LOS NUMEROS IRRACIONALES:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LOS NUMEROS IRRACIONALES:"

Transcripción

1 LOS NUMEROS IRRACIONALES: Operaciones con decimales finitos. Adición, sustracción, multiplicación, división y aplicación a la resolución de problemas. Los números Irracionales (II). Representación de irracionales en la recta numérica. Aproximaciones por redondeo o truncado. Comparando irracionales. Operaciones entre irracionales y propiedades de estas.

2 Operaciones con decimales finitos: Los decimales finitos, por ejemplo: 0,75; 3,207; 5,1025 ; etc. se pueden operar directamente, aplicando los siguientes procedimientos: 1) Adición: Se colocan los sumandos uno bajo de los otros, dejando coma bajo coma para luego sumar y colocar en el resultado la coma bajo las otras. Ejemplo: La suma de 0,03 con 14,075 con 0,56437 con 8,0345 es: 0, , , , ,

3 2) Sustracción: Se coloca el sustraendo bajo el minuendo, quedando coma bajo coma, añadiendo ceros si fuese necesario para que el minuendo y el sustraendo tengan igual número de cifras decimales, para luego restar y colocar en el resultado la coma bajo las otras. Ejemplo: Al restar 16,8758 de 125,63 resulta: , , ,

4 3) Multiplicación: Para multiplicar decimales o un entero por un decimal, se multiplican como si fuesen enteros, corriendo en el producto la coma de derecha a izquierda tantos lugares como cifras decimales haya en los factores. Ejemplo: El producto entre 25,315 y 7,36 es: 2 5, , , , 5 lugares

5 4) División: Para dividir dos decimales, deben tener igual número de cifras decimales, añadiendo ceros a la que tenga menos cifras decimales, luego se suprimen las comas y se dividen como enteros. Ejemplo: El cuociente de 89,3148 : 3,156 = 8 9, : 3, = 8 9, : 3, = : = ' 8 ' : = , 3

6 Ejercicios: 1) Efectuar la operatoria indicada entre decimales finitos: a) 2,15 + 0,03 2,5 0,369 : 0,9 0,185 = 2,15 + 0,075-0,41-0,185 2,225-0,41-0,185 1,815-0,185 1,63 0,03 2, , 0,369 : 0,9 0,369 : 0, : = 0,

7 b) (0,05 (6,12 0,1314)) : 0,09 = ( 0,05 5,9886 ) : 0,09 0, : 0,09 3,327 5, , 0 5 0, , : 0, 0 9 = 0, : 0,09000 = : = 3,

8 2) Resolver los siguientes problemas: a) La altura de una persona es de 1,85 metro y la de una torre es 26 veces la altura de esta persona, menos 1,009 metros. Cuál es la altura de la torre? + 1, , - 4 8, , , La altura de la torre es de: 47,091 metros.

9 b) Un tonel lleno de vino pesa 614 kilos. Si el litro de vino pesa 0,98 kilogramos y el peso del tonel es de 75 kilogramos. Cuántos litros contiene el tonel? Peso del vino: Kg. Para obtener la cantidad de litros, se divide el peso total del vino por el peso de 1 litro de este; es decir: : 0, 9 8 = 5 3 9, 0 0 : 0, 9 8 = ' 0 ' 0 ' : 9 8 = La capacidad del tonel es de: 550 litros. 0

10 Los Números Irracionales: Sabemos que los elementos del conjunto Q de los números racionales son los números de la forma a con b b 0, números que poseen una expresión decimal finita, infinita periódica o infinita semiperiódica. Existen números que poseen expresión decimal infinita no periódica, los que reciben el nombre de Números Irracionales (II) ; luego: II = {x/x posee expresión decimal infinita no periódica} Ejemplos: a) = 3, b) 2 = 1,

11 Son números irracionales al igual que todas las raíces inexactas, por tener expresión decimal infinita no periódica. Ejercicios: Determine si o al conjunto II los siguientes números: a) 3 II d) 3 5 II g) 4 12 II b) 7 II e) 3 3 II h) II c) 9 II f) 3 8 II i) II Gráficamente a todo número irracional le corresponde un punto sobre la recta numérica.

12 Ejemplo: Ubiquemos en la recta 2 ; 3 ; 2 ; 3 ; para ello en el 1 se copia perpendicularmente la misma unidad, luego unir con un trazo el punto 0 con el extremo del trazo copiado, formándose un triángulo rectángulo de hipotenusa de medida 2, medida que se lleva a la recta en ambos sentidos, ubicándose en esta 2 y 2. Donde cae 2 se levanta perpendicularmente la unidad, unir el punto 0 con el extremo del trazo copiado, formándose un segundo triángulo rectángulo de hipotenusa de medida 3, la que se lleva a la recta en ambos sentidos, ubicándose en esta 3 y 3. Continuando con este método, se ubican todas las raíces cuadradas exactamente en la recta.

13 Al ubicar 2 ; 3 ; 2 ; Notar que no todo punto de la recta es un número irracional.

14 Aproximaciones: Como los números irracionales poseen expresión decimal infinita no periódica, para efectos de comparaciones y operatoria se hace necesario aproximar estos aplicando los procedimientos de redondeo o de truncado: Cuando redondeamos un número a una determinada cifra decimal, se debe considerar la cifra decimal que esta a su derecha: i) Si tal cifra es mayor o igual a 5, se aumenta en 1 la cifra decimal anterior. ii) Si tal cifra es menor que 5, se conserva la cifra decimal anterior.

15 Cuando truncamos un número en una determinada cifra decimal, se escribe este hasta tal cifra, sin considerar las cifras posteriores. Ejemplo: Aproximar a tres cifras decimales las siguientes cantidades, aplicando procedimiento de redondeo y truncado: Número Redondeo Truncado (a) 5, ,764 5,763 (b) 3, (c) 9, (d) 8, (e) 2, ,157 3,157 9,483 9,482 8,026 8,026 3,000 2,999

16 Aproximación por exceso y por defecto: Cuando la aproximación es menor al valor real se dice que es por defecto a diferencia de ser la aproximación mayor que el valor real donde es por exceso. Ejemplo: 2 1, ,41 es una aproximación por... defecto (es menor) 1,42 es una aproximación por... exceso (es mayor) Al truncar siempre resulta una aproximación por defecto mientras que al redondear la aproximación puede ser por exceso o diferencia.

17 Valor real Aproximación Tipo aprox. 7 2, Al truncar a la milésima: 7 2,645 por defecto 15 3, Al redondear a la milésima: 15 3,873 por exceso 33 5, Al redondear a la milésima: 33 5,745 por exceso 41 6, Al redondear a la milésima: 41 6,403 por defecto

18 Comparando Irracionales: Se debe apoyarse en su expresión decimal infinita no periódica o bien en una aproximación de esta; preferentemente con igual número de cifras decimales para facilitar las comparaciones. Ejemplo: Comparemos ahora los siguientes irracionales aproximando a 3 cifras decimales (a la milésima) por redondeo: (a) 5 = 3, ,142 3,142 2,236 5 = 2, ,236

19 (b) , ,449 7,938 12,245 7 = 2, = 2, ,646 2,449 (c) , = 3, , = 4, ,606 4,796 1,202 2,398 Operaciones en II: Como los números irracionales poseen expresión decimal infinita no periódica, para operarlos se utilizan aproximaciones.

20 Ejemplos: Al calcular aproximando a tres cifras decimales (a la milésima) por redondeo se tiene que: Calculo Valor 3, , , , Aproximación 3, ,449 2,646-2,236 Resultado 5,591 0,410 Nota: Es común dejar sólo indicada estas operaciones, ya que el resultado que se obtiene es sólo una aproximación.

21 Propiedades: Las operaciones en II cumplen con las mismas propiedades que en Q; a excepción de no cumplir con la clausura estas y de no existir elementos neutros ya que el 0 y 1 no son números irracionales. Complemento: Para aprender a calcular raíces cuadradas, aplicaremos el siguiente procedimiento:

22 "Separar la cantidad subradical en grupos de dos cifras de derecha a izquierda; el valor de la raíz es inicialmente aquella cantidad cuyo cuadrado es menor o igual al grupo de la izquierda en la cantidad subradical, cuadrado que se resta de ésta, obteniéndose el primer resto el que se acompaña por el siguiente grupo de dos cifras que se baja para dividir esta cantidad por el doble del valor de la raíz anterior, cuociente que acompaña al valor de la raíz y al doble de ésta, el que se multiplicará por tal cuociente, obteniéndose un producto el que se resta del resto anterior (si tal producto es mayor que el resto se debe rebajar tal cuociente) obteniéndose el nuevo resto, el que se acompaña por el siguiente grupo de dos cifras que se bajan y así sucesivamente".

23 Ejemplos: ' ' : : ' ' ' : : :

24 Para calcular cifras decimales, se agrega a cada resto dos ceros por cada cifra decimal que se calcule. 7 2, : : : , : : :

25 Ejercicios Complementarios: 1) Si a = 3 3 ; b = 2 5 y c = 7 ; la alternativa correcta es: A) a < b < c a ,732-5,196 B) a < c < b b ,236-4,472 C) b < a < c c 7-2,648 D) b < c < a E) c < b < a -5,196 < -4,472 < -2,648 a < b < c

26 2) Si 3 2 < x < 2 3 ; luego x =? A) ,41-2, x ,41 < x < -2 1,73 B) ,73-5,19-4,23 < x < -3,46 C) D) ,73 3,46-0, ,41 7,05-3, E) Ninguna de las anteriores.

27 3) Si x, y son números primos positivos con x y. Cuál(es) de las siguientes expresiones representan siempre a un número irracional? Ej: x+y x y l) No ll) Si lll) A) Sólo l y ll B) Sólo l y lll C) Sólo ll y lll D) Todas 5 11 E) Ninguna II II x y 5 7 Si II

28 4) Si a es número impar positivo; de las siguientes expresiones es (son) siempre un número irracional? l) a No ; si a = II ll) 3 a No ; si a = II lll) 4 a No ; si a = II A) Sólo l B) Sólo ll C) Sólo lll D) Sólo l y ll E) Ninguna.

29 5) Se tiene que a es irracional sólo si : (1) a es número primo. Si; 2; 3; 11;.. II (2) a es racional irreductible. No; 9 16 es racional irreductible y 9 3 II 16 4 A) (1) por si sola B) (2) por sí sola C) Ambas juntas, (1) y (2) D) Cada una por sí sola, (1) ó (2) E) Se requiere información adicional.

30 6) Se tiene que a 2 es irracional si: (1) Si a es número racional. No Si a = 0 a II (2) Si a es número irracional. Si a = No 2 a = 2 II No A) (1) por si sola B) (2) por sí sola C) Ambas juntas, (1) y (2) D) Cada una por sí sola, (1) ó (2) E) Se requiere información adicional.

31 Respuestas de Ejercicios Propuestos Clase-07 1) a) 1,2077 b) 17,7237 c) 240,018 d) 1,27 e) 40,7572 f) 3,32 2) a) $3,39 por kilo. b) 29 minutos. 3)Número Q II (a) 3/4 (b) (c) 16 (d) 3 5 (e) 3,14 (f) 3 6 (g) 0,13 (h) 3 8 (i) 5 2 4) Número Redondeo Truncado (a) 15, ,355 15,354 (b) 12, ,478 12,478 (c) 0, ,877 0,876 (d) 5, ,679 5,678 (e) 75, ,555 75,555 (f) 0, ,778 0,777 (g) 19, ,378 19,378 5) E 6) C 7) E 8) A 9) B 10) D 11) C 12) D

1) Adición: Se colocan los sumandos uno bajo de los otros, dejando coma bajo coma para luego sumar y colocar en el resultado la coma bajo las otras.

1) Adición: Se colocan los sumandos uno bajo de los otros, dejando coma bajo coma para luego sumar y colocar en el resultado la coma bajo las otras. Clase-07 Operaciones con decimales finitos: Los decimales finitos, por ejemplo: 0,75; 3,07; 5,105 ; etc. se pueden operar directamente, aplicando los siguientes procedimientos: 1) Adición: Se colocan los

Más detalles

LOS NÚMEROS REALES. Definición de número real y relación con conjuntos numéricos ya definidos. Comparando reales, operaciones y propiedades.

LOS NÚMEROS REALES. Definición de número real y relación con conjuntos numéricos ya definidos. Comparando reales, operaciones y propiedades. LOS NÚMEROS REALES. Definición de número real y relación con conjuntos numéricos ya definidos. Comparando reales, operaciones y propiedades. Valor recíproco. Estimaciones. Problemas de regularidades numéricas.

Más detalles

1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos:

1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos: Repaso Prueba-01 Clase-14 1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos: i) Números naturales: IN = { iii) Los números enteros: Z = { iv) Los números Racionales: Q = { v)

Más detalles

TEMA Nº 1. Conjuntos numéricos

TEMA Nº 1. Conjuntos numéricos TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

Los Números Enteros (Z)

Los Números Enteros (Z) Los Números Enteros (Z) Los números enteros: representación gráfica, orden, modulo o valor absoluto. Operaciones en Z, procedimientos y propiedades de estas. Prioridades de operaciones y paréntesis. Problemas

Más detalles

Num eros Racionales. Clase # 1. Universidad Andrés Bello. Junio 2014

Num eros Racionales. Clase # 1. Universidad Andrés Bello. Junio 2014 UniV(>r.:ild-td Andr ::i Bello Num'eros Rac1onai(>S Numéros Racionales Clase # 1 Junio 2014 Conjunto de los números naturales N Definición Son los números desde el 1 al infinito positivo. N = {1, 2,

Más detalles

TEMA 3: NÚMEROS DECIMALES

TEMA 3: NÚMEROS DECIMALES TEMA 3: NÚMEROS DECIMALES 1. NÚMEROS DECIMALES Para expresar cantidades comprendidas entre dos números enteros, utilizamos los números decimales. Los números decimales se componen de dos partes separadas

Más detalles

TEMA 2. FRACCIONES Y NÚMEROS DECIMALES

TEMA 2. FRACCIONES Y NÚMEROS DECIMALES TEMA 2. FRACCIONES Y NÚMEROS DECIMALES ÍNDICE 1. Operaciones con fracciones 2. Operaciones con números decimales 3. Fracciones y números decimales 4. Fracción generatriz Tema 2. Fracciones y números decimales

Más detalles

OPERACIONES CON NÚMEROS REALES

OPERACIONES CON NÚMEROS REALES NÚMEROS REALES Por número real llamaremos a un número que puede ser racional o irracional, por consiguiente, el conjunto de los números reales es la unión del conjunto de números racionales y el conjunto

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica.

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica. NÚMEROS REALES NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros: a, y b Z con b 0 Con un número entero o con una expresión

Más detalles

LOS NUMEROS RACIONALES: Representación de racionales en la recta. Amplificar y simplificar un racional.

LOS NUMEROS RACIONALES: Representación de racionales en la recta. Amplificar y simplificar un racional. LOS NUMEROS RACIONALES: Definición de número racional. Representación de racionales en la recta. Racionales equivalentes. Amplificar y simplificar un racional. Números mixtos. Orden en los racionales.

Más detalles

62,415 = ,4 + 0,01 + 0,005

62,415 = ,4 + 0,01 + 0,005 NOMBRE:... Nivel:... FECHA:... LOS NÚMEROS DECIMALES LAS UNIDADES DECIMALES 1 0,1 1 0 0,01 0,1 una décima (d) 0,01 una centésima (c) 0,001 una milésima (m) 1 U = d = 0 c = 1.000 m 1 1.000 0,001 D U, d

Más detalles

Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción

Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción Fracción decimal Una fracción decimal tiene por denominador la unidad seguida de ceros. Número decimal decimal. Es aquel que se puede expresar mediante una fracción Consta de dos partes: entera y decimal.

Más detalles

Tema 1.- Los números reales

Tema 1.- Los números reales Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional

Más detalles

CONJUNTO DE LOS NÚMEROS REALES

CONJUNTO DE LOS NÚMEROS REALES NÚMEROS REALES 1. EL CONJUNTO DE LOS NÚMEROS REALES Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales y se representa por Q. Tanto

Más detalles

LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES

LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS SUMA Si los números tienen el mismo signo se suman se deja el mismo signo. 3 + 5 = 8 ( 3) + ( 5) = 8 Si números tienen

Más detalles

Resolución de problemas mediante ecuaciones.

Resolución de problemas mediante ecuaciones. Resolución de problemas mediante ecuaciones. 1.- La suma de un número con el doble de ese mismo número es 72. Cuál es ese número? 2.- Un señor compró 2 kilos de papas y 3 de tomates. El kilo de papas costaba

Más detalles

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos

Más detalles

UNIDAD II: CONJUNTOS NUMÉRICOS

UNIDAD II: CONJUNTOS NUMÉRICOS Presentación En esta unidad se aborda el estudio de los conjuntos numéricos, la operatoria y propiedades en ellos, dando énfasis al trabajo de operatoria básica en IR, potencias, raíces y logaritmos. En

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

NM1: APROXIMACIONES Y NUMEROS REALES

NM1: APROXIMACIONES Y NUMEROS REALES NM1: APROXIMACIONES Y NUMEROS REALES Una empresa de productos en conserva debe etiquetar 30.000 tarros para un nuevo producto que lanzará al mercado. Las etiquetas deben quedar a 0, cm de las bases del

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros GUICEN023MT21-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros GUICEN023MT21-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros Programa Entrenamiento Desafío Un número n, en los enteros positivos, tiene un total de p divisores positivos distintos. Luego,

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

MATEMÁTICAS UNIDAD 4 GRADO 6º. Números naturales

MATEMÁTICAS UNIDAD 4 GRADO 6º. Números naturales 1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 6º Números naturales 1 2 Franklin Eduardo Pérez Quintero LOGRO: Estudiar, analizar y profundizar las operaciones y propiedades de los números

Más detalles

ESCUELA SECUNDARIA OFICIAL No MIGUEL LEON PORTILLA. GUIA DE EXAMEN DE RECUPERACION 3er. BIMESTRE MATEMATICAS I

ESCUELA SECUNDARIA OFICIAL No MIGUEL LEON PORTILLA. GUIA DE EXAMEN DE RECUPERACION 3er. BIMESTRE MATEMATICAS I ESCUELA SECUNDARIA OFICIAL No. 00 MIGUEL LEON PORTILLA GUIA DE EXAMEN DE RECUPERACION er. BIMESTRE MATEMATICAS I NOMBRE DEL ALUMNO: GRADO: _º_GRUPO: _B_ REPRESENTACIÓN DE NÚMEROS FRACCIONARIOS Y DECIMALES

Más detalles

UNIDAD 6 AULA 360. Números decimales

UNIDAD 6 AULA 360. Números decimales UNIDAD 6 Números decimales 1. Números decimales. Ordenación y representación 2. Tipos de números decimales 3. Conversión de decimal a fracción 4. Operaciones con números decimales 1. Números decimales

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MÁS EJEMPLOS DE OPERACIONES ARITMÉTICAS EN DIFERENTES SISTEMAS NUMÉRICOS. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Más detalles

UNIDAD III NÚMEROS FRACCIONARIOS

UNIDAD III NÚMEROS FRACCIONARIOS UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza

Más detalles

Los Conjuntos de Números

Los Conjuntos de Números Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

TEMA 3 NÚMEROS DECIMALES

TEMA 3 NÚMEROS DECIMALES TEMA 3 NÚMEROS DECIMALES Criterios De Evaluación de la Unidad 1. Identificar el significado de número decimal. 2. Ordenar y representar números decimales. 3. Pasar correctamente de fracción a decimal y

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Operaciones con fracciones I

Operaciones con fracciones I Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:

Más detalles

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO NÚMEROS RACIONALES Los números racionales son todos aquellos

Más detalles

NÚMEROS DECIMALES. 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal.

NÚMEROS DECIMALES. 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal. NÚMEROS DECIMALES 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal. Parte entera, Décimas Centésimas Milésimas Diezmilésimas Cienmilésimas

Más detalles

NÚMEROS DECIMALES. 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal.

NÚMEROS DECIMALES. 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal. NÚMEROS DECIMALES 1 LECTURA Y ORDENACIÓN DE NÚMEROS DECIMALES Todo número decimal se compone de una parte entera, la coma y la parte decimal. Parte entera, Décimas Centésimas Milésimas Diezmilésimas Cienmilésimas

Más detalles

16/11/2015. Tema 1º Números reales 1.0) Conceptos previos. 1.1) Fracciones. Números racionales. 1.2) Operaciones con números racionales.

16/11/2015. Tema 1º Números reales 1.0) Conceptos previos. 1.1) Fracciones. Números racionales. 1.2) Operaciones con números racionales. Irracionales (I) 16/11/01 1.) Operaciones con números racionales. 1.) Expresiones fraccionarias y decimal de un número racional. Irracional 1.) Representación de números racionales 1.10) Intervalos y semirrectas.

Más detalles

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:

TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo: TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-0.qxd //0 : Página Números reales INTRODUCCIÓN Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Continuación Números Naturales:

Continuación Números Naturales: Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:

Más detalles

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL El número real MATEMÁTICAS I 1 1. APROXIMACIONES APROXIMACIÓN DECIMAL DE UN NÚMERO REAL Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas,

Más detalles

2 entre dos números racionales distintos es siempre posible encontrar el que está entre ambos.

2 entre dos números racionales distintos es siempre posible encontrar el que está entre ambos. LICEO DE APLICACIÓN DPTO. DE MATEMÁTICA º Medio UNIDAD Nùmeros GUIA DE EJERCICIOS Nº Contenidos Números racionales Aprendizajes esperados - Determinan relación de orden con números racionales - Expresan

Más detalles

SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES

SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES 1. REPASAMOS LA SUMA Y LA RESTA 1.1. SUMA. La suma o adición consiste en añadir dos números o más para conseguir una cantidad total. Los números

Más detalles

LOS NUMEROS NATURALES SUMA Y RESTA

LOS NUMEROS NATURALES SUMA Y RESTA LOS NUMEROS NATURALES SUMA Y RESTA I. Sistemas de Numeración y Números Naturales A lo largo de la historia, el ser humano ha ido inventando las herramientas que necesitaba para resolver problemas. Así

Más detalles

NÚMEROS DECIMALES PROFESOR: RAFAEL NÚÑEZ NOGALES

NÚMEROS DECIMALES PROFESOR: RAFAEL NÚÑEZ NOGALES NÚMEROS DECIMALES 1 y 2.- ÓRDENES Y DECIMALES. FRACCIONES Y DECIMALES (A) Lectura de números decimales 241,58 241 unidades y 58 centésimas 3,007 3 unidades y 7 milésimas 4005,6 4005 unidades y 6 décimas

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

NÚMEROS 1º E.S.O. NÚMEROS DECIMALES ÓRDENES DE UNIDADES DECIMALES NÚMEROS DECIMALES. 1 U = 10 d = 100 c = 1000 m =...

NÚMEROS 1º E.S.O. NÚMEROS DECIMALES ÓRDENES DE UNIDADES DECIMALES NÚMEROS DECIMALES. 1 U = 10 d = 100 c = 1000 m =... NÚMEROS DECIMALES NÚMEROS DECIMALES 1º E.S.O. NÚMEROS DECIMALES ÓRDENES DE UNIDADES DECIMALES Los números decimales se componen de dos partes separadas por una coma. La parte entera, formada por las cifras

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

TEMA 1. Los números enteros. Matemáticas

TEMA 1. Los números enteros. Matemáticas 1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números *Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos

Más detalles

LOS NUMEROS RACIONALES

LOS NUMEROS RACIONALES LOS NUMEROS RACIONALES DECIMALES I. Introducción a los Decimales Los números racionales se pueden expresar mediante fracciones y también en forma de decimales. 2 = 0,5 3 = 0,33333 4 = 0,25 5 = 0,2 6 =

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA I : NÚMEROS NATURALES Sistema de numeración romano. Los números naturales. Números naturales como cardinales y ordinales. o Recta numérica. El sistema de numeración decimal.

Más detalles

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales.

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales. Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Números racionales Mapa conceptual Cómo representar un número con muchos decimales? Racionales Matemática Por ejemplo, aproximando a la

Más detalles

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas. ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones

Más detalles

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos Unidad Didáctica NÚMEROS REALES. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal

Más detalles

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28 Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa

Más detalles

Tema 4. Los números reales.

Tema 4. Los números reales. Tema 4. Los números reales. Números irracionales. En el tema anterior, has visto que los números racionales pueden escribirse en forma decimal, produciendo siempre un decimal exacto o periódico. También

Más detalles

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-5-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS

UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS C u r s o : Matemática Material N 02 GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS ENTEROS ( ) Los elementos del conjunto enteros. OPERATORIA EN ADICIÓN = {, -3,

Más detalles

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales

IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales Números decimales Contenidos 1. Números decimales Elementos de un número decimal Redondeo y truncamiento de un decimal 2. Operaciones con decimales Suma de números decimales Resta de números decimales

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS VALOR ABSOLUTO Es la distancia que existe entre un número y el 0-3 -2-1 0 1 2 3 Z -3 = 3, 3 = 3 DEFINICIÓN:

Más detalles

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved.

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved. 5.1 Números Reales Mate 3041 Milena Salcedo V R Copyright Cengage Learning. All rights reserved. Números Reales Números Naturales: N = 1,2,3, Números Enteros no negativos (Cardinales): 0,1,2,3, Números

Más detalles

Mó duló 02: Nu merós Reales

Mó duló 02: Nu merós Reales INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 0: Nu merós Reales Objetivo: Comprender los números reales como un conjunto que está conformado por otros conjuntos numéricos, los cuales tienen

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son

Más detalles

SUMA, RESTA Y MULTIPLICACIÓN DE NÚMEROS NATURALES

SUMA, RESTA Y MULTIPLICACIÓN DE NÚMEROS NATURALES SUMA, RESTA Y MULTIPLICACIÓN DE NÚMEROS NATURALES 1. REPASAMOS LA SUMA Y LA RESTA 1.1. SUMA. La suma o adición consiste en añadir dos números o más para conseguir una cantidad total. Los números que se

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA :

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL PERIODO: GRADO FECHA N DURACION 2 7 ABRIL 10 /2015 UNIDADES

Más detalles

Ejercicios PSU. ( p π ) 2

Ejercicios PSU. ( p π ) 2 Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Números irracionales Mapa conceptual Se define como IRRACIONALES Cómo se ordenan? Matemática Números que NO pueden ser expresados como una

Más detalles

Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 6 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl NÚMEROS DECIMALES 1. DESCRIPCIÓN GENERAL DE LA UNIDAD La Unidad

Más detalles

Representación de números en la recta real. Intervalos

Representación de números en la recta real. Intervalos Representación de números en la recta real. Intervalos I. Los números reales En matemáticas los números reales se componen de dos grandes grupos: los números racionales (Q) y los irracionales (I). A su

Más detalles

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

Capítulo 1: Números y funciones

Capítulo 1: Números y funciones (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Curso 2016/2017 Contenidos Primeras clases de números reales Operaciones con números reales Ecuaciones e

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES ÍNDICE 7.1 Unidad decimal. 7.2 Escritura, lectura y descomposición de números decimales. 7.2.1 Escritura de números decimales. 7.2.2 Lectura de números decimales.

Más detalles

Calendario Lenguaje Matemática Inglés Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 28 de Junio 30 de Junio 4 de Julio

Calendario Lenguaje Matemática Inglés Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 28 de Junio 30 de Junio 4 de Julio Curso: 7º Básico Nivel de Séptimos del Primer Semestre (coef. 2), de según fecha indicada para cada sector de Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 30 de Junio 4 de Julio Los Sectores

Más detalles

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor.

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor. Números reales 1 Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan estimaciones y aproximaciones. Sería absurdo decir que la capacidad de un pantano

Más detalles

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica.

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica. 829485 _ 024-008.qxd 12/9/07 15:10 Página 27 Números decimales INTRODUCCIÓN RESUMEN DE LA UNIDAD En esta unidad estudiamos el sistema de numeración decimal, e introducimos las denominaciones de la parte

Más detalles

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2 Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución

Más detalles

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. CONTENIDOS: 1. Operaciones con números fraccionarios. 2. Resolución de problemas aritméticos. DESARROLLO Ejercicio Reto

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 5 ASIGNATURA: Matemática PERIODO: I PROFESOR: María Raquel Vigil. UNIDAD Nº 1 NOMBRE DE LA UNIDAD: JUGUEMOS CON

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles