Soluciones Ejercicios 6: Forma Normal Prenex y Forma Normal de Skolem

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones Ejercicios 6: Forma Normal Prenex y Forma Normal de Skolem"

Transcripción

1 Soluciones Ejercicios 6: Forma Normal Prenex y Forma Normal de Skolem TAII(I)-Lógica 3 de mayo de Ejercicio 6.1 Calcular la Forma Normal Prenex (FNP) equivalente de la siguiente x y[ zp (x, y, z) ( uq(x, u) vq(y, v))] x y[ zp (x, y, z) ( uq(x, u) vq(y, v))] x y[ zp (x, y, z) ( u Q(x, u) vq(y, v))] 3. Extracción de cuantificadores (todos son independientes) x y z u v[p (x, y, z) ( Q(x, u) Q(y, v))] 2. Ejercicio 6.2 Obtener la Forma Normal Prenex (FNP) equivalente de la siguiente [ x(a(x) ( yb(x, y)))] [ x( A(x) ( yb(x, y)))] x [( A(x) ( yb(x, y)))] x[( A(x) ( yb(x, y)))] x[(a(x) y B(x, y))] 1

2 3. Extracción de cuantificadores (y es independiente) x y[a(x) B(x, y)] 3. Ejercicio 6.3 Calcular la FNP equivalente de la siguiente x y[ z(a(x, z) B(y, z)) uc(x, y, u)] x y[ z(a(x, z) B(y, z)) uc(x, y, u)] x y[ z (A(x, z) B(y, z)) uc(x, y, u)] x y[ z( A(x, z) B(y, z)) uc(x, y, u)] 3. Extracción de cuantificadores (z, u son independientes) x y z u[ A(x, z) B(y, z) C(x, y, u)] 4. Ejercicio 6.4 Calcular la Forma Normal Prenex (FNP) equivalente de la siguiente F : xa(x) z[b(w, z) yc(w, y)] xa(x) z[b(w, z) yc(w, y)] xa(x) z[ B(w, z) yc(w, y)] xa(x) z [ B(w, z) yc(w, y)] xa(x) z[ B(w, z) yc(w, y)] xa(x) z[b(w, z) y C(w, y)] x A(x) z[b(w, z) y C(w, y)] 3. Extracción de cuantificadores (z e y son independientes) x A(x) z y[b(w, z) C(w, y)] x z y[ A(x) (B(w, z) C(w, y))] 2

3 5. Ejercicio 6.5 Calcular la Forma Normal Prenex (FNP) equivalente de la siguiente F : A(x, y) [ xb(x) y zc(x, y, z)] A(x, y) [ xb(x) y zc(x, y, z)] A(x, y) [ x B(x) y zc(x, y, z)] 3. Extracción de cuantificadores (x e y no son independientes) A(x, y) [ t B(t) y zc(x, y, z)] A(x, y) t y z[ B(t) C(x, y, z)] A(x, y) t u z[ B(t) C(x, u, z)] t u z[a(x, y) ( B(t) C(x, u, z))] 6. Ejercicio 6.6 F : x y z u v w[p (x, y, z) Q(u, v) R(w)] 1. En la fórmula anterior (que ya se encuentra en FNP), es necesario eliminar los cuantificadores existenciales ( x, u, w). 2. x no se encuentra precedido por cuantificadores universales, se sustituye por una constante (a): y z u v w[p (a, y, z) Q(u, v) R(w)] 3. u, w están predecidos por varios cuantificadores universales, por lo que serán sustituidos por las fórmulas de aridad 2 f(y, z), y de aridad 3 g(y, z, v) respectivamente: y z v[p (a, y, z) Q(f(y, z), v) R(g(y, z, v))] Las sustituciones realizadas: a, f y g son funciones de Skolem de aridad 0, 2 y 3 respectivamente. 3

4 7. Ejercicio 6.7 F : x y z[( P (x, y) Q(x, z)) R(x, y, z)] 1. En primer lugar se transforma la fórmula a Forma Norma Conjuntiva: x y z[( P (x, y) R(x, y, z)) (Q(x, z) R(x, y, z))] 2. Los cuantificadores y, z están precedidos por el cuantificador universal x por lo que se sustituyen por dos funciones de Skolem de aridad 1: f(x) y g(x) respectivamente: x[( P (x, f(x)) R(x, f(x), g(x))) (Q(x, g(x)) R(x, f(x), g(x)))] 8. Ejercicio 6.8 F : x[(a(x, y) yp (x, y, z)) zq(x, z)] 1. Obtención de la FNP F: x[( A(x, y) yp (x, y, z)) zq(x, z)] x[ ( A(x, y) yp (x, y, z)) zq(x, z)] x[( A(x, y) yp (x, y, z)) zq(x, z)] x[(a(x, y) y P (x, y, z)) zq(x, z)] x[(a(x, y) u P (x, u, z)) z Q(x, z)] x[ u(a(x, y) P (x, u, z)) t Q(x, t)] x[ u t((a(x, y) P (x, u, z)) Q(x, t))] x u t[(a(x, y) P (x, u, z)) Q(x, t)] x u t[(a(x, y) Q(x, t)) ( P (x, u, z) Q(x, t))] 4

5 2. Cierre existencial de las variables libres: y x u t[(a(x, y) Q(x, t)) ( P (x, u, z) Q(x, t))] y z x u t[(a(x, y) Q(x, t)) ( P (x, u, z) Q(x, t))] 3. Eliminar cuantificadores existenciales: z x u t[(a(x, a) Q(x, t)) ( P (x, u, z) Q(x, t))] x u t[(a(x, a) Q(x, t)) ( P (x, u, b) Q(x, t))] x u[(a(x, a) Q(x, f(x, u))) ( P (x, u, b) Q(x, f(x, u)))] 9. Ejercicio 6.9 F : x y z[( P (x, y) Q(x, z)) R(x, y, w)] Nota: como puede observarse se ha modificado la función predicativa F del ejercicio 6.7 dejando libre la tercera variable de R(-,-,-). 1. Se transforma F a FNC: x y z[( P (x, y) R(x, y, w)) (Q(x, z)r(x, y, w))] 2. Cierre existencial de las variables libres: w x y z[( P (x, y) R(x, y, w)) (Q(x, z)r(x, y, w))] 3. Skolemnización: x y z[( P (x, y) R(x, y, a)) (Q(x, z)r(x, y, a))] x z[( P (x, f(x)) R(x, f(x), a)) (Q(x, z)r(x, f(x), a))] x[( P (x, f(x)) R(x, f(x), a)) (Q(x, g(x))r(x, f(x), a))] 5

6 10. Ejercicio 6.10 F : x[ P (x, a) y(p (y, g(x)) z(p (z, g(x)) P (y, z)))] 1. Obtención de la FNP: x[ P (x, a) y(p (y, g(x)) z(p (z, g(x)) P (y, z)))] x[p (x, a) y(p (y, g(x)) z( P (z, g(x)) P (y, z)))] x[p (x, a) y z(p (y, g(x)) ( P (z, g(x)) P (y, z)))] x y z[p (x, a) (P (y, g(x)) ( P (z, g(x)) P (y, z)))] x y z[(p (x, a) P (y, g(x))) (P (x, a) P (z, g(x)) P (y, z))] 2. No existen variables libres Skolemnización: x z[(p (x, a) P (f(x), g(x))) (P (x, a) P (z, g(x)) P (f(x), z))] 11. Ejercicio 6.11 F : x[(p (x) y(q(x, y) zp (z))) t(q(x, y) R(t))] 1. Obtención de la FNP: x[( P (x) y(q(x, y) zp (z))) t(q(x, y) R(t))] x[( P (x) y(q(x, y) zp (z))) t( Q(x, y) R(t))] x[( P (x) y( Q(x, y) zp (z))) t( Q(x, y) R(t))] x[( P (x) y ( Q(x, y) zp (z))) t( Q(x, y) R(t))] 6

7 x[( P (x) y( Q(x, y) zp (z))) t( Q(x, y) R(t))] x[( P (x) y(q(x, y) z P (z))) t( Q(x, y) R(t))] x[( P (x) y z(q(x, y) P (z))) t( Q(x, y) R(t))] x[ y z( P (x) (Q(x, y) P (z))) t( Q(x, y) R(t))] x[ u z( P (x) (Q(x, u) P (z))) t( Q(x, y) R(t))] x u z t[( P (x) (Q(x, u) P (z))) ( Q(x, y) R(t))] x u z t[( P (x) Q(x, u)) ( P (x) P (z)) ( Q(x, y) R(t))] 2. Cierre existencial de las variables libres: y x u z t[( P (x) Q(x, u)) ( P (x) P (z)) ( Q(x, y) R(t))] 3. Skolemnización: x u z t[( P (x) Q(x, u)) ( P (x) P (z)) ( Q(x, a) R(t))] x z t[( P (x) Q(x, f(x))) ( P (x) P (z)) ( Q(x, a) R(t))] 7

Tema 8: Formas normales.

Tema 8: Formas normales. Lógica informática Curso 2003 04 Tema 8: Formas normales. Cláusulas José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla LI 2003

Más detalles

1. Formas normales en lógica de proposiciones FORMAS NORMALES. Índice. César Ignacio García Osorio Definiciones. Lógica

1. Formas normales en lógica de proposiciones FORMAS NORMALES. Índice. César Ignacio García Osorio Definiciones. Lógica Lógica Índice FORMAS NORMALES César Ignacio García Osorio 1. Formas normales en lógica de proposiciones Gracias a las leyes asociativas los paréntesis en (F (G H)) oen((f G) H) pueden eliminarse, es decir,

Más detalles

Forma Clausular. Forma Clausular

Forma Clausular. Forma Clausular Forma Clausular Formas Normales: Literal: fórmula atómica o negación de fórmula atómica Un literal se denota con l y su complementario con l C L = P binario, Q unario, f unaria l 1 =

Más detalles

Resolución en lógica de primer orden

Resolución en lógica de primer orden Resolución en lógica de primer orden Eduardo Bonelli Departamento de Computación, FCEyN, UBA 15 de mayo, 2006 Clase pasada Repasamos lógica proposicional Introdujimos el método de resolución para lógica

Más detalles

Tema 11: Forma Normal de Skolem

Tema 11: Forma Normal de Skolem Facultad de Informática Grado en Ingeniería Informática Lógica 1/30 PARTE 3: DEMOSTRACIÓN AUTOMÁTICA Tema 11: Forma Normal de Skolem Profesor: Javier Bajo jbajo@fi.upm.es Madrid, España 12/11/2012 Componentes

Más detalles

Soluciones del examen de Lógica informática (Grupos 1 y 2) del 23 de Septiembre de José A. Alonso Jiménez

Soluciones del examen de Lógica informática (Grupos 1 y 2) del 23 de Septiembre de José A. Alonso Jiménez Soluciones del examen de Lógica informática (Grupos 1 y 2) del 23 de Septiembre de 2005 José A. Alonso Jiménez Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial

Más detalles

Lógica Computacional: Estandarización de Fórmulas

Lógica Computacional: Estandarización de Fórmulas LÓGICA - 1º Grado en Ingeniería Informática Facultad de Informática Universidad Politécnica de Madrid Lógica Computacional: Estandarización de Fórmulas Petr Sosík psosik@fi.upm.es http://web3.fi.upm.es/aulavirtual/

Más detalles

Lógica de Predicados de Primer Orden

Lógica de Predicados de Primer Orden Lógica de Predicados: Motivación Todo natural es entero y 2 es un natural. Luego 2 es entero. p q r p, q r es claramente un razonamiento válido pero no es posible demostrarlo desde la Lógica Proposicional

Más detalles

Lógica informática ( )

Lógica informática ( ) Lógica informática (2008 09) Tema 8: de Skolem y cláusulas José A. Alonso Jiménez María J. Hidalgo Doblado Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de

Más detalles

Lógica informática ( )

Lógica informática ( ) 1 / 23 Lógica informática (2011 12) Tema 9: de Skolem y cláusulas José A. Alonso Jiménez Andrés Cordón Franco María J. Hidalgo Doblado Grupo de Lógica Computacional Departamento de Ciencias de la Computación

Más detalles

Paradigmas de Lenguajes de Programación

Paradigmas de Lenguajes de Programación Paradigmas de Lenguajes de Programación Clase Práctica Resolución I Primer cuatrimestre de 2008 Resolución en proposicional Dadas unas premisas P 1 P n y una conclusión C 1) Calculamos la Forma Normal

Más detalles

Introducción a la Resolución

Introducción a la Resolución Tema 8: Resolución Introducción a la Resolución Es un método de demostración automática de teoremas. Permite comprobar si una estructura deductiva es correcta a través del estudio de la validez de una

Más detalles

Soluciones de exámenes de

Soluciones de exámenes de Soluciones de exámenes de Lógica informática José A. Alonso Jiménez Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Sevilla, 10 de Junio

Más detalles

Tema 7: Formas normales: Formas prenex y de Skolem

Tema 7: Formas normales: Formas prenex y de Skolem Tema 7: Formas normales: Formas prenex y de Skolem Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica Informática (Ingeniería del Software) Curso 2013 14 LI(IS), 2013

Más detalles

Semántica de Primer Orden. Semántica de Primer Orden

Semántica de Primer Orden. Semántica de Primer Orden Para interpretar una fórmula de la lógica de predicados de primer orden: determinar qué objetos representan los términos (Dominio) definir las funciones y qué propiedades/relaciones representan los predicados

Más detalles

1. Resolución en lógica proposicional

1. Resolución en lógica proposicional 1. Resolución en lógica proposicional 1.1. Introducción 1.1.1. Pseudo-motivación Si tengo una fórmula de proposicional, puedo probar con fuerza bruta todas las valuaciones a ver si es satisfactible? Si

Más detalles

Formalización en Lógica de Primer Orden

Formalización en Lógica de Primer Orden Lógica, curso 05/06 Formalización en Lógica de Primer Orden Problema 2.1 Formaliza los siguientes razonamientos de la forma más sencilla y clara posible. 1. Todas las plantas tienen flores. Los helechos

Más detalles

Lógica de Primer orden. Sintaxis y Semántica Ejercicios del Tema 2

Lógica de Primer orden. Sintaxis y Semántica Ejercicios del Tema 2 1 Lógica de Primer orden. Sintaxis y Semántica Ejercicios del Tema 2 1. Para las siguientes fórmulas concluir qué variables son libres y cuáles son ligadas, detallando el carácter de libertad de cada una

Más detalles

G e 1,7. LI Examen de Lógica informática (7 de Junio de 2004) 1. Ejercicio 1. Probar (E F ) G = (E G) (F G) (a) Mediante deducción natural.

G e 1,7. LI Examen de Lógica informática (7 de Junio de 2004) 1. Ejercicio 1. Probar (E F ) G = (E G) (F G) (a) Mediante deducción natural. LI 2003 04 Examen de Lógica informática (7 de Junio de 2004) 1 Ejercicio 1. Probar (E F ) G = (E G) (F G) (a) Mediante deducción natural. (b) Por resolución. Solución del apartado (a): Demostración por

Más detalles

Enunciados y soluciones de ejercicios de examen

Enunciados y soluciones de ejercicios de examen Enunciados y soluciones de ejercicios de examen Enunciado del ejercicio 3 del examen de junio de 2003 A 1 : y R(a, y) A 2 : x y(q(x) R(x, y)) A 3 : xp (x) A 4 : x(p (x) Q(x)) y que, simultáneamente, falsifique

Más detalles

Universidad Autónoma de Querétaro

Universidad Autónoma de Querétaro TAREA 1 Alumnos Fecha Calificación INSTRUCCIONES GENERALES. Emplea el siguiente formato para la entrega de la siguiente actividad, se ordenado, emplea notación matemática adecuada y señala tus resultados.

Más detalles

El algoritmo de Resolución

El algoritmo de Resolución El algoritmo de Resolución El algoritmo de resolución es casi idéntico al de lógica proposicional: Suponga que quiere demostrar que ϕ es consecuencia lógica de Σ. El método es el siguiente: Transforme

Más detalles

Predicados de Primer Orden

Predicados de Primer Orden Lógica Clásica de Predicados de Primer Orden Lógica y Métodos Avanzados de Razonamiento David Pearce 4 de diciembre de 2008 3 lecciones 1. Lenguaje. Variables libres y ligadas. Sustituciones (NO variable

Más detalles

LÓGICA Examen de lógica de primer orden Curso Ejercicio 1.1 Formalizar las siguientes frases con un lenguaje de primer orden:

LÓGICA Examen de lógica de primer orden Curso Ejercicio 1.1 Formalizar las siguientes frases con un lenguaje de primer orden: Ejercicio 1.1 Formalizar las siguientes frases con un lenguaje de primer orden: (1,2 puntos) Existe un hombre que es más viejo que todos los demás H(x): x es un hombre, x( H(x) y( H(y) V(x,y)) ) V(x,y):

Más detalles

Lógica Clásica de Predicados

Lógica Clásica de Predicados Lógica Clásica de Predicados Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga 10 de enero de 2008 Contenido 1 Sintaxis 2 Variables y Sustituciones 3 Significado y verdad 4

Más detalles

Tema 4: Lógicas Informática (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla

Tema 4: Lógicas Informática (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Tema 4: Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógicas Informática (Tecnologías Informáticas) Curso 2017 18 Contenido Presentaremos un algoritmo más para estudiar

Más detalles

Tema 5: Teoría de la Demostración en Predicados

Tema 5: Teoría de la Demostración en Predicados Tema 5: Teoría de la Demostración en Predicados Resumen introducción lógica de predicados Resumen introducción lógica de predicados Conceptos: ahora para lógica de predicados de 1 er orden Estructura deductiva

Más detalles

EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones Curso

EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones Curso EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones Curso 2004-2005 Junio. 1. Sea A la fórmula y x (x + y = e), donde e es una constante. Sea M la estructura, para el lenguaje en que está escrita

Más detalles

Ejercicios de Álgebra Básica. Curso 2016/17

Ejercicios de Álgebra Básica. Curso 2016/17 Tema 4: Polinomios Ejercicios de Álgebra Básica. Curso 2016/17 El anillo k[x]. Divisibilidad Ejercicio 1. Sea A un anillo. Prueba que, si A es dominio de integridad, A[x] = A y demuestra con un contraejemplo

Más detalles

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes

Más detalles

Práctica: Lógica de Predicados

Práctica: Lógica de Predicados UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACIÓN MATEMÁTICAS DISCRETAS I (6106) Práctica: Lógica de Predicados Nota Preliminar: Para la realización de esta práctica se requieren

Más detalles

REGLAS Y LEYES LOGICAS

REGLAS Y LEYES LOGICAS LOGICA II REGLAS Y LEYES LOGICAS Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente ciertos enunciados a partir de otros.

Más detalles

Formas clausulares Teoría de Herbrand Algoritmo de Herbrand Semidecidibilidad. Teoría de Herbrand. Lógica Computacional

Formas clausulares Teoría de Herbrand Algoritmo de Herbrand Semidecidibilidad. Teoría de Herbrand. Lógica Computacional Teoría de Herbrand Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga Curso 2005/2006 Contenido 1 Formas clausulares Refutación y formas clausulares 2 Teoría de Herbrand Universo

Más detalles

Lógica de Predicados de Primer Orden

Lógica de Predicados de Primer Orden Lógica de Predicados de Primer Orden La lógica proposicional puede ser no apropiada para expresar ciertos tipos de conocimiento. Por ejemplo: Algunas manzanas son rojas Esta afirmación no se refiere específicamente

Más detalles

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones CURSO Febrero

EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones CURSO Febrero EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones CURSO 2005-2006 Febrero 1. (i) Dada la fórmula x=x Contéstese a las siguientes preguntas justificando brevemente las respuestas en los espacios

Más detalles

Métodos para Probar la Invalidez de un Argumento

Métodos para Probar la Invalidez de un Argumento I. Método del Contraejemplo (o de Analogía) Pasos: Simbolizar el argumento Ponerlo en lenguaje común Encontrar una instancia que pruebe invalidez Ejemplos: Métodos para Probar la Invalidez de un Argumento

Más detalles

Problemas de exámenes de Lógica

Problemas de exámenes de Lógica Problemas de exámenes de Lógica 1 1. Pasar a forma normal conjuntiva la formula proposicional ( (P Q) (Q R)) P ((R S) P ) 2. Obtener la forma normal conjuntiva de la formula proposicional ((( (A B) (B

Más detalles

Tema 4: Lógica de Predicados

Tema 4: Lógica de Predicados Tema 4: Lógica de Predicados Motivación Todos los hombres son mortales Sócrates es un hombre Luego Sócrates es mortal Propiedades Juan enseña a Pedro Algunos hombres enseñan a Pedro Todos los hombres enseñan

Más detalles

Tema 4: Lógica de Predicados

Tema 4: Lógica de Predicados Tema 4: Lógica de Predicados Motivación Todos los hombres son mortales Sócrates es un hombre Luego Sócrates es mortal Propiedades Juan enseña a Pedro Algunos hombres enseñan a Pedro Todos los hombres enseñan

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Sintaxis y semántica Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lenguajes de primer orden 1 La lógica

Más detalles

Inteligencia Artificial Parcial Resuelto Año 2015

Inteligencia Artificial Parcial Resuelto Año 2015 Tenga en cuenta: Item o - q: Emparrillado (Anexo C) Item a - c: Árbol de Búsqueda (Anexo B) Item l - n: Análisis de Protocolos (Anexo A) a. La lista final de nodos abiertos que se obtiene utilizando el

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio TRABAJO PRÁCTICO Nº 6 EXPRESIONES ALGEBRAICAS POLINOMIOS Polinomios Grado. Coeficientes. Especialización. Suma de polinomios. Producto de Polinomios. División de Polinomios. Regla Ruffini. Teorema del

Más detalles

Polinomios CLAVES PARA EMPEZAR VIDA COTIDIANA. a) 3x b) c) d) x 2 3. a) iii b) ii c) i. a) 7 (4 2) c) 9x (x 4) 9x 2 36x

Polinomios CLAVES PARA EMPEZAR VIDA COTIDIANA. a) 3x b) c) d) x 2 3. a) iii b) ii c) i. a) 7 (4 2) c) 9x (x 4) 9x 2 36x CLAVES PARA EMPEZAR a) 3x b) c) d) x 2 3 a) iii b) ii c) i a) 7 (4 2) 28 14 42 c) 9x (x 4) 9x 2 36x b) 3 (x ) 3x 1 d) ( 2x) (3x 2 4x 7) 6x 3 8x 2 14x VIDA COTIDIANA Largo de página x Ancho de página 2x

Más detalles

Ejercicios Propuestos de Múltiple Choice

Ejercicios Propuestos de Múltiple Choice Ejercicios Propuestos de Múltiple Choice Los siguientes ejercicios corresponden a ejercicios múltiple choice y son propuestos a los alumnos del curso como práctica fuera del cursado Métodos de Búsqueda

Más detalles

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman:

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman: 1 Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por letras y sus exponentes. Coeficiente Parte literal Coeficiente

Más detalles

Inteligencia Artificial. Oscar Bedoya

Inteligencia Artificial. Oscar Bedoya Inteligencia Artificial Oscar Bedoya oscar.bedoya@correounivalle.edu.co http://eisc.univalle.edu.co/~oscarbed/ia/ * Inferencia en lógica de predicados * Forma canónica * Forma normal conjuntiva Lógica

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x.

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. El número x =,... es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. Si x =, x =, x 3 =, x 4 =,... entonces cada x n es racional y (x x n ) n tiende a cero, es decir, lim

Más detalles

Formalización LPO. A) Predicados monádicos: Son aquellos predicados de un solo argumento. Elementos: 1.- Predicados o propiedades: (P, Q, R, S, T...

Formalización LPO. A) Predicados monádicos: Son aquellos predicados de un solo argumento. Elementos: 1.- Predicados o propiedades: (P, Q, R, S, T... Formalización LPO Apuntes Fernando Toscano tomados por A.Diz-Lois A) Predicados monádicos: Son aquellos predicados de un solo argumento. Elementos: 1.- Predicados o propiedades: (P, Q, R, S, T...) Son

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales Métodos de Integración Integración por fracciones parciales P x) Consideremos la función racional donde P, Q son polinomios. Si derivamos una función racional Qx) obtenemos una funciòn racional. Si integramos

Más detalles

Ejercicio reto. Definición. Circunferencia con centro en el origen. ENCUENTRO # 60 TEMA:Secciones cónicas. CONTENIDOS: 1. Circunferencia.

Ejercicio reto. Definición. Circunferencia con centro en el origen. ENCUENTRO # 60 TEMA:Secciones cónicas. CONTENIDOS: 1. Circunferencia. ENCUENTRO # 60 TEMA:Secciones cónicas. CONTENIDOS: 1. Circunferencia. Ejercicio reto 1. La ecuación de la recta que pasa por M(π, 0) y por la intersección de las rectas con ecuaciones: 3x 2y 1=0, x 4y+

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

DEFINICIÓN DE DERIVADA.

DEFINICIÓN DE DERIVADA. ANÁLISIS MATEMÁTICO BÁSICO. DEFINICIÓN DE DERIVADA. Pensemos geométricamente. En primer lugar repasemos la fórmula de la recta que pasa por dos puntos. Si una recta pasa por los puntos P 1 = (x 1, y 1

Más detalles

ALGEBRA III Práctica 1

ALGEBRA III Práctica 1 1 er cuatrimestre 2002 ALGEBRA III Práctica 1 Nota: En esta práctica anillo significa anillo conmutativo con 1 0. 1. Sea A un anillo. Probar que: (i) A tiene ideales maximales y todo ideal propio I está

Más detalles

Soluciones Ejercicios 5: Lógica de Predicados

Soluciones Ejercicios 5: Lógica de Predicados Soluciones Ejercicios 5: Lógica de Predicados TAII(I)-Lógica 26 de abril de 2006 1. Ejercicio 5.1 ormalizar en el cálculo de predicados las siguientes sentencias en lenguaje natural. 1. Todos los actores

Más detalles

Lógica de predicados 3. Sintaxis. Juan Carlos León Universidad de Murcia

Lógica de predicados 3. Sintaxis. Juan Carlos León Universidad de Murcia Lógica de predicados 3. Sintaxis Juan Carlos León Universidad de Murcia Esquema del tema 3.1. Fórmulas bien formadas y funciones proposicionales 3.2. Alcance. Variables libres y ligadas 3.3. Teoremas 3.4.

Más detalles

Lógica de predicados 3. Sintaxis

Lógica de predicados 3. Sintaxis Lógica de predicados 3. Sintaxis Juan Carlos León Universidad de Murcia Esquema del tema 3.1. Fórmulas bien formadas y funciones proposicionales 3.2. Alcance. Variables libres y ligadas 3.3. Teoremas 3.4.

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

ILUMINACION EXTERIOR E INDUSTRIAL

ILUMINACION EXTERIOR E INDUSTRIAL C AT A L O G O ILUMINACION EXTERIOR E INDUSTRIAL 2012 KASP 2012-2C ILUMINACION LED Vapor de sodio LED Los sistemas de iluminación LED de KAKI han demostrado su fiabilidad y eficacia en los más variados

Más detalles

MATEMÁTICAS 2º E.S.O. TEMA 4 ÁLGEBRA

MATEMÁTICAS 2º E.S.O. TEMA 4 ÁLGEBRA MATEMÁTICAS º E.S.O. TEMA 4 ÁLGEBRA 4.1. Expresión algebraica. Valor numérico. 4.. Monomios. Operaciones con monomios. 4.3. Polinomios. Operaciones con polinomios. 4.4. Extracción de factor común. 4.5.

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 6 Pág. Página 86 El maestro carpintero reparte entre sus dos ayudantes la construcción de un gran armario. Y cada uno de ellos, a su vez, imagina su parte de la obra despiezada para poder construirla a

Más detalles

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales (1) Decidir si los siguientes conjuntos son R-espacios vectoriales con las operaciones abajo denidas. (a) R n con v w =

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

Campos sin divergencia y potenciales vectores

Campos sin divergencia y potenciales vectores Campos sin divergencia y potenciales vectores Jana Rodriguez Hertz Cálculo 3 IMERL 24 de mayo de 2011 campo sin divergencia campo sin divergencia campo sin divergencia X : Ω R 3, X = (A, B, C) campo sin

Más detalles

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir,

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir, INTRO. MÉTODOS DE INTEGR. ( II ) En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones

Más detalles

ALGEBRA III Práctica 1

ALGEBRA III Práctica 1 1 er cuatrimestre 2001 ALGEBRA III Práctica 1 Nota: En esta práctica anillo significa anillo conmutativo con 1 0. 1. Sea A un anillo. Probar que: (i) A tiene ideales maximales y todo ideal propio I está

Más detalles

3.8 Ejercicios propuestos

3.8 Ejercicios propuestos 3.8 Ejercicios propuestos Ejercicio 3.7 Consideremos la aplicación lineal f : R 3 R 3 definida por f(x, y, z) =(2x + y, z,0) a) Determinar Ker f y hallar una base de dicho subespacio. b) Hallar el rango

Más detalles

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b)

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b) MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I o Bachillerato Internacional. Grupo I. Curso 2009/200. Hoja de ejercicios III Polinomios EJERCICIO Calcular el cociente y el resto en las siguientes divisiones:.

Más detalles

Método de integración por fracciones parciales

Método de integración por fracciones parciales Método de integración por fracciones parciales Temas Fracciones parciales. Método de integración por fracciones parciales. Capacidades Descomponer una fracción en suma de fracciones parciales. Conocer

Más detalles

TERCER TURNO TEMA 1. Ejercicio 1 (3 puntos) Sea f(x) la función lineal que pasa por los puntos A = (1; 3) y B = (2; 5). Sea

TERCER TURNO TEMA 1. Ejercicio 1 (3 puntos) Sea f(x) la función lineal que pasa por los puntos A = (1; 3) y B = (2; 5). Sea PRIMER PARCIAL MATEMÁTICA 1Cuat. 017 TEMA 1 Ejercicio 1 (3 puntos) Sea f(x) la función lineal que pasa por los puntos A = (1; 3) y B = (; 5). Sea g(x) = 4 x + 7 1 Hallar el conjunto de ceros de la función

Más detalles

M.C.D. - M.C.M. de polinomios

M.C.D. - M.C.M. de polinomios M.C.D. - M.C.M. de polinomios M.C.D. y M.C.M. de polinomios Máximo común divisor (M.C.D.) Mínimo común múltiplo (M.C.M.) Propiedades el el 1 M.C.D. de dos o más polinomios es otro polinomio que tiene la

Más detalles

TRABAJO PRACTICO Nº4 AÑO 2018 CÁLCULO DE PREDICADOS

TRABAJO PRACTICO Nº4 AÑO 2018 CÁLCULO DE PREDICADOS AC ÓIUT PMOCRÓTIC TRABAJO PRACTICO º4 AÑO 2018 CÁLCULO DE PREDICADOS 1.- Para cada uno de los predicados siguientes, halle un universo de discurso adecuado dentro de la lista siguiente: números reales,

Más detalles

Capítulo 3: Cálculo integral

Capítulo 3: Cálculo integral (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos La integral indefinida Propiedades básicas de la integral indefinida Métodos de integración: por

Más detalles

Polinomios en R[x] - Función Polinómica

Polinomios en R[x] - Función Polinómica Polinomios en R[x] - Función Polinómica. Indicar cuáles de las siguientes expresiones son polinomios: a) A( x) = x 6x + b) B( x) = x 6x c) C( x) = x + x + x d) D( x) = + x +. Determinar el grado y el término

Más detalles

Lógica Primer Orden: Deducción (Natural)

Lógica Primer Orden: Deducción (Natural) LÓGICA - 1º Grado en Ingeniería Informática Facultad de Informática Universidad Politécnica de Madrid Lógica Primer Orden: Deducción (Natural) Andrei Paun apaun@fi.upm.es http://web3.fi.upm.es/aulavirtual/

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

Fundamentos de Matemáticas

Fundamentos de Matemáticas Fundamentos de Matemáticas Ecuaciones diferenciales Solución: Tarea 4 (Total: 18 puntos) II.2. Ecuaciones diferenciales de primer orden La ecuación de Ricatti es una ecuación no-lineal = P (x) + Q(x)y

Más detalles

Lógica de Predicados

Lógica de Predicados Lógica de Predicados En las últimas décadas, ha aumentado considerablemente el interés de la informática por la aplicación de la lógica a la programación. De hecho, ha aparecido un nuevo paradigma de programación,

Más detalles

Lenguajes de Primer Orden. Satisfacibilidad

Lenguajes de Primer Orden. Satisfacibilidad Capítulo 2 Lenguajes de Primer Orden. Satisfacibilidad 2.1. Lenguajes de Primer Orden Un lenguaje de primer orden, L, consta de los siguientes símbolos: símbolos de variable: x 1,...,x n,... y a veces

Más detalles

de Primer Orden y los problemas de razonamiento (Cap 1 libro) de proposiciones (Cap 2 libro) de predicados (Cap 2 libro)

de Primer Orden y los problemas de razonamiento (Cap 1 libro) de proposiciones (Cap 2 libro) de predicados (Cap 2 libro) Bloque I: El Lenguaje de la Lógica L de Primer Orden. Tema 1: La Lógica L de Primer Orden y los problemas de razonamiento (Cap 1 libro) Tema 2: El lenguaje de la lógica l de proposiciones (Cap 2 libro)

Más detalles

Soluciones de exámenes de Lógica informática

Soluciones de exámenes de Lógica informática Soluciones de exámenes de Lógica informática José A. Alonso Jiménez Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Sevilla, 10 de Junio

Más detalles

Fracciones Parciales. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Fracciones Parciales. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Una expresión racional con coeficientes en un campo K, es una expresión de la forma ax ( ) bx ( ) donde ax ( ), bx ( ) K[ x] ax ( ) cx ( )

Más detalles

Inteligencia artificial

Inteligencia artificial Inteligencia artificial Representación formal Historia Lógica Proposicional Lógica de Predicados Formalización Resolución Unificación IA Historia Lógica Proposicional Lógica de Predicados Formalización

Más detalles

Axiomas y Teoremas APÉNDICE A. Teoremas del Cálculo Proposicional. Índice del Capítulo

Axiomas y Teoremas APÉNDICE A. Teoremas del Cálculo Proposicional. Índice del Capítulo APÉNDICE A Axiomas y Teoremas Índice del Capítulo A.1. Teoremas del Cálculo Proposicional..................... 217 A.2. Teoremas del Cálculo de Predicados..................... 220 A.3. Cuantificación Existencial...........................

Más detalles

B. Cálculo de primitivas.

B. Cálculo de primitivas. 50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición

Más detalles

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL VALLEJO ÁREA DE MATEMÁTICAS CÁLCULO DIFERENCIAL E INTEGRA I TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN ELEAZAR

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Demostración Automática de Teoremas Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM ATP Matemáticas Discretas - p. 1/30 En lo anterior, hemos visto cómo

Más detalles

METODOS DE INTEGRACION IV FRACCIONES PARCIALES

METODOS DE INTEGRACION IV FRACCIONES PARCIALES METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción

Más detalles

Demostración Automática. Tema 2. Procesamiento del conocimiento con la Lógica Matemática

Demostración Automática. Tema 2. Procesamiento del conocimiento con la Lógica Matemática Demostración Automática de Teoremas Tema 2. Procesamiento del conocimiento con la Lógica Matemática Temas Introducción Sistemas de axiomas Teoría de la demostración. Sistema de Kleene Deducción natural

Más detalles

I III GENERALIDADES 1 GENERALIDADES 2 GENERALIDADES 3 GENERALIDADES 4 GENERALIDADES 5 GENERALIDADES 6 GENERALIDADES 7 GENERALIDADES 8 GENERALIDADES 9 GENERALIDADES 10 GENERALIDADES 11 GENERALIDADES

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0 Pág. Página 8 PRACTICA Monomios Indica cuál es el grado de los siguientes monomios y di cuáles son semejantes: a) x b) x c) x d) x e) x f) x g) h) x i) a) Grado b) Grado c) Grado d)grado e) Grado f) Grado

Más detalles

PARCIAL DE INTELIGENCIA ARTIFICIAL

PARCIAL DE INTELIGENCIA ARTIFICIAL PARCIAL DE INTELIGENCIA ARTIFICIAL Marque con una cruz las respuestas correctas (no se aceptan tachaduras ni correcciones NO USAR LÁPIZ Tenga en cuenta: Item 18 a 21: Emparrillado (Anexo C Item 1 a 3:

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles