Geometría de Curvas y Superficies

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Geometría de Curvas y Superficies"

Transcripción

1 Geometría de Curvas y Superficies Primera Práctica -3 de Noviembre de 005 Comenzamos aprendiendo a utilizar un programa informático, muy fácil de usar, que permite dibujar curvas en el plano y en el espacio. También permite calcular y visualizar algunos de los elementos y objetos que hemos asociado a la curvas en su estudio geométrico y analítico, por ejemplo, el diedro o el triedro de Frénet, la curvatura y la torsión, la circunferencia osculatriz, la curva evoluta, etc. Incluso permite ver que el Teorema Fundamental de la Teoría de Curvas es efectivamente cierto, y que se puede usar para construir gráficamente las curvas a partir de sus curvaturas. Este programa se llama Estelas y ha sido diseñado por Ángel Montesinos, de la Universidad de Valencia, y Javier Lafuente, de la Universidad Complutense de Madrid. En esta primera práctica sólo trabajaremos con curvas planas. De las dos opciones que se permiten para curvas planas elegimos paramétricas en el cuadro superior y diedro de Frénet en el inferior.. Estudiamos la curva plana definida por α(t) =(x(t),y(t)) = (,t). Hay que fijar en cada caso, antes de introducir los datos de x(t) ey(t), pulsando la opción Ver funciones, el intervalo en que vamos a permitir variar el parámetro t. Por ejemplo, ponemos <t<. Aceptando estos datos se consigue la traza de la curva ( una recta vertical!). Los ejes de coordenadas se ven en gris con unidades señaladas. Arrastrando el

2 cursor de la izquierda con el ratón se ve desplazarse sobre la curva el diedro de Frénet. El vector tangente unitario es verde y el normal es rojo, excepto cuando se solapan con la traza de la curva, en cuyo caso cambian de color. Al mover el cursor se ven los valores del parámetro t en uno de los cuadros. Qué significa Cur? Qué esh?. Ponemos ahora α(t) =(x(t), y(t)) = (cos t, sin t) con el mismo rango de t. Observa lo que pasa con la curvatura y con h al mover el cursor. 3. Quizás para acabar de averiguar lo que es h será mejor ampliar el rango del parámetro a 4 <t<4 y volver a mover el cursor para observar los valores que va tomando. 4. Elige ahora las funciones coordenadas de la curva así α(t) =(x(t),y(t)) = (t 3 4t, t 4), pero elige el rango.5 <t<.5. Date cuenta de que la traza de una curva puede cortarse a sí misma porque ella no tiene por qué ser una aplicación inyectiva. 5. La siguiente elección α(t) =(x(t),y(t)) = (t 3,t ), con el mismo rango de variación de t, nos da una traza que tiene un pico en el origen. Cómo se concilia esto con la muy repetida afirmación de que la diferenciabilidad de las funciones se nota en que sus gráficas no tengan picos? Usa el cursor y observa lo que ocurre con el diedro de Frénet en ese pico. Explícalo. Explica también qué pasa con la curvatura. 6. Ahora vamos a introducir como datos, no funciones polinómicas, sino funciones un poco más complicadas, funciones racionales ( ) t t α(t) =(x(t),y(t)) = +t 3,. +t 3 Está claro que no están definidas en t = y, por tanto, habrá que evitar el en el dominio de t. Pero para no perdernos lo que pasa en t = elegimos un intervalo como, por ejemplo, 0.8 <t<0.

3 Mira cómo evoluciona la curvatura al aumentar t. Para tener una idea de lo que pasa al hacerse t muy grande, amplía el rango de t por la derecha hasta 00. Date cuenta de que la curva es inyectiva como aplicación. Por eso la traza no se corta a sí misma. Pero, su traza es homeomorfa a una recta? 7. Vamos a probar ahora con alguna curva plana cuyas funciones coordenadas sean trascendentes. Por ejemplo α(t) =(x(t),y(t)) = ( e t cos t, e t sin t ) y para empezar ponemos un rango simétrico para el parámetro <t<. Está claro que hay que aumentar el intervalo por la derecha si se quiere ver mejor la forma de la traza de la curva. Pongamos <t<0. Si usas el cursor de la izquierda verás que el diedro de Frénet da muchas vueltas cerca del origen. Qué pasa con la curvatura cerca del origen? Para tener una visión clara de lo que pasa por el origen vamos a retardar un poco la exponencial, es decir, vamos a cambiar ligeramente las funciones coordenadas de la curva α(t) =(x(t),y(t)) = ( e (0.)t cos t, e (0.)t sin t ). Ahora está claro por qué esta curva se llama espiral logarítmica. Si ampliamos el intervalo en donde se mueve t a podremos ver algo mejor la curva. <t<00 Vamos a trabajar ahora con la opción Evoluta que nos permite elegir el cuadro inferior. Ante todo vamos a recordar lo que es la evoluta de una curva α. Se define como la curva cuya traza está formada por los centros de curvatura de α. El centro de curvatura de α en el instante t es el centro de la circunferencia osculatriz de α en el instante t. Se llama osculatriz (de la palabra latina osculum que significa beso) porque tiene en común con la curva en ese instante la recta tangente y la curvatura. Para que exista es necesario entonces que la curvatura de α no se anule en ese punto, 3

4 o sea, que k(t) 0. Además su centro debe estar en la recta normal de α en t. Con esas dos indicaciones se ve rápidamente que la evoluta ɛ de α está dada por ɛ(t) =α(t)+ N(t) t I, k(t) donde I es el intervalo donde está definida α y N es su vector normal unitario. Vamos a retomar los mismos ejemplos de curvas que hemos visto antes y estudiar sus evolutas.. Qué ocurrirá con la recta α(t) =(x(t),y(t)) = (,t) del Ejemplo? Está claro que una recta tiene curvatura nula en cada punto. Por tanto no hay circunferencia osculatriz en ningún punto, ni radio de curvatura. No tiene sentido por tanto hablar de su evoluta. Intenta usar el programa para ver que esto es así.. La circunferencia de radio uno de los Ejemplos y 3 tiene curvatura constante (uno, en este caso). Por esa razón está claro que la circunferencia osculatriz de una circunferencia en un punto es ella misma. Por tanto, los centros de curvatura en cada punto coinciden con el centro geométrico de la circunferencia. La evoluta de una circunferencia debe ser por tanto una curva constante. Qué ocurre si intentamos ver esto con Estelas? Date cuenta de que el programa dibuja la circunferencia osculatriz (en verde claro) y el radio (en rojo) que va desde el punto de la curva al centro de curvatura y que el extremo de ese radio traza (en verde oscuro o azul) la evoluta. Analíticamente está claro que el vector tangente de la evoluta en cada instante está dado por ( ) ɛ (t) =α (t)+ N(t)+ k(t) k(t) N (t). Pensemos que α está p.p.a. para que los cálculos sean más fáciles. Entonces N (t) = k(t)α (t), ya que α (t) es el tangente unitario. Por tanto ( ) ɛ (t) = N(t). () k(t) Si k(t) es constante y no nula, tenemos ɛ (t) = 0 para cada t y ɛ es una curva constante. 3. Idem. 4. Volvamos a nuestro Ejemplo 4 de curva polinómica con una auto-intersección α(t) =(x(t),y(t)) = (t 3 4t, t 4) 4

5 que dibujamos en el intervalo.5 <t<.5. Si marcamos la opción Evoluta y hacemos correr el cursor obtendremos una curva simétrica con forma de punta de lanza. Tiene tres picos. Por qué? Observa bien qué ocurre con los valores que toma la curvatura antes y después de que se produzca un pico de la evoluta. Te ayuda mirar la ecuación ()? 5. Nuestro quinto ejemplo era de una curva que tenía un pico a pesar de ser diferenciable. De hecho era el grafo de una función que no es diferenciable. Era α(t) =(x(t),y(t)) = (t 3,t ). Por qué no tiene picos la evoluta de esta curva? 6. Qué puedes decir acerca de la evoluta del folium de Descartes que estudiamos en el Ejemplo 7 y que estaba dado por ( ) t t α(t) =(x(t),y(t)) = +t 3, +t 3 y donde t varía en ] 0.8, 0[? 7. Traza la evoluta de la espiral logarítmica α(t) =(x(t),y(t)) = ( e t cos t, e t sin t ) en el primer intervalo que la dibujamos <t<. Te atreves a hacer una predicción? Amplía el intervalo por la derecha hasta ], 0[ y repite el experimento. Qué dices ahora? 8. Ejercicio: Calcula la evoluta de la espiral logarítmica dada por α(t) =(x(t),y(t)) = ( e at cos t, e at sin t ) donde a es un número real positivo, y demuestra que coincide con ella misma después de hacer un giro de noventa grados en el sentido de las agujas del reloj y de hacer una homotecia de razón a. Eso explica lo que viste en Estelas. 9. Ejercicio: Le ocurre lo anterior a alguna otra curva además de la a la espiral logarítmica? Supón que α es una curva p.p.a. definida en I cuya curvatura es 5

6 creciente (así su evoluta será una curva regular) y demuestra que su curvatura está dada por k ɛ (t) = k3 (t) t I, () k (t) donde k es la curvatura de α. Si la evoluta ɛ coincide, salvo una homotecia de razón a>0 y un giro, con α, se tiene que k ɛ = ak. Por tanto la curvatura de la curva original cumple De aquí se deduce que donde c es constante. ( ) = k k k = a. k(s) = as + c s, 3 El último ejercicio anterior nos deja con una gran inquietud. Hemos determinado el comportamiento de la función curvatura de una curva (con curvatura creciente) cuya evoluta sea semejante a sí misma, como le ocurría a la espiral logarítmica. Pero esa función curvatura es la inversa de una lineal y la función curvatura de la espiral era una exponencial. Esa aparente contradicción desparece si uno recuerda que la espiral no estaba p.p.a. y en el ejercicio hemos considerado la curva p.p.a. De hecho, para nuestra espiral α(t) =(x(t),y(t)) = ( e at cos t, e at sin t ) tenemos que α (t) = +a e at k(t) = eat. +a Por tanto la función longitud de arco cumple +a s(t) =b a e at para cierta constante b. Entonces es fácil comprobar que k(t) = eat = +a as(t)+c con c = ab. O sea, la curvatura de una espiral logarítmica y la curvatura de las curvas del ejercicio anterior se expresan de la misma forma en función de la longitud de 6

7 arco. El Teorema Fundamental de Curvas Planas nos dice entonces que ambas curvas difieren por un movimiento rígido del plano. Es decir, que las curvas que buscábamos eran también espirales logarítmicas. De otra forma, las espirales logarítmicas son las únicas curvas planas (con curvatura monótona) que coinciden con su evoluta salvo dilataciones. Visto lo anterior es difícil resistir las ganas de preguntarse lo siguiente: Ejercicio: Existen curvas cuya evoluta sea una circunferencia? En caso afirmativo, cuál es su forma? Si suponemos que α es una curva p.p.a. con esa propiedad, usando la ecuación (, deducimos que la curvatura k de α ha de cumplir k 3 = r>0. k r (Hemos supuesto que la evoluta recorre la circunferencia en el sentido contrario a las agijas del reloj.) Por tanto, integrando la ecuación que queda, de existir, las curvas que buscamos han de tener curvatura k(t) = s, c r s para cierta constante c. Pero sólo este calculo garantiza que existen, porque dado c R cualquiera, la función anterior está bien definida y es diferenciable en el intervalo ], [. El Teorema Fundamental de la Teoría de Curvas Planas nos dice que c r c existe una curva p.p.a. α :], [ R con esa curvatura y que es única salvo r movimientos rígidos directos. Pero cómo es? Se puede dibujar? El programa Estelas nos va a ayudar otra vez. Tomamos en el cuadro superior, en vez de Paramétricas, la opción Cur(t).. Pinchamos Ver funciones y ponemos Cur(t) una función del tipo de las que acabamos de calcular. Por ejemplo, ponemos k(t) = t. Los valores de t que admite el programa son sólo positivos ( por qué?, es significativa esta restricción?). Fijamos el extremo de la derecha del intervalo, por ejemplo, para que 0 <t<. Si aceptamos esos datos la curva aparece. Elegimos la opción Evoluta en el cuadro inferior y hacemos correr el cursor. Efectivamente, el programa traza un arco de circunferencia. De qué radio? Para conseguir una evoluta de radio menor y que, por tanto, se vea mejor, podemos cambiar la curvatura y poner k(t) = (0.)t 7

8 y hacer correr el parámetro t en el intervalo ]0, 0[. Si repetimos el proceso anterior veremos dos cosas: la curva que buscamos parece una espiral (pero no logarítmica) y se llama evolvente o desarrollante de la circunferencia, y su evoluta es una pequeña circunferencia. De qué radio?. Cambia el signo menos de la curvatura anterior y pon ahora k(t) = +(0.)t y deja moverse a t en el mismo intervalo anterior. Dibuja la curva y traza su evoluta. Qué observas? Cómo lo explicas? 3. Los ejercicios 7 y de la Relación de problemas del libro Curvas y Superficies pueden servir para aclarar algo lo que hemos estado haciendo. Es bueno resolverlos. Ejercicio: Dada una curva α : I R p.p.a., demostrar que todas las rectas normales de α equidistan de un punto si y sólo si existen a, b R tales que k(s) =± as + b para cada s I. Ejercicio: Sea α : I R una curva p.p.a. con k(s) > 0 para cada s I. Probar que todas las rectas normales de α equidistan de un punto si y sólo si la evoluta de α es una circunferencia. 4. Podemos continuar usando gráficamente el Teorema Fundamental. Un buen ejercicio es probar con funciones curvatura que no sean complicadas. Por ejemplo k(t) =. Ya sabíamos que el programa dibujaría una circunferencia de radio uno. Si ponemos constantes más pequeñas, por ejemplo k(t) =0. k(t) =0.0 k(t) =0.00 obtendremos arcos de circunferencias que cada vez son más parecidas a rectas. Qué pasa si se pone k(t) =0? 5. Después de las constantes las funciones más simples son las lineales. Probamos con k(t) =t 8

9 y con intervalos cada vez más largos. Cómo es la curva resultante? Qué le pasa a la curva cuando t tiende a infinito? Por qué? Cambia el signo de la función curvatura, pinta la curva y explica lo que ha pasado. 6. Damos un paso adelante en la complicación de la curvatura y ponemos polinomios de grado más alto k(t) =t k(t) =t 4 k(t) =t 3 6t + k(t) =t 3 0t +. Es conveniente poner 0 <t<0 en todos esos ejemplos. Podrías dar una explicación de lo que ves al dibujar las curvas correspondientes? 7. Se obtienen curvas algo más exóticas si uno introduce periodicidades en la curvatura. Así k(t) =t sin t k(t) =t sin t + e (0.)t. Tú mismo puedes poner otras funciones y hacerte preguntas sobre lo que ves. 8. Sería bueno intentar resolver los ejercicios y 3 de la Relación final del capítulo de Curvas y Superficies. Si lo haces podrás explicarte que pasaba con los bucles de las curvas en los ejemplos que viste antes. Ejercicio: Supongamos que una curva plana α : I R p.p.a. tiene curvatura positiva y no decreciente. Sea ɛ : I R su evoluta. Probar que L s a(ɛ) = k(a) k(s) para a I arbitrario y s I con s a. Ejercicio: Sea α : I R una curva p.p.a. con curvatura positiva y no decreciente. Si a I, probar que α(s) ɛ(a) k(a) para cada s I con s a, o sea, α([a, + [ I) está contenido en el círculo osculador de α en a. 9

1.1 El caso particular de las curvas planas.

1.1 El caso particular de las curvas planas. Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,

Más detalles

Relación de ejercicios de los temas 1 y 2

Relación de ejercicios de los temas 1 y 2 Asignatura: Curvas y Superficies Grado en Matemáticas Grupo: 3 0 -B Profesor: Rafael López Camino Relación de ejercicios de los temas 1 y 2 (Do Carmo, sección 1.2) 1. Encontrar una parametrización α(t)

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

3 Curvas alabeadas. Solución de los ejercicios propuestos.

3 Curvas alabeadas. Solución de los ejercicios propuestos. 3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,

Más detalles

REPRESENTACION GRÁFICA DE FUNCIONES

REPRESENTACION GRÁFICA DE FUNCIONES REPRESENTACION GRÁFICA DE FUNCIONES 1 REPRESENTACION GRÁFICA DE FUNCIONES UNIDADES Pag. 1. DEFINICIÓN DE DOMINIO UNA FUNCIÓN.3 2. CORTES CON LOS EJES...5 3. SIMETRÍA..7 4. PERIODICIDAD 9 5. FUNCIONES INVERSAS....10

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

UNIDAD 8.- Funciones racionales (tema 8 del libro)

UNIDAD 8.- Funciones racionales (tema 8 del libro) (tema 8 del libro). FUNCIÓNES DE PROPORCIONALIDAD INVERSA k Las funciones de proporcionalidad inversa son funciones cuya epresión es de la forma f ( ) Las gráficas de estas funciones son o se llaman hipérbolas

Más detalles

1. FUNCIÓN REAL DE VARIABLE REAL

1. FUNCIÓN REAL DE VARIABLE REAL 1. FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R f : D R R Se representa de la siguiente forma: Una

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

EL TEOREMA DE LOS CUATRO

EL TEOREMA DE LOS CUATRO EL TEOREMA DE LOS CUATRO VÉRTICES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría Diferencial. Curso 1995/96

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto» TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento

Más detalles

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3, RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan

Más detalles

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 009 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con a

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Una función es una relación o correspondencia entre dos magnitudes o variables x e y, de manera que a cada valor

Una función es una relación o correspondencia entre dos magnitudes o variables x e y, de manera que a cada valor RESUMEN TEORÍA FUNCIONES: 4º ESO Op. B DEFINICIONES: Una función es una relación o correspondencia entre dos magnitudes o variables x e y, de manera que a cada valor de x le corresponde un único valor

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Tema 9: Funciones II. Funciones Elementales.

Tema 9: Funciones II. Funciones Elementales. Tema 9: Funciones II. Funciones Elementales. Finalizamos con este tema el bloque de análisis, estudiando los principales tipos de funciones con sus respectivas características. Veremos también una ligera

Más detalles

Conocer las posibles asíntotas de una función nos ayudará en su representación gráfica. Vamos a distinguir tres tipos distintos de asíntotas:

Conocer las posibles asíntotas de una función nos ayudará en su representación gráfica. Vamos a distinguir tres tipos distintos de asíntotas: 1. Dominio, periodicidad y paridad de una función A la hora de representar una función lo primero que se ha de determinar es dónde está definida, es decir, para qué valores tiene sentido hablar de f(x).

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración). representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)

Más detalles

CASOS DE LA FUNCIÓN AFÍN

CASOS DE LA FUNCIÓN AFÍN CASOS DE LA FUNCIÓN AFÍN Considera que el precio de un artículo es de Bs 80. Conocido el precio unitario (precio por unidad) es posible calcular fácilmente el precio de varios artículos con solo multiplicar

Más detalles

12Direcciones de internet

12Direcciones de internet 12Direcciones de internet En la dirección http://www.nucleogestion.8m.com/hall.htm se puede pasear libremente por el museo virtual de Escher. Se puede entrar en la sala que se desee haciendo clic sobre

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

x 1 3 f) x e lim x lim + 2 lim lim log x lim x 1 (x 1)(x 4) lim x 1 (x 2)(x 5) (x 2)(x 3) 1. Calcular los siguientes límites no indeterminados 1 :

x 1 3 f) x e lim x lim + 2 lim lim log x lim x 1 (x 1)(x 4) lim x 1 (x 2)(x 5) (x 2)(x 3) 1. Calcular los siguientes límites no indeterminados 1 : + ln 4 + f + 5 EJERCICIOS de LÍMITES DE FUNCIONES y CONTINUIDAD. Calcular los siguientes límites no indeterminados : 4 + + 4 f) e log g) 0, + 4 i) 0+ + 4 e) j) 4. Dada la gráfica de la figura, indicar

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Modelo para Curso 2008-2009 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

02. Resolver sistemas de ecuaciones lineales por el método de Gauss.

02. Resolver sistemas de ecuaciones lineales por el método de Gauss. 3.6 Criterios específicos de evaluación. 01. Conocer lo que significa que un sistema sea incompatible o compatible, determinado o indeterminado, y aplicar este conocimiento para formar un sistema de un

Más detalles

Prof. Jorge Rojo Carrascosa CINEMÁTICA

Prof. Jorge Rojo Carrascosa CINEMÁTICA CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS

FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS Sugerencias para quien imparte el curso: Es importante que la interacción con los alumnos dentro del salón de clases sea lo más activa posible,

Más detalles

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo.

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2.1 Formas cuadráticas. Expresión matricial y analítica. Expresiones diagonales. Definición 2.1 (Expresión matricial) Una

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

TEMA 3. LUGARES GEOMÉTRICOS

TEMA 3. LUGARES GEOMÉTRICOS TEMA 3. LUGARES GEOMÉTRICOS LA HERRAMIENTA LUGAR GEOMÉTRICO Para construir un lugar geométrico necesitaremos dos objetos: un punto que será el que describirá el lugar geométrico, y otro que será el punto

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

TEMA 7. FUNCIONES ELEMENTALES

TEMA 7. FUNCIONES ELEMENTALES TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica

Más detalles

LÍMITE DE UNA FUNCIÓN EN UN PUNTO

LÍMITE DE UNA FUNCIÓN EN UN PUNTO pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos

Más detalles

Materia: Matemática de 5to Tema: Ecuación de la Recta. Marco Teórico

Materia: Matemática de 5to Tema: Ecuación de la Recta. Marco Teórico Materia: Matemática de 5to Tema: Ecuación de la Recta Marco Teórico Simplemente comenzar con la ecuación general de la forma pendiente-intersección de una línea, y luego conecte los valores dados de y

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

CURVAS TÉCNICAS CURVAS CÓNICAS

CURVAS TÉCNICAS CURVAS CÓNICAS 2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA VII: Geometría 2D (IV)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA VII: Geometría 2D (IV) UNIDAD DIDÁCTICA VII: Geometría 2D (IV) 1 ÍNDICE Página: 1 INTRODUCCIÓN. 2 2 ÁNGULOS VINCULADOS A LA CIRCUNFERENCIA... 2 3 TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS... 2 3.1 RECTAS TANGENTES A UNA CIRCUNFERENCIA

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Límite de una función

Límite de una función Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

PROGRAMACIÓN 1º DE BACHILLERATO CIENCIAS DE LA NATURALEZA Y LA SALUD

PROGRAMACIÓN 1º DE BACHILLERATO CIENCIAS DE LA NATURALEZA Y LA SALUD PROGRAMACIÓN 1º DE BACHILLERATO CIENCIAS DE LA NATURALEZA Y LA SALUD EVALUACIÓN. - La nota global de cada evaluación se calcula cuantificando un 80% los exámenes que cada profesor/a efectuará al alumnado

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo. Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini. Otras páginas Matemáticas 5º Matemáticas I. Bloque I: ARITMÉTICA Y ÁLGEBRA Los números reales Los números reales, concepto y características. Estructura algebraica, orden, representación en la recta real

Más detalles

F es primitiva de f ya que:

F es primitiva de f ya que: T.2: INTEGRACIÓN 2.1 Primitiva de una función. Integral Indefinida. Propiedades. Sean f y F dos funciones reales definidas en el mismo dominio. La función F es una función primitiva de f, si F tiene por

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

Ejercicios resueltos de cálculo Febrero de 2016

Ejercicios resueltos de cálculo Febrero de 2016 Ejercicios resueltos de cálculo Febrero de 016 Ejercicio 1. Calcula los siguientes ites: x 5x 1. x + x + 1 x 1 x. x x. x + x + 1 x x 4. x 0 x cos x sen x x Solución: 1. Indeterminación del tipo. Tenemos:

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

4º ESO opción B Ejercicios Geometría Analítica

4º ESO opción B Ejercicios Geometría Analítica Geometría Analítica 1) Las coordenadas de un punto A son (3,1) y las del vector AB son (3,4). Cuáles son las coordenadas de punto B? Determina otro punto C de modo que el vector AC tenga el mismo módulo

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles