13/04/2013 LOGICA MATEMÁTICA
|
|
|
- Milagros Velázquez Aguilera
- hace 8 años
- Vistas:
Transcripción
1 ING ARNALDO ANGULO ASCAMA ING. ARNALDO ALBERTO ANGULO ASCAMA LOGICA MATEMÁTICA La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un argumento es válido. La lógica es ampliamente aplicada en la filosofía, matemáticas, computación, física. En general la lógica se aplica en la tarea diaria, ya que cualquier trabajo que se realiza tiene un procedimiento lógico, por ejemplo; para ir de compras al supermercado una ama de casa tiene que realizar cierto procedimiento lógico que permita realizar dicha tarea. La lógica matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la lógica proporciona reglas y técnicas para determinar si es o no valido un argumento dado. El razonamiento lógico se emplea en ciencias de la computación para verificar si son o no correctos los programas y en la vida cotidiana, para resolver una multitud de problemas. Ciertamente se usa en forma constante el razonamiento lógico para realizar cualquier actividad. Qué es una proposición? Cuáles son los conectivos lógicos? Cómo utilizar las tablas de verdad? Qué es una tautología? Qué es una contradicción? 1
2 PROPOSICIONES Una proposición es una declaración sobre la que se puede decidir su veracidad o falsedad. Es decir, es un enunciado verdadero o es un enunciado falso, pero no puede ocurrir ambas cosas. Por ejemplo SON PROPOSICIONES El 2 es un número primo. 25 es divisible entre = 10. El aula D-41 está en el 2do piso. NO SON PROPOSICIONES Caray! Hola!. En realidad, a qué se refiere?. Quieres casarte conmigo?. PROPOSICIONES Cuáles de los siguientes enunciados son proposiciones? (Explica por qué lo son o no lo son) La edad del padre no influye en el embarazo. El hábito de fumar es de riesgo en el embarazo. Desde cuándo presentas estos síntomas?. El embarazo de una mujer de 40 años es de A.R.O. Puede venir aqui un momento, por favor?. Tranquilícese. Juan, tenemos que hablar NOTACIÓN Para denotar o representar las proposiciones se usan letras minúsculas: p, q, r, s,... p: El aula E-41 está en el 4to piso q: El SIDA es una ITS r: El Embarazo no es una enfermedad s: La Tierra es el único planeta con vida en el universo t: El alcoholismo es un actor de riesgo para el embarazo u: Un embarazo a los 14 años es de A.R.O. NEGACIÓN El enunciado No se cumple p es una proposición llamada la negación de p y se denota por ~p. p: Nuestro salón está en el 4to piso. ~ p : Nuestro salón no está en el 4to piso. ~ p : No es cierto que nuestro salón esté en el 4to piso. Si p es verdadera entonces ~ p es falsa. En cambio, si p es falsa, ~p es verdadera. La tabla de verdad de la negación es: p ~p F F 2
3 NOTACIÓN Las proposiciones se combinan mediante conectivos, por ejemplo, y, o, pero, si... entonces Por ejemplo p: El aula E-41 está en el 2do piso ; q: El aula E-41 es iluminada. pueden combinarse como: La proposición resultante de conectar dos ó más proposiciones se denomina proposición compuesta. r : El aula E-41 está en el 4to piso pero es iluminada r es la proposición compuesta p y q El aula E-41 está iluminada y está en el 4to piso Si el aula E-41 está iluminada entonces se encuentra en el 2do piso s: Si el aula E-41 está iluminada entonces se encuentra en el 4to piso s es la proposición compuesta Si q entonces p Conectivos La conjunción de p y q es la proposición p y q que se denota por p ᴧ q. La conjunción es verdadera, únicamente cuando ambas proposiciones que la componen son verdaderas. Sea p: 2 divide a 68 q: 2 divide a 25. pᴧq: 2es divisor de 68 y de 25. Conectivos La disyunción de p y q, es la proposición p o q, que se denota por p v q. El o se usa en el sentido inclusivo; como en La solución de (x 2).(y+2) = 0 es x = 2 o y = -2. La disyunción es falsa, únicamente, cuando ambas proposiciones son falsas. : Sean p: 3 divide a 6 q: 3 divide a 7 p v q : 3 divide a 6óa7 alor de verdad: pᴧqes falsa alor de verdad: p v q es verdadera. 3
4 Tablas de verdad Las tablas de verdad de los dos conectivos anteriores son: p q p ᴧ q F F F F F F F p y q p v q F p o q La implicación es la proposición Si p entonces q, que se denota por p q a A p se le llama hipótesis (o antecedente) q se le llama tesis (o consecuente). La proposición p q, se puede leer también como Si p q p sólo si q p es suficiente para q q es necesaria para p p implica q q se deduce de p y : p: Los polvos de jardín contienen veneno q: Los polvos de jardín son de colores brillantes. La proposición p q puede estar expresada como: Si los polvos de jardín contienen veneno entonces son de colores brillantes ; Los polvos de jardín contienen veneno sólo si son de colores brillantes ; Son necesarios los colores brillantes para los polvos de jardín que contienen veneno ; Los polvos de jardín son de colores brillantes si contienen veneno. Si p entonces q es verdadera, cada vez que la condición p es verdadera obliga a que la condición q también sea verdadera. Es decir, con el cumplimiento de p, se promete el cumplimiento de q. La implicación es falsa, únicamente, cuando el antecedente es verdadero y el consecuente es falso. En este caso, a pesar de estar dadas las condiciones, no se cumple la promesa. La tabla de verdad para la implicación es p q p q F F F F F 4
5 : p: La respuesta automática se puede enviar q: El sistema de archivos está lleno. ~ p q : Si la respuesta automática no se puede enviar, el archivo está lleno. q ~ p : La respuesta automática no se puede enviar cuando el archivo está lleno. q ~ p : La respuesta automática no se puede enviar si el archivo está lleno. p ~q: Si la respuesta automática se puede enviar, el archivo no está lleno. La proposición p si y sólo si q se denomina bicondicional y se denota por p q Es verdadera cuando p y q tienen los mismos valores de verdad, es decir, es verdadera si ambas componentes son verdaderas o ambas son falsas. Una manera de abreviar si y sólo si es sii. p si y sólo si q se puede expresar como p es condición necesaria y suficiente para q. p : 24 es un número par. q : 24 es divisible por 2. p q : 24 es un número par si y sólo si 24 es divisible entre 2. La tabla de verdad para el bi-condicional es p q p q F F F F F F TAUTOLOGÍA Y CONTRADICCIÓN Una tautología es una proposición compuesta que es verdadera para todos los valores de verdad de las proposiciones que la componen. Por ejemplo: p v ~p Soy un hombre o no soy un hombre Una contradicción es una proposición compuesta que es falsa para todos los valores de verdad de las proposiciones que la componen. Por ejemplo: pᴧ~p Soy un hombre y no soy un hombre 5
6 FORMALIZACIÓN La formalización es el proceso en el que se traducen proposiciones del lenguaje cotidiano al lenguaje formal o simbólico. 4) Expresa las siguientes proposiciones usando p, q y los conectivos. Sean p: La temperatura está sobre los 17 C q: Llueve a. La temperatura está sobre los 17 C pero llueve. b. Ni la temperatura supera los 17 C ni llueve. c. No es cierto que llueva con la temperatura superior a los 17 C. d. Llueve cuando la temperatura está sobre los 17 C. e. Que la temperatura esté sobre los 17 C es suficiente para que no llueva. f. O bien llueve o bien la temperatura es superior a 17 C. FORMALIZACIÓN 5) Sean p: El mensaje es revisado para buscar algún virus q: El mensaje fue enviado desde un sistema desconocido Expresa las siguientes proposiciones usando p, q y los conectivos. a) El mensaje se revisa para buscar algún virus siempre que se haya enviado desde un sistema desconocido. b) El mensaje fue enviado desde un sistema desconocido pero no revisó para buscar ningún virus. c) Cuando el mensaje no es enviado desde un sistema desconocido no se revisa para buscar ningún virus. d) El mensaje fue enviado desde un sistema desconocido pero no se reviso para buscar ningún virus. MUCHAS GRACIAS...! ING ARNALDO ANGULO ASCAMA [email protected] 6
CIENCIAS FORMALES CIENCIAS FÁCTICAS
UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO
Lógica Proposicional. Cátedra de Matemática
Lógica Proposicional Cátedra de Matemática Abril 2017 Qué es la lógica proposicional? Es la disciplina que estudia métodos de análisis y razonamiento; utilizando el lenguaje de las matemáticas como un
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes
FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática
Enunciados Abiertos y Enunciados Cerrados
I n g. L u z A d r i a n a M o n r o y M a r t í n e z L ó g i c a 1 Unidad II lógica proposicional Es probable que en el siglo IV antes de la Era Común, se iniciara con Aristóteles el estudio de la Lógica;
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Lógica Matemática. Contenido. Definición. Finalidad de la unidad. Proposicional. Primer orden
Contenido Lógica Matemática M.C. Mireya Tovar Vidal Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Definición Traducir enunciados
Lógica proposicional
Lógica proposicional La palabra lógica viene del griego y significa, razón, tratado o ciencia. En matemáticas es la ciencia que estudia los métodos de razonamiento proporciona reglas y técnicas para determinar
Tablas de Verdad L Ó G I C A P R O P O S I C I O N A L
Tablas de Verdad L Ó G I C A P R O P O S I C I O N A L Tablas de verdad Toda preposición es verdadera o falsa, pero no puede ser ambas. Sobre esta base las proposiciones atómicas sólo tienen dos valores:
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el
Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013
Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
UNIDAD I: LÓGICA MATEMÁTICA
UNIDAD I: LÓGICA MATEMÁTICA 1.1. Introducción La Lógica Matemática es la rama de las Matemáticas que nos permite comprender sobre la validez o no de razonamientos y demostraciones que se realizan. La lógica
MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños
MATEMÁTICA 1 JRC LÓGICA Es la ciencia formal que estudia los principios y procedimientos que permiten demostrar la validez o invalidez de una inferencia, es decir, reconocer entre un razonamiento correcto
Un enunciado es toda frase u oración que se emite
OBJETIO 2: Aplicar la lógica proposicional y la lógica de predicados en la determinación de la validez de una proposición dada. Lógica Proposicional La lógica proposicional es la más antigua y simple de
IDENTIFICACIÓN DE LA ACTIVIDAD PEDAGÓGICA DESARROLLO DE LA ACTIVIDAD. p, q, r, s
PROGRAMA DE FORMACIÓN UNIDAD DE APRENDIZAJE ACTIVIDAD OBJETIVOS IDENTIFICACIÓN DE LA ACTIVIDAD PEDAGÓGICA Colegio técnico uparsistem Matematica sexto PROPOSICIONES Y TABLA DE LA VERDAD (CONJUNCIÓN, DISYUNCIÓN,
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.
Lógica proposicional. 1. Lógica proposicional. 4. Conectivos lógicos. 2. Proposición lógica. 3. Negación de una proposición
Lógica proposicional 1. Lógica proposicional Es una parte de la lógica que estudia las proposiciones y la relación existente entre ellas, así como la función que tienen los conectivos lógicos. 2. Proposición
Introducción a la lógica. Matemáticas Discretas Universidad de san buenaventura Cali
Introducción a la lógica Matemáticas Discretas Universidad de san buenaventura Cali Proposiciones compuestas (Disyunción, Conjunción, Negación, Condicional, Bicondicional) DISYUNCIÓN (v) La disyunción
La Lógica Proposicional
La Lógica Proposicional 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera o falsa. Las proposiciones
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.
RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como:
La lógica se puede clasificar como: 1. Lógica tradicional o no formal. 2. Lógica simbólica o formal. En la lógica tradicional o no formal se consideran procesos psicológicos del pensamiento y los métodos
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 5 Nombre: Tablas de verdad Objetivo Al término de la sesión el participante aplicará los conceptos de lógica a través
Universidad Abierta y a Distancia de México. Licenciatura en matemáticas. 2 cuatrimestre. Introducción al pensamiento matemático
Universidad Abierta y a Distancia de México Licenciatura en matemáticas 2 cuatrimestre Introducción al pensamiento matemático Clave: 1 Índice... 3 Ficha de identificación... 3 Descripción... 3 Propósitos...
Introducción. Ejemplos de expresiones que no son proposiciones
Introducción El objetivo de los matemáticos es descubrir y comunicar ciertas verdades. Las matemáticas son el lenguaje de los matemáticos y una demostración, es un método para comunicar una verdad matemática
ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO
Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones
Fundamentos básicos de matemáticas: Lógica Proposicional
Fundamentos básicos de matemáticas: Lógica Proposicional Victor Hugo Gil A. Universidad del Valle 28 de agosto de 2016 Victor Hugo Gil A. (Univalle) Lógica Proposicional 28 de agosto de 2016 1 / 10 Lógica
Matemáticas Discretas Lógica
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados
Guía para el estudiante
Guía para el estudiante Guía realizada por Jefferson Bustos Profesional en Matemáticas Master en Educación Nombre: Fecha: Curso: Dentro del lenguaje común, las palabras y frases pueden tener diversas interpretaciones.
Elaborar un mapa conceptual del tema de Lógica Proposicional (Diapositivas: Lógica Proposicional) Desarrollar ejercicios de la ficha de trabajo y del
Elaborar un mapa conceptual del tema de Lógica Proposicional (Diapositivas: Lógica Proposicional) Desarrollar ejercicios de la ficha de trabajo y del módulo (Página 175 ) Se sugiere ver el siguiente video:
ENUNCIADO ABIERTO: Es un enunciado en forma de expresión matemática que no es verdadero ni falso. Ejemplos: x < 9 x + 2 = 10 a + b = 1 a 2 + b 2 = c 2
LÓGICA Es la ciencia que estudia el razonamiento inductivo y deductivo. El razonamiento inductivo es aquel que permite llegar a conclusiones generales a partir de observaciones particulares, por el contrario,
La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la
LÓGICA MATEMÁTICA OBJETIVOS Definirás proposición simple. Definirás proposiciones compuestas: Disyunción y conjunción. Relacionarás dichas proposiciones con las operaciones de conjuntos: unión e intersección.
Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional
Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes
MÉTODOS DE DEMOSTRACIÓN
2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es
Lógica Matemática. Tema: Valor de certeza funcional de la preposición: negación, conjunción, disyunción, condicional y bicondicional
Lógica Matemática Tema: Valor de certeza funcional de la preposición: negación, conjunción, disyunción, condicional y bicondicional Valor de certeza funcional de la preposición: negación, conjunción, disyunción,
LÓGICA FORMAL. PROPOSICIONES. CONECTORES LÓGICOS. TABLAS DE VERDAD. Introducción a la programación EPET N 3
LÓGICA FORMAL. PROPOSICIONES. CONECTORES LÓGICOS. TABLAS DE VERDAD. Introducción a la programación EPET N 3 LÓGICA Los seres humanos constantemente realizamos deducciones. Esto quiere decir que obtenemos
Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2
Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa *. 1. Lógica
MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue
Apuntes de Lógica Proposicional
Apuntes de Lógica Proposicional La lógica proposicional trabaja con expresiones u oraciones a las cuales se les puede asociar un valor de verdad (verdadero o falso); estas sentencias se conocen como sentencias
Evaluación Nacional Revisión del intento 1
LOGICA MATEMATICA Perfil Salir Evaluación Nacional Revisión del intento 1 Finalizar revisión Comenzado el sábado, 15 de junio de 2013, 15:59 Completado el sábado, 15 de junio de 2013, 16:35 Tiempo empleado
TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q
TEMA 1: LÓGICA. Definición. La lógica es la ciencia que estudia el razonamiento formalmente válido. Para ello tiene un simbolismo que evita las imprecisiones del lenguaje humano y permite comprobar la
Lógica proposicional o Lógica de enunciados
Tema 3 Lógica proposicional o Lógica de enunciados 1. Qué es la Lógica? 2. El cálculo de proposiciones 2.1. Las conectivas 2.2. Las tablas de verdad 2.3. La deducción natural Bibliografía Deaño, A.: Introducción
Forma lógica de enunciados
Forma lógica de enunciados Marisol Miguel Cárdenas Lenguaje natural y lenguaje formal El lenguaje natural es aquel que utilizamos cotidianamente. Surge históricamente dentro de la sociedad y es aprendido
RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA
ESCUELA DEL MINISTERIO PÚBLICO Dr. Gonzalo Ortiz de Zevallos Roedel RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA Dr. Luis Alberto Pacheco Mandujano Gerente Central de la Escuela del Ministerio Público
Matemáticas Dicretas LÓGICA MATEMÁTICA
Matemáticas Dicretas LÓGICA MATEMÁTICA Esta pagina fue diseñada como un auxiliar y herramienta para aquellos que esten interesados en reforzar y tener mas conocimientos sobre las matematicas discretas.
Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos).
Lógica intuitiva Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). A : Las águilas vuelan B : El cielo es rosa C : No existe vida extraterrestre D : 5 < 3 E : Algunos
Capítulo 1 Lógica Proposicional
Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases
Matemáticas I. Unidad temática I.- Lógica Matemática I.S.C. Iván de J. Moscoso Navarro
Materia: Matemáticas I Unidad temática I.- Lógica Matemática Catedrático: I.S.C. Iván de J. Moscoso Navarro Palabras clave: Lógica matemática, proposición, tautología, contradicción, operadores lógicos,
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL PROPOSICIONES Una proposición es todo enunciado, u oración enunciativa, respecto del cual se tiene un criterio que permite afirmar que su contenido es verdadero o falso, pero no ambos.
- AnallogicA - Software para crear tablas de verdad
- AnallogicA - Software para crear tablas de verdad Henry Suarez [email protected] Año 2010 Proyecto de POO de la carrera de Ingeniería en Informática de la Universidad Nacional del Litoral. Módulos del
encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.
Álgebra proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases u oraciones. Estas
ICM Fundamentos de Computación
Contenido Estructuras de Control... 1 Estructuras para Selección:... 1 1. Condicionales... 1 2. Condicional con varias preguntas... 3 3. Condicionales con varios casos... 4 4. Condicionales en árbol...
Introducción. Ejemplos de expresiones que no son proposiciones
Introducción El objetivo de los matemáticos es descubrir y comunicar ciertas verdades. Las matemáticas son el lenguaje de los matemáticos y una demostración, es un método para comunicar una verdad matemática
En general, se considera válido un razonamiento cuando sus premisas ofrecen soporte suficiente a su conclusión.
Se llama razonamiento lógico al proceso mental de realizar una inferencia de una conclusión a partir de un conjunto de premisas. La conclusión puede no ser una consecuencia lógica de las premisas y aun
LOGICA MATEMATICA. El dar un juicio nos permite comparar las características primarias o secundarias del objeto o termino y valorarlas
DEINICIÓN ETIMOLÓGICA DE LÓGICA EL término LOGICA viene de dos voces griegas: Logos, que significa palabra, tratado, pensamiento o razón e icos que significa relacionado con, por lo tanto lógica significa
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N 1:
CORPORACION UNIFICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BÁSICAS: PENSAMIENTO LOGICO-MATEMATICO
CORPORACION UNIICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BÁSICAS: PENSAMIENTO LOGICO-MATEMATICO Proposiciones Lógicas DOC. YAMILE MEDINA CASTAÑEDA GUIA N 2: LOGICA Una proposición
LOGICA MATEMATICA. Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías:
LOGICA MATEMATICA Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías: 1 ) q p q p ( q ) p ( Definición ) q p ( Doble Negación ) p q ( Conmutatividad ) (
LÓGICA PROPOSICIONAL 1. LENGUAJE DE LA LÓGICA PROPOSICIONAL 2. SÍMBOLOS LÓGICOS. 1.a. Símbolos formales. Símbolos no lógicos. Símbolos auxiliares
LÓGICA PROPOSICIONAL 1. LENGUAJE DE LA LÓGICA PROPOSICIONAL Un lenguaje para el ámbito de la lógica se estructura en tres niveles diferentes: símbolos formales, reglas de formación de fórmulas y reglas
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.
UNIVERSIDAD DEL VALLE DE GUATEMALA CURSO: FILOSOFÍA PRIMER CICLO 2009 LIC. JOSÉ ÁNGEL ROSALES MATUS INVESTIGACIÓN FILOSOFIA EN LOS CIRCUITOS LOGICOS
UNIVERSIDAD DEL VALLE DE GUATEMALA CURSO: FILOSOFÍA PRIMER CICLO 2009 LIC. JOSÉ ÁNGEL ROSALES MATUS INVESTIGACIÓN FILOSOFIA EN LOS CIRCUITOS LOGICOS Josué Rendón Estrada Carnet: 08168 17 /03/ 2009 INTRODUCCIÓN
TEMA II. 1.1 Negación La negación es la inversa de los valores de verdad de una declaración como se muestra en la figura: Negación
TEMA II 1. APLICACIONES PRACTICAS DE LOGICA SIMBOLICA Y ÁLGEBRA DE PROPOSICIONES La proposición lógica hace más fácil y efectiva la manipulación de valores de verdad entre proposiciones. Las tablas de
Utiliza lógica matemática elaborando proposiciones, enunciados y predicados mediante notación lógica para su aplicación en computación.
Aplicará la teoría de conjuntos, la lógica matemática, álgebra booleana representando conjuntos, proposiciones, enunciados, predicados con notación lógica, expresiones booleanas y sus operaciones para
No son proposiciones por no poder ser evaluadas como verdaderas ni falsas. Las exclamaciones, órdenes ni las preguntas son proposiciones
RESOLUCION Nº 03871 DE 07 DE NOIEMBRE DE 2012 ERSION 1.0 EJES TEMÁTICOS Proposiciones Teoría de conjuntos Sistemas de numeración a) Levántate temprano! b) Has entendido lo que es una proposición? c) Estudia
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 4 Nombre: Proposiciones Objetivo Al término de la sesión el participante aplicará las características de las proposiciones
Tópicos de Matemáticas Discretas
Tópicos de Matemáticas Discretas Proposiciones Lógicas y Tablas de Verdad Raquel Torres Peralta Universidad de Sonora Matemáticas Discretas Proposiciones Lógicas Matemáticas Discretas Lógica - La lógica
Lógica Matemática. Tema: Los conectores lógicos y sus símbolos
Lógica Matemática Tema: Los conectores lógicos y sus símbolos Los conectores lógicos y sus símbolos Además de simbolizar las proposiciones, también se pueden emplear símbolos para los mismos conectores
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Elementos de lógica Una proposición es una oración declamativa a la cual se le puede asignar un valor verdad: verdadera (V)
Benemérita Universidad Autónoma de Puebla
Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones
Lógica Matemática. M.C. Mireya Tovar Vidal
Lógica Matemática M.C. Mireya Tovar Vidal Contenido Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Traducir enunciados sencillos
VALORES DE VERDAD DE LOS OPERADORES LÓGICOS
VALORES DE VERDAD DE LOS OPERADORES LÓGICOS Tomada con fines instruccionales Gómez, T., González, N., Lorenzo J. (2007) Valores de verdad de los Operadores Lógicos. Artículo no publicado. (p.1-6). UNEFA.
Demostración Contraejemplo. Métodos Indirectos
DEMOSTRACION Una demostración de un teorema es una verificación escrita que muestra que el teorema es verdadero. Informalmente, desde el punto de vista de la lógica, una demostración de un teorema es un
Lógica Matemática, Sistemas Formales, Cláusulas de Horn
Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición
CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960
universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-960-1-m-2-00-2012 CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 Datos de la clave
Lógica I modelo de examen (curso ) Ejemplo de respuestas
Lógica I modelo de examen (curso 2007-08) Ejemplo de respuestas 1. Definiciones: - Grado de una fórmula es el número total de conectivas (iguales o distintas) que contiene. - Función de verdad es una función
LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS
LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS Patricia Zamora Villalobos John Alexander Coral Llanos Josué Maleaño Trejos Prof. Francisco Carrera Fecha de entrega: miércoles de setiembre
MATEMÁTICA. Módulo Educativo Etapa Presencial Docente Coordinadora: Bioq. y Farm. Marta Marzi
MATEMÁTICA Módulo Educativo Etapa Presencial 2014 Docente Coordinadora: Bioq. y Farm. Marta Marzi Facultad de Ciencias Bioquímicas y Farmacéuticas UNIVERSIDAD NACIONAL DE ROSARIO Suipacha 531 0341-4804592/93/97
Módulo 8 Implicación. Equivalencia Lógica
Módulo 8 Implicación. Equivalencia Lógica OBJETIO: Identificará la suposición o hipótesis de la implicación y su conclusión, expresará en diferentes formas una implicación; e identificará las proposiciones
CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES
LAS PROPOSICIONES Objetivo Brindar al estudiante un concepto claro en la formulación, interpretación y aplicabilidad de las proposiciones. La interpretación de las proposiciones compuestas permite al estudiante
2. Los símbolos de la lógica proposicional.
Bloque I: El Saber Filosófico. Tema 4: La Lógica Formal. 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera
INTRODUCCIÓN A LA LÓGICA
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA INTRODUCCIÓN A LA LÓGICA Para el ingreso a las carreras de Matemática Material preparado
Cálculo Proposicional
Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)
MATEMÁTICAS DISCRETAS. UNIDAD1 Lógica y Demostraciones
MATEMÁTICAS DISCRETAS UNIDAD1 Lógica y Demostraciones Para el estudio de esta unidad debe ubicarse en el Capítulo 1 del texto base, lea atentamente cada uno de los subtemas indicados en el índice de la
Lógica Proposicional
Existen en la realidad un número considerable de problemas con los que una persona se enfrenta y de los cuales se deben deducir ciertos datos para poder resolverlos. Generalmente la forma en que las personas
CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN GUÍA DE FUNDAMENTOS DE MATEMÁTICAS DOCENTE : YAMILE MEDINA CASTAÑEDA
GUÍA # 2 LÓGICA DOCENTE : YAMILE MEDINA CASTAÑEDA PROPOSICIONES Y OPERACIONES LÓGICAS. Una proposición o enunciado es una oración (expresión con sentido completo) de la cual puede afirmarse si es falsa
Cantidad de proposiciones Número de combinaciones = = = n
COLEGIO SAN RANCISCO JAIER DE LA ERAPAZ PROESOR RONALD CHÉN: Conectivos lógicos y tablas de verdad (Primero Básico 2017) Conceptos 3 Notación y Conectivos lógicos Conectivos lógicos son aquellas palabras
Facultad de Ingeniería y Tecnología Informática Técnico en Programación de Computadoras Plan de Estudios 2014 Año 2014 Programa Analítico Lógica (1)
1. OBJETIVOS: 1- OBJETIVOS GENERALES: El objetivo principal de esta asignatura es introducir al alumno en el estudio de los sistemas finitos, conforme a los avances en la era de las computadoras. Se pretende
CAPÍTULO 8 CAPÍTULO 8. BREVE HISTORIA.
CAPÍTULO 8 CAPÍTULO 8. BREVE HISTORIA. Para evitar confusiones, consideraremos tres momentos de la lógica bien diferenciados: 1º el de la Lógica No-Matemática, que abarca desde Aristóteles (384 322 a.c.),
Taller de Análisis Lógico de Argumentos Filosóficos Semestre FORMALIZACIÓN: CONECTIVAS Y CONSTÁNTES LÓGICAS. I. Lenguaje formal.
FORMALIZACIÓN: CONECTIVAS Y CONSTÁNTES LÓGICAS I. Lenguaje formal. 1 II. Definición y utilidad de la formalización Formalización es el proceso de traducción de los argumentos del lenguaje natural a esquemas
Lógica Proposicional. Guía Lógica Proposicional. Tema I: Proposiciones
Guía Lógica Proposicional Tema I: Proposiciones El hombre ha hecho uso del lenguaje para comunicarse entre sí; usa conjuntos de palabras del idioma que organizadas coherentemente en un contexto determinado
Ejercicios de Lógica Proposicional *
Ejercicios de Lógica Proposicional * [email protected] Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos
Lógica Digital Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas
1 Lógica Digital 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 La lógica es una disciplina que estudia la estructura, el fundamento y el uso de las expresiones
Lógica proposicional (2/2) Lógica 2017
Lógica proposicional (2/2) Lógica 2017 Instituto de Computación 16 de marzo Instituto de Computación (InCo) Lógica proposicional (2/2) Curso 2017 1 / 1 Lógica Disciplina matemática Disciplina formal: se
Inferencia Lógica. Salomón Ching Briceño. Licenciado en Matemáticas UNPRG. 18 de marzo de 2011
Inferencia Lógica Salomón Ching Briceño Licenciado en Matemáticas http://mathsalomon.260mb.com UNPRG 18 de marzo de 2011 Lic. Mat. Salomón Ching Inferencia Lógica Contenido I Lic. Mat. Salomón Ching Inferencia
Tema 2: Teoría de la Demostración
Tema 2: Teoría de la Demostración Conceptos: Estructura deductiva Teoría de la Demostración Sistemas axiomáticos: Kleene Fórmulas válidas Teorema de la Deducción Introducción a la T. de la Demostración
2.1. Introducción Lógica: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento. El razonamiento lógico es es
Tema 2. Introducción a la lógica 1. Introducción 2. Lógica de proposiciones 1. Definiciones 2. Sintaxis 3. Semántica Bibliografía Matemática discreta y lógica. Grassman y Tremblay. 1997. Prentice Hall.
