dejando coma bajo coma para luego sumar y colocar en el resultado la coma bajo las otras.
Clase-07 Operaciones con decimales finitos: Los decimales finitos, por ejemplo: 0,75; 3,07; 5,105 ; etc. se pueden operar directamente, aplicando los siguientes procedimientos: 1) Adición: Se colocan los
TEMA 17: PROBABILIDAD
TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.
Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos
12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las
El concepto de Conjunto es una constante de las Matemáticas; se habla de conjuntos de números, conjuntos de líneas, conjuntos de rectas, etc.
L TEORÍ DE CONJNTOS En Odontología, conocer la teoría de los conjuntos es esencial para cualquier proyecto de investigación, principalmente los que involucran disciplinas como: Estadística y ioestadística,
Ejercicios Tema 1. Profesora: Carmen López Esteban. Curso: 1ª Magisterio. Esp. Educación Infantil. Grupo: A.
Profesora: Carmen López Esteban Curso: 1ª Magisterio. Esp. Educación Infantil Grupo: A. Ejercicios de CONJUNTOS Ejercicio 1: 1.1) A = {x/x es país fronterizo con Perú} El conjunto esta por... 1.2) B =
Las ideas básicas sobre conjuntos las desarrollaron Georg Cantor ( ) y George Boole ( ).
TEORÍA DE CONJUNTOS. La teoría de conjuntos es un sistema matemático y un lenguaje específico para el manejo de ciertos problemas. Al igual que otros sistemas matemáticos, como el álgebra y la geometría,
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos
Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos
En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.
nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas
PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO
PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO MODALIDAD FLEXIBLE DECRETO Nº211 1. En el siguiente sistema de ecuaciones: Cuál es el valor de y? A. 4 B. 0 C. 6 D. 8 2. Cuál es el resultado de ( 5)
Secuencia didáctica para 5 grado Números naturales
Secuencia didáctica para 5 grado Números naturales Actividad 1 LOS CENSOS Un censo de población es el recuento de la cantidad de habitantes de una zona. El primer censo en nuestro país se realizó en 1869
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de
En una recta numérica el punto que representa el cero recibe el nombre de origen.
1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la
Capítulo 3. Conjuntos. Continuar
Capítulo 3. Conjuntos Continuar Introducción Georg Cantor definió el concepto de conjunto como una colección de objetos reales o abstractos e introdujo el conjunto potencia y las operaciones entre conjuntos.
UNIDAD 1 CONJUNTOS. Prof. Patricia Roballo MATEMÁTICA 5º Año Página 1
UNIDAD 1 CONJUNTOS Conceptos primitivos: conjunto, elemento y la relación pertenecer. Conjuntos bien determinados. Igualdad de conjuntos. Relación de inclusión. Diagramas de Venn. Operaciones entre conjuntos:
Problemas de ecuaciones de primer grado
Problemas de ecuaciones de primer grado 1. La suma de dos números pares consecutivos es 102. Halla esos números. (50 y 52) 2. La suma de tres números impares consecutivos es 69. Busca los números. (21,23
TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 }
TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar
Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.
1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,
Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales
Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt [email protected] Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre
Primer Año EL CONJUNTO DE LOS NÚMEROS ENTEROS
EL CONJUNTO DE LOS NÚMEROS ENTEROS Contenidos a desarrollar: Producción de fórmulas en N. Elaboración de fórmulas para calcular el paso n de un proceso que cumple cierta regularidad (suma de los n primeros
CAPÍTULO II TEORÍA DE CONJUNTOS
TEORÍ DE ONJUNTOS 25 PÍTULO II TEORÍ DE ONJUNTOS 2.2 INTRODUIÓN Denotaremos los conjuntos con letras mayúsculas y sus elementos con letras minúsculas, si un elemento p pertenece a un conjunto escribiremos
Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.
Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.
