Relaciones y Funciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Relaciones y Funciones"

Transcripción

1 OBJETIVOS Unidad Tema Subtema Objetivos IV Relaciones y funciones 4.1 Relaciones 4.2 Funciones Entender y definir el concepto de relación así como las diferentes representaciones de una relación Entender, aprender y utilizar las propiedades de las relaciones Conocer y clasificar los tipos de relaciones: o De equivalencia o De orden o Función Graficar una relación Entender y definir el concepto de función Conocer y utilizar los tipos de funciones o Biyectiva o Inyectiva o Suprayectiva Conocer y obtener de una función o La función inversa o Una función compuesta Conocer y diseñar funciones recursivas 103

2 4.1 Relaciones Definición de Relación El concepto de relación surge de manera natural en el análisis de un sistema. Un ejemplo, en los números Naturales se establece la relación es menor que.... Bajo esta relación R el número 2 se relaciona con el 3: 2 es menor que 3, pero no así al contrario (3 no es menor que 2). Una relación es binaria cuando se establece entre dos objetos. Un ejemplo: R : x < y. Una relación es un conjunto de pares ordenados. Un par ordenado (también llamada pareja ordenada) consta de dos elementos: (a, b) en donde el orden en que aparece (primero a, después b) indica la relación: a R b de a con b. Una relación asocia un elemento de un conjunto A con un elemento de otro conjunto B o con un elemento del mismo conjunto A. Ejemplos: * Para A= {a, b, c} R 1 = {(a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)} 1 R = A A * Para A = {España, Inglaterra, Italia} B= {Paris, Roma, Madrid} R2: (España, Paris) (Inglaterra, Roma) (Italia, Madrid) * R3: (Pepe, María) (Pepe, Laura) (Pepe, Tere) Esta relación puede ser:... hermano de... Otro ejemplo: A = {Familia Rodríguez} Miembro Edad Peso Estatura Papá Alfonso (A) Mamá Beatriz (B) Hijo 1 Carlos (C) Hijo 2 David (D) Hijo 3 Elena (E) R 1 : es papá de (A, C) (A, D) (A, E) R 2 : es mas alto que (C, A) (C, B) (C, D) (C, E) (A, B) (A, D) (A, E) (B, D) (B, E) (D, E). R3: es mas grande que (A, B) (B, C) (C, D) (D, E), (A, C) (B, D) (C, E), (A, D) (B, E) (A, E) 104

3 Representaciones gráficas de relaciones Gráfica de relaciones no numéricas Diagrama de flechas ( x, y) ( y, y) ( y, z) ( z, x) Relación:...es más grande que... Nomenclatura para relaciones (R) R = {( x, y) / x < y} relación: x < y Es menor que = {( x, y) / x < y} R si R:...es menor que... x y Definición: Sea R una relación a R b = ( a, b) Ejemplo: R = {( x, y),( y, z),( y, y),( z, z)} R es verdadera? no z y y R z es verdadera? Si R Si xry, xrz, zry, yrz, zrz, son verdaderas, Cuál es la relación R? R = {( x, y), ( x, z), ( z, y), ( y, z), ( z, z) } 105

4 Clasificación de relaciones - Relaciones de equivalencia - Relaciones de orden - Funciones 1. Relaciones de equivalencia Características (propiedades) 1) Reflexividad: xrx : x S xrx ( x está relacionada con x ) Ejemplo: El conjunto de alumnos que se encuentra en su salón de clase S = {Pedro, Javier, Esteban} R : está en la misma habitación Pedro R Pedro reflexividad 2) Simetría: x, y S. Si x Ry y Rx Ejemplo: Pedro R Javier Javier R Pedro 3) Transitiva: x, y, z S Si xry y yrz xrz Pedro R Javier y Javier R Esteban Pedro R Esteban Definición: Una relación R, definida sobre un conjunto S es una relación de equivalencia tienen las tres propiedades: reflexiva, simétrica y transitiva Ejemplos: R : x < y R : x y S = { a, b, c} R = {( a, a), ( c, c)(, a, c)(, c, a) } Reflexiva? 3 < 3 Reflexiva? 3 3 Reflexiva? ara crc brb Simétrica? 3 < 5 y 5 < 3 Simétrica? 3 5 y 5 3 Simétrica? arc cra Transitiva? 3 < 5 Transitiva? 3 5 Transitiva? arc 5 < 6 3 < crb no arb no Relación equivalente X tiene la misma paridad (que sea par o impar) 3 tiene la misma paridad que 3 Reflexiva 3 tiene la misma paridad que 5 Simétrica 5 tiene la misma paridad que 3 5 tiene la misma paridad que 7 Transitiva 106

5 Relación de orden parcial En matemáticas, una relación binaria R sobre un conjunto X es antisimétrica si se cumple que para todo a y b pertenecientes a X si a está relacionado con b y b está relacionado con a entonces a = b. En notación de conjuntos:. La relación ser más alto que es una relación antisimétrica dado que a es más alto que b y b es más alto que a no pueden cumplirse al mismo tiempo. Nótese que la antisimetría no es lo opuesto de la simetría ( a R b y b R a implican b = a). Existen relaciones que son simétricas y antisimétricas al mismo tiempo (como la relación de igualdad), relaciones que no son simétricas ni antisimétricas (como la relación de divisibilidad), relaciones que son simétricas pero no antisimétricas (como la relación de congruencia módulo n), y relaciones que son antisimétricas pero no simétricas (la relación "es menor que" ). La relación ser menor o igual también es antisimétrica dado que si a es menor o igual que b y b es menor o igual que a es porque a = b. Una relación que es reflexiva, antisimétrica y transitiva es llamada un orden parcial. En resume: cuando en una relación se tiene que elemento a es igual al elemento b. Ejemplo: A = { 1,2,3,4,6,12} conjunto de divisores positivos enteros de 12 a R b y xry x divide exactamente a y A A : xry ( 1,1 )( 1,2)( 1,3)( 1,4 )( 1,6 )( 1,12) ( )( )( )( ) 2,2 2,4 2,6 2,12 R = ( 3,3)( 3,6)( 3,12) ( 4,4)( 4,12) ( )( ) 6,6 6,12 Si x divide a y exactamente y = ax Si y divide a z exactamente z = by z = b(ax) z = bax z x divide exactamente a z Reflexiva sí es porque 1 R 1, 2 R 2,. Si a R b b R a simétrica Si arb y bra a = b antisimétrica Si a está en relación con b b está en relación con a a = b b R a es porque el Transitiva 107

6 4.2 Funciones Intuitivamente una función es una regla que asocia elementos de un conjunto A con elementos de un conjunto B de modo que el elemento del conjunto A se asocia con uno y sólo un elemento del segundo conjunto. En otras palabras, una función es una máquina que transforma elementos en otros elementos y cada elemento puede transformarse en un único elemento, no en dos o tres. Definición: Sean A y B dos conjuntos. Una función de A en B es un conjunto de pares ordenadas de A x B (a, b) con la propiedad de que cada elemento de A es el primer componente de una pareja ordenada y para todo a A, si (a, b) y (a, c) pertenece a f entonces b = c (porque a no se repite en otra pareja) A: Dominio de la función B: Codominio Imagen son los elementos de B que forman el segundo componente de la pareja ordenada. Ejemplo: A= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} = {conjunto de calificaciones en base a 10} B= {NA, S, B, MB} = {conjunto de símbolos que representan un rendimiento escolar A B son todas las posibles relaciones ( 0, NA)( 1, NA)... ( 10, NA) ( )( ) ( ) 0, S 1, S 10, S A B = ( )( ) ( ) ( )( ) ( ) 0, B 1, B 10, B 0, MB 1, MB 10, MB A B = 44 parejas R : Si NA = no acreditada calificación 0-5 Si S = suficiente calificación 6-7 Si B = bien calificación 8-9 Si MB = muy bien calificación 10 es una función porque a cada elemento de A corresponde solo uno de B a la relación se le llama regla de correspondencia f, entonces, b = f(a) un elemento del conjunto B está en función de un elemento del conjunto A. Nomenclatura y = f (x) Dominio de una función es el conjunto de los valores que puede tomar x o que toma x para que exista la función. Codominio o rango de una función es el conjunto de los valores que se obtienen al sustituir los valores del dominio en la función. 108

7 Tipos de funciones Función Inyectiva: A una función en la que a cualquiera par de elementos diferentes del dominio les corresponde imágenes diferentes se le llama función inyectiva (significa uno a uno) 2 Un ejemplo es la función cuadrática y = ax + bx + c cuyo dominio y cuyo codominio son los reales. Así, para y = 3x 2 + 2x + 1 cuya gráfica es la función no toma los valores menores a -2. Función Suprayectiva: Si todo elemento del codominio de una función f es imagen de al menos un elemento de su dominio, entonces f es una función suprayectiva Las funciones trigonométrica (seno, coseno, tangente, cotangente, secante y cosecante) son del tipo suprayectiva (o sobreyectiva). El dominio son los reales y el codominio es [-1, 1] por lo que para más de un valor de x le corresponde el mismo valor de y. 109

8 Función Biyectiva: Una función que es suprayectiva e inyectiva se llama Biyectiva. Ejemplo de esta función es la función lineal: y = mx + b cuyo dominio y cuyo codominio son los reales. Para cada valor de x le corresponde solo uno de y. Todos los valores del codominio son la imagen de un valor y solo uno del dominio. Otras funciones Función Entero Mayor x : (función techo) redondea hacia el siguiente entero. Ejemplos: y = 3.01 = 4 y = 3.51 = 4 y = 3.91 = 4 y = 3.01 = 3 y = 3.51 = 3 y = 3.91 = 3 110

9 Función Entero Menor x : (función suelo) redondea hacia el entero. Ejemplos: y = 3.01 = 3 y = 3.51 = 3 y = 3.91 = 3 y = 3.01 = 4 y = 3.51 = 4 y = 3.91 = 4 Función Truncar TRUNC (x) : da como resultado la parte entera. Ejemplos: y = trunc(3.01) = 3 y = trunc(3.51) = 3 y = trunc(3.91) = 3 y = trunc( 3.01) = 3 y = trunc( 3.51) = 3 y = trunc(.3.91) = 3 Función Compuesta: fog Si f : A B y g : B C la función compuesta fog : A C se define fog( a) = f ( g( a) ) a A. Ejemplo: A = { 1,2,3,4,5 } B = { w, x, y, z} C = { a, b, c} Si f = {( 1, w)( 2, x)( 3, y)( 4, z)( 5, z) } y g = {( w, a)( x, b)( y, c)( z, c) } f : A B g : B C fog : A C{ ( 1, a)( 2, b)( 3, c)( 4, c)( 5, c) } Función Inversa Si f es una función uno a uno, entonces la inversa de f, denotada por f = {( y, x) /( x, y) está en f } Propiedades: Si f existe entonces: f es una función uno a uno El dominio de f es el rango de f f es: El rango de f es el dominio de f Determinación de la inversa de una función f : 1. Encontrar el dominio de f y determinar que es una función uno a uno. Si f no es una función uno a uno, entonces no existe f 2. Resolver para x la ecuación y = f (x). El resultado es una ecuación de la forma x = f 1 ( y ). 3. Intercambiar x y y en la ecuación encontrada. Esto expresa a f como una función de x. 4. Encontrar el dominio y el rango de f. 111

10 Ejemplo: Encontrar f para f ( x) = x Solución: 1. Dominio de f : [ 1, ) rango: y 0, por lo tanto 2. Despejar x : y = y 2 x = x x = y f existe Intercambiar: y = f = x Dominio y rango de f : dominio : x 0, rango y 1 f ( x) = x x = y

11 Función Recursiva Una función recursiva es aquella que depende de valores precedentes (anteriores). Debe contener: Condiciones iniciales Procedimiento Condición de término Ejemplos: Subrutina fibonacci ( L, L2, n, L) Definición de variables Si n > 2 entonces L = L 1 + L2 L = L si no regresar L = L n = n llamar fibonacci ( L, L2, n, L) 1 Función factorial ( n, fac) Definición de variables Si n = 0 entonces fac = 1 regresar fac ; Si no si n > 1 entonces fac = fac n n = n = regresar fac ; fac función factorial ( n, fac) 113

12 4.3 Historia 9 La palabra función fue introducida en 1694 por Gottfried Wilhelm Leibniz ( ) para designar una cantidad asociada con una curva. En el año 1718, Bernoulli ( ) consideraba una función como una expresión algebraica formada por constantes y variables. Las ecuaciones o fórmulas con constantes y variables surgieron con Leonahard Euler ( ). Su definición de función es la que generalmente se encuentra en los libros de matemáticas a nivel de enseñanza media. En 1734 Euler y Alexis Clairaut ( ) introdujeron la notación f (x). La idea de Euler permaneció intacta hasta la época de Jean Baptiste Joseph Fourier ( ) quien encontró la necesidad de un tipo más general de función en su estudio de series trigonométricas. En 1837, Meter Gustav Lejeune Dirichlet ( ) estableció una formulación más rigurosa de los conceptos de variable, función y correspondencia entre la variable independiente y la variable dependiente. El trabajo de Dirichlet enfatiza la relación entre dos conjuntos de números y no pide la existencia de una fórmula o expresión que relaciones a los dos conjuntos. Con los desarrollos de la teoría de conjuntos de George Cantor, se llegó a una generalización de la función como un tipo de relación particular. Gottfried Wilhelm Leibniz ( ) 9 [Grimaldi, 308] 114

13 Actividades de 1. Mencionando los conjuntos a los que se refiere, describe y da un ejemplo de: a. Relación ( dibuja la gráfica y el diagrama de flechas) b. Reflexividad c. Simetría d. Transitividad e. Relación equivalente f. Relación de orden parcial g. Función h. Función biyectiva i. Función inyectiva j. Función suprayectiva 2. Escribe 3 relaciones que tengan por lo menos una propiedad y especifica que propiedad contiene. 3. Escribe 3 relaciones que tengan por lo menos dos propiedades y especifica que propiedades contiene. 4. Escribe una relación que sea equivalente. 5. Es la relación no es igual a, definida sobre el conjunto Z de los enteros, reflexiva, simétrica, transitiva? 6. Sobre el conjunto {la familia Rodríguez}, a. es la relación es hermano o hermana de una relación de equivalencia? b. Es la relación tienen el mismo padre que, una relación de equivalencia? 7. La siguiente relación: a. Escribe los pares ordenados b. dibuja el diagrama de flechas c. Es reflexiva? d. Es simétrica? e. Es transitiva? 8. La final masculina de Wimbledon es ganada por el primer jugador que gane tres de cinco sets en un juego. Si C y M detonan a los jugadores, dibuja un diagrama de flechas que demuestre todas las formas posibles en que se puede decidir el juego Un rumor se difunde como sigue. El que lo origina llama a dos personas por teléfono, Cada una de estas personas telefonea a tres amigos, cada uno de los cuales a su vez llama a otros 5 más. Si nadie recibe más de una llamada y nadie llama al que lo origino, Cuántas personas conocen a ahora el rumor? Cuántas llamadas telefónicas fueron hechas? 115

14 Clasifica como relación o función, según corresponda y encontrar el dominio, el codominio y la imagen para cada uno de los siguientes conjuntos: { (1,3), (2,5), (3,9), (4,10) } { (-1,10), (-1,0), (-1,3) } { (x, y) / y = 2 x, x Z } { (x, y) / x 2 +y 2 = 1, -1<= x <= 1, x R} Encuentra el dominio, la imagen y la expresión algebraica: g = { (3,1), (6,2), (9,3) } h = { (3,8), (4,10), (5,12) } El costo c del alquiler de una máquina durante d días es de $50 más $10 por día. Asocia el número 4 a cada número real no negativo. Escribe el conjunto de las parejas que forman las siguientes funciones Asocia a cada número entero, desde 3 hasta 6, el doble de su cuadrado. Asocia a cada número entero, desde 4 hasta 2, su inverso aditivo. Asocia a los cuadrados de los enteros mayores o iguales a cero y menores que 30 su raíz cuadrada negativa Para las siguientes funciones, encuentra lo que se pide: Sea f(x)= 3x 2 +1, x R; encontrar f(-2), f(0), f(raíz de 2), f(3), f(a-1). Sea g(x)= 1/2x 2-4x, x R; encontrar g(4), g(-2), g(0), g(a), 2g(3), [g(3)- g(2)]/[g(2)-g(1)]. Falso o verdadero? La relación h : Z + Z, que asocia a cada entero positivo su raíz cuadrada negativa, es una relación que es función. Si A es el conjunto de los números primos y B es el conjunto de los números naturales mayores que 3, entonces la relación h : A B, que asocia a cada número primo su cuadrado, es una relación que es función. El conjunto { (3/5, 1), ( 9/8, 1/3), ( 3/5, 2), ( ¼, -1) } representa una función. El conjunto { (-1,3), (3, -1), (2, -4), (-4,2) } representa una relación que no es función. El conjunto { x R + y 2 = x } representa una relación que no es función. El conjunto { x R + 4x - y + 1 = 0 } representa una relación que no es función El dominio de la función definida por f(x)=1/x es el conjunto R de los número reales. La imagen de la función f(x)=-x/2 + 1, x R es el conjunto R + de los números reales positivos. Representación geométrica de una función: 116

15 Representación de una relación que no es función: Representa una función: Representación de una función: La función f: R R, con f(x)= x + 3, es una función biyectiva. La función h: R + R, con h(x)= raíz cuadrada de x, es una función creciente en su dominio. La función h: R R, con g(x)= x 2, es una función creciente en su dominio. La función g, que asocia a cada entero no negativo el triple de su cuadrado y a cada entero negativo la semisuma (1/2) de su valor aumentado en 2, se expresa como: g(x) = 3x 2, si x si x Z + {0} (x + 2)/2 si x Z - Define: El dominio de la función f(x)=raíz cuadrada de x entre x es el conjunto: La imagen de la función definida por el valor absoluto de x menos x, con x R es el conjunto: La función h: R + R con f(x)=raíz cuadrada de x entre x es una función: La función f: Z + Q con f(x)=x/(x+1) es una función Completa: La función h que asocia cada número real no negativo la raíz cuadrada positiva del cubo de su valor o a cada real negativo la raíz cúbica del 117

16 cuadrado de su valor, se expresa como: Si g(x)=-5(x 2 -x)/2, x R, entonces g(g(1)) debe ser igual a: Si f(x)=x/3+2, x R, entonces f(3)-[2f(6)/f(-12)] es igual a: Relaciona cada gráfica con las funciones: a. f: (-4,4) R f(x) = x-4 0<=x<=4 x+4 5<=x<0 b. g: R - R g(x)= x abs(x) c. h: (-3,3) R h(x)= menos raíz cuadrada de (9-x 2 ) d. f: R R f(x)= -1 si x<-1 x si 1<= x<=3 3 si x > 3 e. g: (-3,3) R g(x)= menos raíz de x f. h: (-5,5) R h(x)= abs(x) g. f: R R f(x)= -1 si x<-1 abs(x) si 1<= x<=3 3 si x > 3 118

17 Actividades de Mencionando los conjuntos a los que se refiere, describe y da un ejemplo de: a) Relación (dibuja la gráfica y el diagrama de flechas) Relación es un conjunto de pares ordenados R1: (x, y) (y, y) (y, z) (z, x) X 4 1 Z 3 Y 2 b) Reflexividad xrx : x S xrx ( x está relacionada con x ) Ejemplo: El conjunto de alumnos que se encuentra en su salón de clase c) Simetría x, y S. Si x Ry y Rx Ejemplo: Pedro R Javier Javier R Pedro c) Transitividad x, y, z S Si xry y yrz xrz Pedro R Javier y Javier R Esteban Pedro R Esteban d) Relación equivalente Una relación R, definida sobre un conjunto S es una relación de equivalencia tienen las tres propiedades: reflexiva, simétrica y transitiva e) Relación de orden parcial Si una relación es reflexiva, antisimétrica y transitiva es de orden parcial f) Función Sean A y B dos conjuntos. Una función de A en B es un conjunto de pares ordenadas de A x B (a, b) con la propiedad de que cada elemento de A es el primer componente de una pareja ordenada y para todo a A, si (a, b) y (a, c) pertenece a f entonces b = c (porque a no se repite en otra pareja) g) Función biyectiva Una función que es suprayectiva e inyectiva se llama biyectiva. 119

18 h) Función inyectiva A una función en la que a cualquiera par de elementos diferentes del dominio les corresponde imágenes diferentes se le llama función inyectiva (significa uno a uno) i) Función suprayectiva Si todo elemento del codominio de una función f es imagen de al menos un elemento de su dominio, entonces f es una función suprayectiva 2. Escribe 3 relaciones que tengan por lo menos una propiedad y especifica que propiedad contiene. Reflexividad y simetría: A= {2, 3, 4} R= {(2,2), (3,3), (4,4), (2,3), (3,2), (2,4), (4,2), (3,4), (4,3)} Reflexividad y transitividad: A= {a, b, c} R= {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)} Transitividad y simetría: A= {2, 3, 4} R= {(2,3), (3,4), (2,4), (3,2), (4,3), (4,2)} 3. Escribe 3 relaciones que tengan por lo menos dos propiedades y especifica que propiedades contiene. Reflexividad y simetría: A= {2, 3, 4} R= {(2,2), (3,3), (4,4), (2,3), (3,2), (2,4), (4,2), (3,4), (4,3)} Reflexividad y transitividad: A= {a, b, c} R= {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)} Transitividad y simetría: A= {2, 3, 4} R= {(2,3), (3,4), (2,4), (3,2), (4,3), (4,2)} 4. Escribe una relación que sea equivalente. Equivalente: A= {1, 2, 3} R= {(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1), (3, 2), (2, 3)} 5. Es la relación no es igual a, definida sobre el conjunto Z de los enteros, reflexiva, simétrica, transitiva? Reflexiva: x Rx : x S x Rx : ( x, x) Simetría: x Ry xry : x y S x Ry xry : { ( x, y), ( y, x) } Transitiva: R R : R : x, y z S R R : R : { ( x, y), ( y, z) ( x, z)} x y y z x z y y z x z 120

19 6. Sobre el conjunto {la familia Rodríguez}, a. es la relación es hermano o hermana de una relación de equivalencia? NO b. Es la relación tienen el mismo padre que, una relación de equivalencia? NO 7. La siguiente relación: a. Escribe los pares ordenados pares ordenados: R= {(x, x), (x, y), (x, z), (y, y), (y, z), (z, z), (w, z), (w, w) b. dibuja el diagrama de flechas c. Es reflexiva? SI d. Es simétrica? NO e. Es transitiva? NO 8. La final masculina de Wimbledon es ganada por el primer jugador que gane tres de cinco sets en un juego. Si C y M detonan a los jugadores, dibuja un diagrama de flechas que demuestre todas las formas posibles en que se puede decidir el juego. 121

20 Un rumor se difunde como sigue. El que lo origina llama a dos personas por teléfono, Cada una de estas personas telefonea a tres amigos, cada uno de los cuales a su vez llama a otros 5 más. Si nadie recibe más de una llamada y nadie llama al que lo origino, Cuántas personas conocen a ahora el rumor? 39 Cuántas llamadas telefónicas fueron hechas?38 Clasificar como relación o función, según corresponda y encontrar el dominio, el codominio y la imagen para cada uno de los siguientes conjuntos: { (1,3), (2,5), (3,9), (4,10) } Función, Dominio = {1, 2, 3, 4} Imagen-{3, 5, 9, 10} { (-1,10), (-1,0), (-1,3) } Relación { (x, y) / y = 2 x, x Z } Función Dominio = Z Codominio = R + { (x, y) / x 2 +y 2 = 1, -1<= x <= 1, x R} Relación Encontrar el dominio, la imagen y la expresión algebraica: g = { (3,1), (6,2), (9,3) } Dominio = {3, 6, 9} Imagen = {1, 2, 3} h = { (3,8), (4,10), (5,12) } Dominio = {3, 4, 5 } Imagen = {8, 10, 12} El costo c del alquiler de una máquina Dominio = Z + Imagen = Z + >= 60 durante d días es de $50 más $10 por día. Asocia el número 4 a cada número Dominio = R + Imagen = {4} real no negativo. Escribir el conjunto de las parejas que forman las siguientes funciones Asocia a cada número entero, desde Relación = {(-3, 18), (-2,8), (-1,2), (0, 3 hasta 6, el doble de su cuadrado. 0), (3, 18), (2,8), (1,2), (4, 32), (5, 50), (6, 72)} Asocia a cada número entero, desde Relación = {(-4, 4) (-3, 3), (-2,2), (-1, 4 hasta 2, su inverso aditivo. Asocia a los cuadrados de los enteros mayores o iguales a cero y menores que 30 su raíz cuadrada negativa 1), (0,0), (1, -1), (2, -2)} Relación = { (1, -1), (4,-2), (9, -3), (16, -4), (25, -5)} Para las siguientes funciones, encontrar lo que se pide: Sea f(x)= 3x 2 +1, x R; encontrar f(-2), f(-2) = 13 f(0) = 1 f( 2 ) = 7 f(0), f(raíz de 2), f(3), f(a-1). f(3) = 28 f( a 1 ) = 3(a 1) Sea g(x)= 1/2x 2-4x, x R; encontrar g(4), g(-2), g(0), g(a), 2g(3), [g(3)- g(4) = -8 g(-2) = 10 g(0) = 0 g(a) = 1/2a 2-4a g(2)]/[g(2)-g(1)]. 2g(3) = - 15 [g(3)-g(2)]/[g(2)-g(1)] = 27/19 122

21 Falso o verdadero? La relación h : Z + Z, que asocia a cada entero positivo su raíz verdadero cuadrada negativa, es una relación que es función. Si A es el conjunto de los números primos y B es el conjunto de los verdadero números naturales mayores que 3, entonces la relación h : A B, que asocia a cada número primo su cuadrado, es una relación que es función. El conjunto { (3/5, 1), ( 9/8, 1/3), ( 3/5, 2), ( ¼, -1) } representa una falso función. El conjunto { (-1,3), (3, -1), (2, -4), (-4,2) } representa una relación falso que no es función. El conjunto { x R + y 2 = x } representa una relación que no es función. verdadero El conjunto { x R + 4x - y + 1 = 0 } representa una relación que no es falso función El dominio de la función definida por f(x)=1/x es el conjunto R de los falso número reales. La imagen de la función f(x)=-x/2 + 1, x R es el conjunto R + de los falso números reales positivos. verdadero Representación geométrica de una función: verdadero Representación de una relación que no es función: Representa una función: Representación de una función: La función f: R R, con f(x)= x + 3, es una función biyectiva. La función h: R + R, con h(x)= raíz cuadrada de x, es una función creciente en su dominio. La función h: R R, con g(x)= x 2, es una función creciente en su dominio. La función g, que asocia a cada entero no negativo el triple de su cuadrado y a cada entero negativo la semisuma (1/2) de su valor aumentado en 2, se expresa como: verdadero verdadero verdadero verdadero falso verdadero g(x) = 3x 2, si x si x Z + {0} (x + 2)/2 si x Z - 123

22 Define: El dominio de la función f(x)=raíz cuadrada de x entre x es el conjunto: La imagen de la función definida por el valor absoluto de x menos x, con x R es el conjunto: La función h: R + R con f(x)=raíz cuadrada de x entre x es una función: La función f: Z + Q con f(x)=x/(x+1) es una función Completa: R + {0} R + {0} Inyectiva Inyectiva La función h que asocia cada número real no negativo la raíz cuadrada positiva del cubo de su valor o a cada real negativo la raíz cúbica del cuadrado de su valor, se expresa como: Si g(x)=-5(x 2 -x)/2, x R, entonces g(g(1)) debe ser igual a: Si f(x)=x/3+2, x R, entonces f(3)-[2f(6)/f(-12)] es igual a: h( x) = cero siete x x x R + x R Relaciona cada gráfica con las funciones: 124

Relaciones y Funciones

Relaciones y Funciones OBJETIVOS Unidad Tema Subtema Objetivos IV Relaciones y funciones 4.1 Relaciones 4.2 Funciones Entender y definir el concepto de relación así como las diferentes representaciones de una relación Entender,

Más detalles

Funciones uno-uno, sobre y biunívocas

Funciones uno-uno, sobre y biunívocas Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Una relación R de un conjunto A en un conjunto B es un subconjunto R de A x B.

Una relación R de un conjunto A en un conjunto B es un subconjunto R de A x B. Una relación R de un conjunto A en un conjunto B es un subconjunto R de A x B. Sea R una relación de un conjunto A en un conjunto B. Se dice que un elemento a de A está relacionado con un elemento b de

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

Conjuntos, Relaciones y Grupos. Problemas de examen.

Conjuntos, Relaciones y Grupos. Problemas de examen. Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

Funciones Reales en una Variable

Funciones Reales en una Variable Funciones Reales en una Variable Contenidos Concepto función Grafica de una función Dominio y Recorrido de una función Clasificación de la funciones Función Inversa Paridad de las Funciones Operaciones

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

Las funciones trigonométricas

Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas son las funciones derivadas de las razones trigonométricas de un ángulo. En general, el ángulo sobre el cual se

Más detalles

1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES

1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES 1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES OBJETIVO.- Conocer y manejar las operaciones definidas entre funciones así como conocer la clasificación de éstas y sus características. 1.6.1.- Operaciones

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Conjuntos, Relaciones y Funciones

Conjuntos, Relaciones y Funciones Conjuntos, Relaciones y Funciones 0.1 Conjuntos El término conjunto y elemento de un conjunto son términos primitivos y no definidos. De un punto de vista intuitivo parece ser que cualquier colección de

Más detalles

Relaciones entre conjuntos

Relaciones entre conjuntos Relaciones entre conjuntos Parejas ordenadas El orden de los elementos en un conjunto de dos elementos no interesa, por ejemplo: {3, 5} = {5, 3} Por otra parte, una pareja ordenada consiste en dos elementos,

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

3. OPERACIONES CON FUNCIONES.

3. OPERACIONES CON FUNCIONES. 3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos

Más detalles

FUNCIONES EN R. Agosto 2007

FUNCIONES EN R. Agosto 2007 FUNCIONES EN R Alexis Vera Pérez Instituto de Estadística & Sistemas Computarizados de Información Universidad de Puerto Rico, Recinto de Río Piedras Agosto 2007 1 Definición y notación Definición 1 Una

Más detalles

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Funciones y sus gráficas

Funciones y sus gráficas Funciones y sus gráficas El concepto de función es de suma importancia en la matemática moderna, debido a esto vamos a estudiar este tema de una manera un poco detallada. Dos conjuntos de números, por

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria

Más detalles

TEMA II: CONJUNTOS Y RELACIONES DE ORDEN. Álgebra II García Muñoz, M.A.

TEMA II: CONJUNTOS Y RELACIONES DE ORDEN. Álgebra II García Muñoz, M.A. TEMA II: CONJUNTOS Y RELACIONES DE ORDEN OBJETIVOS GENERALES 1. Hacer que el alumno asimile el concepto de conjunto como la estructura algebraica más simple en la que se ambientarán el resto de las estructuras

Más detalles

CUADERNO DE TRABAJO 2

CUADERNO DE TRABAJO 2 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

Preliminares: conjuntos, operaciones con conjuntos, aplicaciones, relaciones.

Preliminares: conjuntos, operaciones con conjuntos, aplicaciones, relaciones. Preliminares: conjuntos, operaciones con conjuntos, aplicaciones, relaciones. En este tema expondremos nociones y notaciones fundamentales que se emplearán cotidianamente en cualquier desarrollo matemático.

Más detalles

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Dpto. de Matemáticas (Área de Álgebra) 1. Sean X e Y conjuntos. Demostrar: a) X = X Y Y X. b) X = X Y X Y. RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES

Más detalles

Apuntes de Matemática Discreta 6. Relaciones

Apuntes de Matemática Discreta 6. Relaciones Apuntes de Matemática Discreta 6. Relaciones Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 6 Relaciones Contenido 6.1 Generalidades.....................................

Más detalles

FUNCIONES INTRODUCCIÓN

FUNCIONES INTRODUCCIÓN FUNCIONES INTRODUCCIÓN Contenidos Concepto unción Graica de una unción Dominio y Recorrido de una unción Clasiicación de la unciones Función Inversa Paridad de las Funciones Operaciones con unciones Ejemplos

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Cuatro maneras de representar una función

Cuatro maneras de representar una función Cuatro maneras de representar una función Una función f es una regla que asigna a cada elemento x de un conjunto A exactamente un elemento, llamado f(x), de un conjunto B. Una función f es una regla que

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

Matemáticas Discretas FUNCIONES

Matemáticas Discretas FUNCIONES Matemáticas Discretas FUNCIONES Cada persona en el salón de clase tiene asignada una calificación Arias 1.2 Benavides 4.5 Calero 4.4 Cardona 2.9 Navarrete 4.9 Cada persona en el salón de clase anterior

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos

Más detalles

Tutorial MT-b15. Matemática 2006. Tutorial Nivel Básico. Relaciones y Funciones

Tutorial MT-b15. Matemática 2006. Tutorial Nivel Básico. Relaciones y Funciones 134567890134567890 M ate m ática Tutorial MT-b15 Matemática 006 Tutorial Nivel Básico Relaciones y Funciones Matemática 006 Tutorial Relaciones y Funciones Marco teórico: 1. Producto cartesiano: El producto

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo Cálculo Contenidos Clase 1: Funciones: Dominio, recorrido, gráfico. Ejemplos. Clase 2: Igualdad de funciones.

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA (Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA Esta clasiicación obedece a la orma en que están relacionados los elementos del dominio con los del codominio.

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas. Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...

Más detalles

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Funciones 1. Hallar Dominio y Recorrido de la función: x. Sea f : R R definida por: x + 5 si 9 < x x x si 9 x 9 x 4 si

Más detalles

ESTRUCTURAS ALGEBRAICAS 1

ESTRUCTURAS ALGEBRAICAS 1 ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2014/2015 MATEMÁTICAS II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad La siguiente relación de objetivos,

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales

Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales Oleksandr Karelin Carlos Rondero Guerrero Anna Tarasenko DESIGUALDADES Métodos de cálculo no tradicionales Patrocinado por: Universidad Autónoma del Estado de Hidalgo Madrid - Buenos Aires - México Oleksandr

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Introducción a las Funciones

Introducción a las Funciones PreUnAB Clase # 12 Agosto 2014 Concepto general de función En matemática el concepto de función se refiere a una regla f que asigna a cada elemento de un primer conjunto de partida A, un único elemento

Más detalles

1.5 Funciones trigonométricas

1.5 Funciones trigonométricas .5 Funciones trigonométricas Haciendo uso de las razones trigonométricas vistas anteriormente, se puede definir un nuevo tipo de función, que llamaremos f unciones trigonométricas. Notemos que para cada

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Halla dominio e imagen de las funciones

Halla dominio e imagen de las funciones Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los

Más detalles

DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS

DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS Exposición de contenidos matemáticos Primera Parte SOBRE EL CONCEPTO DE FUNCIÓN Qué es una función? Una función es una formula? Por ejemplo X 2 + Y 3 es una

Más detalles

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia.

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia. "Otras Alternativas Para La Definición De Relación En Teoría De Conjuntos" Carlos Julio Luque Arias Profesor Universidad Pedagógica Nacional Grupo de Algebra. Universidad Pedagógica Nacional Haydee Jiménez

Más detalles

Capitulo 4. Polinomios

Capitulo 4. Polinomios Capitulo 4. Polinomios Objetivo. El alumno usará y analizará los conceptos del álgebra de los polinomios y sus propiedades para obtener raíces. Contenido. 4.1 Definición de polinomio. Grado de un polinomio.

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Función exponencial y Logaritmos

Función exponencial y Logaritmos Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA CALCULO INTEGRAL LA ANTIDERIVADA Así como las operaciones matemáticas de la adición, la multiplicación y la potenciación tienen sus inversas en la sustracción, la división y la radicación, la diferenciación

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

Álgebra II. Tijani Pakhrou

Álgebra II. Tijani Pakhrou Álgebra II Tijani Pakhrou Índice general 1. Teoría de conjuntos 1 1.1. Conjuntos................................. 1 1.2. Productos cartesianos........................... 6 1.3. Relaciones de equivalencia........................

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Capítulo VI DESIGUALDADES E INECUACIONES

Capítulo VI DESIGUALDADES E INECUACIONES Capítulo VI DESIGUALDADES E INECUACIONES 6.1 DEFINICIONES: a. Desigualdad: Se denomina desigualdad a toda expresión que describe la relación entre al menos elementos escritos en términos matemáticos, y

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

Ecuaciones e Inecuaciones

Ecuaciones e Inecuaciones 5 Ecuaciones e Inecuaciones Objetivos En esta quincena aprenderás a: Resolver ecuaciones de primer y segundo grado. Resolver ecuaciones bicuadradas y factorizadas. Identificar y resolver inecuaciones de

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1:

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1: FUNCIONES EXPONENCIAL Y LOGARÍTMICA Por: Ing. Mario René De León García.. FUNCIÓN EXPONENCIAL Una función eponencial tiene la forma, donde a es la base de la potencia la variable es el eponente. Esta función

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles