Cálculo II 8 de junio de 2016

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo II 8 de junio de 2016"

Transcripción

1 Cálculo II 8 de junio de 6 Publicación de notas: Revisión del examen: Problema (3 untos). Se de ne la siguiente función en R : f (x; y) x 4 + y 4 4xy: (a) Calcula la derivada de f en el unto (; ) en la dirección del vector w 3 ;. (b) Escribe la ecuación del lano tangente a la grá ca de f en el unto (x; y) (; ). (c) Determina los máximos locales, los mínimos locales y los untos de silla de f. (d) Sean u : R R y v : R R dos funciones derivables con las roiedades siguientes: u () ; u () ; v () ; v () 3: Calcula la derivada de la función g (t) f (u (t) ; v (t)) en t. Solución. (a) En rimer lugar se calculan las derivadas arciales de (x; y) 4x3 (x; y) 4y3 4x: Como y son funciones R, se deduce que f es diferenciable en todo unto. Por tanto, la derivada de f en el unto (; ) en la dirección de w se uede calcular del siguiente modo: D w f (; ) rf (; ) w (4; (b) Ecuación del lano tangente: z f (; ) + (; ) >: 4) 3 ; 3 : ) + (; ) y + 4 (x ) z 4x 4y 3: (c) En rimer lugar se determinan los untos críticos de f: 8 9 (x; y) 4x3 4y > (x; y) 4y3 4x x y 3 x 9 ; >;, x 3 y y 3 x

2 x 9 x x x 8 : Por tanto, x ó x ó x, con lo cual los untos críticos de f son (; ), (; ) y ( ; ). La matriz hessiana de f es x 4 H f (x; y) 4 y : Matriz hessiana en los untos críticos: 4 H f (; ) 4 ; H f (; ) 4 4 H f ( ; ) : Como det (H f (; )) <, se deduce que f tiene un unto de silla en (; ). Como det (H f (; )) > (; ) >, se obtiene que f tiene un mínimo local en (; ). Igualmente, det (H f ( ; )) > ( ; ) >, or lo que f también tiene un mínimo local en ( ; ). (d) Derivada de g (t) f (u (t) ; v (t)) en t : g (u () ; v ()) u () (u () ; v ()) v () (; ) + (; )

3 Problema ( untos).. Se considera la integral doble continua en R. x (x; y) dy dx, en la que f reresenta una función x f (a) Determina la región de integración. (b) Exresa la integral en el otro orden de integración osible al utilizar coordenadas cartesianas.. Sea D f(x; y) R / y, 4 x + y 6g. (a) Reresenta grá camente el conjunto D e indica claramente los bordes que lo limitan. (b) Calcula la integral (x + 3y ) dxdy utilizando un cambio a coordenadas olares. D Solución.. Para calcular los límites del recinto de integración R observamos que y x es una arábola que tiene el máximo en el unto (; ) y que corta al eje de abscisas en x y x. Ésta es la curva que delimita el recinto de integración en su arte suerior. Si elevamos al cuadrado la exresión y x, obtenemos y x, que es la ecuación de la circunferencia de centro (; ) y radio, or lo que y x, con x, es la semicircunferencia inferior. El recinto de integración R es la zona sombreada de la siguiente gura: La variable y recorre el intervalo [ ; ]. Fijado un valor de y entre y y desejando x en la ecuación y x, tenemos que x varía desde y hasta + y. Si y ertenece al intervalo [; ] y se deseja x en y x, tenemos que x varía desde y hasta + y. Por tanto, x (x; y) dy dx x f y f (x; y) dx y dy + y y f (x; y) dx dy:

4 . Por ser y, el conjunto D se encuentra en el semilano suerior. Las curvas x + y 4 y x + y 6 son dos circunferencias centradas en (; ) de radios y 4, resectivamente. Por tanto, D es la mitad de la corona circular comrendida entre ambas circunferencias y situada en el semilano suerior: Para calcular la integral del enunciado se utilizarán coordenadas olares. El radio, que llamaremos, varía entre y 4, mientras que el ángulo, que llamaremos, varía entre y. El valor absoluto del jacobiano de la transformación es, or lo que D x + 3y dxdy cos () + 3 sen () dd + sen () dd 3 ( cos ()) dd 4 3 d 4 4 j4 : cos () sen () d dd

5 Problema 3 ( untos). Se considera el camo vectorial F (x; y) (F (x; y) ; F (x; y)) x + y + kx y; xy + x 3 ; donde k reresenta una constante real. (a) Determina el valor de k ara que F sea un camo conservativo en R. (b) Calcula la integral de línea R F (x; y) dx + F (x; y) dy cuando F es un camo conservativo y reresenta la curva de ecuación y x sen x desde el unto (; ) hasta el unto (; ). (c) Calcula la integral de línea R F (x; y) dx+f (x; y) dy cuando k es un número real cualquiera y es la curva de ecuación y x desde el unto (; ) hasta el unto (; ). Solución. (a) F y F tienen derivadas arciales continuas en todo R or ser funciones olinómicas y (x; y) y kx (x; y) y + 3x : (x; (x; y) si y sólo si k 3. Por R es simlemente conexo, si k 3 se tendrá que F es conservativo. (b) Según se ha demostrado en el aartado anterior, F es conservativo si y sólo si k 3. En ese caso, existe un camo escalar f : R R tal que rf (x; y) F (x; y) en todo R, es decir, (x; y) ; (x; y) x + y + 3x y; xy + x Como (x; y) x y + 3x y, se cumle que f (x; y) x + y + 3x y dx x + xy + x 3 y + ' (y) ; donde ' es una función derivable en R. Por (x; y) xy + x3 + d' dy (y) : Como también (x; y) (x; y) xy + x 3, se deduce que d' (y) ara todo y, luego ' es dy constante. En consecuencia, ara todo c R, la función f (x; y) x + xy + x 3 y + c tiene la roiedad de que rf F. Como F es conservativo, la integral de línea no deende de la curva, sino sólo de sus extremos y se uede calcular del siguiente modo: F (x; y) dx + F (x; y) dy f (; ) f (; ) :

6 (c) La curva de ecuación y x desde (; ) hasta (; ) se uede arametrizar como x t, y t, con t [; ]. Entonces F (x; y) dx + F (x; y) dy 9 + k 4 : t + t + kt t + t t + t 3 dt t + 3t + ( + k) t 3 dt

7 Problema 4 (3 untos).. Determina una función u : R R con la roiedad de que F (x + jy) u (x; y)+j (x y ) sea una función analítica (es decir, holomorfa) en todo C.. Se llama f a la siguiente función de variable comleja: f (z) ez z (z + ) : (a) Determina todos los olos de f en el lano comlejo y el orden de cada uno de ellos. (b) Calcula el residuo de f en cada olo. (c) Calcula la integral de f a lo largo de la circunferencia C de ecuación jzj 3 orientada en sentido ositivo. Solución.. Se de ne v (x; y) x y. Para que F (x + jy) u (x; y) + jv (x; y) sea derivable en todo unto x + jy C, las funciones u y v deben cumlir las ecuaciones de (x; y) u (x; y) ydx xy + ' (y) ; donde ' : R R es una función (x; y) x + ' (x; y) (x; y) Se deduce que ' (y) ara todo y, luego ' es constante. Por tanto, si k R, las funciones u (x; y) xy + k; v (x; y) x y tienen derivadas arciales continuas y cumlen las ecuaciones de Cauchy-Riemann en todo unto, luego F (x + jy) u (x; y) + jv (x; y) es una función analítica en todo C.. Las funciones g (z) e z y h (z) z (z + ) son derivables en todo C. Por tanto, las únicas singularidades de f gh son los untos en los que se anula h, es decir, z y z. El unto z es un cero simle de g y un cero doble de h. Por tanto, f tiene un olo simle en z. Además, h tiene un cero doble en z y g ( ) 6, or lo que f tiene un olo doble en z. Las dos singularidades se encuentran en el interior de la circunferencia C. El residuo de f en z es Res z f (z) lim z C zf (z) lim z e z z (z + ) lim z e z (z + ) + z (z + ) 4 : El residuo de f en z es d Res f (z) lim (z + ) f (z) d e z lim z z dz z dz z z e z z (e z ) lim 8e 4 e z z 4 6 Por último, la integral se calcula alicando el teorema de los residuos: f (z) dz j Resf (z) + Res f (z) j z z e : 4 :

Análisis Matemático Ingenierías en Informática Soluciones del examen de febrero de 2009

Análisis Matemático Ingenierías en Informática Soluciones del examen de febrero de 2009 Análisis Matemático Ingenierías en Informática Soluciones del examen de febrero de 9. a) Prueba, usando el teorema de Bolzano, que la función f.x/ D e x Cx x se anula en al menos tres untos del intervalo

Más detalles

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso FUNDAMENTOS MATEMÁTIOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Esecialidades Electricidad, Electrónica y Mecánica. EUP Sevilla urso 8-9 Bloque III: álculo diferencial e integral de funciones de

Más detalles

f (x; y) = a) Calcula la derivada direccional en el punto (1; 1) y en la dirección del vector! v = (2; 2).

f (x; y) = a) Calcula la derivada direccional en el punto (1; 1) y en la dirección del vector! v = (2; 2). Ejercicios de clase Ejercicio. Dada la función f (x; y) xy + x + y. a) alcula la derivada direccional en el unto (; ) y en la dirección del vector v ;. b) En qué dirección crece la función f lo más ráidamente

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Hoja 5. Diferenciabilidad de funciones de varias variables.

Hoja 5. Diferenciabilidad de funciones de varias variables. CÁLCULO Hoja 5. Diferenciabilidad de funciones de varias variables. 1. Dada la función < 4x 3 x 2 + y 2 si x; y) 6= 0; 0) a) Estudiar la continuidad de f. b) Hallar las derivadas arciales y direccionales

Más detalles

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 2 de Setiembre de 2 Primera arte Ejercicio. A medianoche, el barco Arrow se encuentra situado a kilómetros en dirección este del barco Blue.

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

Matemáticas I. Escuela Politécnica Superior de Sevilla, curso Grados en Ingeniería Eléctrica, Electrónica Industrial y Mecánica.

Matemáticas I. Escuela Politécnica Superior de Sevilla, curso Grados en Ingeniería Eléctrica, Electrónica Industrial y Mecánica. Matemáticas I. Escuela Politécnica Suerior de Sevilla, curso - Grados en Ingeniería Eléctrica, Electrónica Industrial Mecánica. Boletín n o. Curvas en forma cartesiana.. Determinar la derivada de las siguiente

Más detalles

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1 SGUICEG055EM-A7V Bloque Guía: Ecuación de la recta en el lano cartesiano TABLA DE CORRECCIÓN ECUACIÓN DE LA RECTA EN EL PLANO CARTESIANO N Clave Dificultad estimada B Alicación Media A Alicación Media

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 18 de septiembre de 2013

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 18 de septiembre de 2013 UPR Deartamento de Ciencias Matemáticas RUM MATE 7 Primer Examen Parcial 8 de setiembre de 0 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

P jω es decir: G (P).H (P) G (jω).h (jω) EXÁMEN FINAL 11 DE JULIO DE 2001 = 270. Dada la siguiente función de transferencia de lazo cerrado :

P jω es decir: G (P).H (P) G (jω).h (jω) EXÁMEN FINAL 11 DE JULIO DE 2001 = 270. Dada la siguiente función de transferencia de lazo cerrado : INENIERÍA EN ELECTRÓNICA J.T.. : IN. JUAN JOSÉ ARCIA ABAD. EXÁMEN FINAL DE JULIO DE Dada la siguiente función de transferencia de lazo cerrado : A Trace el diagrama de Nyquist y alique criterio de estabilidad.

Más detalles

( ) ( ) ( ) ( ) ( ) Opción A ( ) ( ) ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: a b entonces la función

( ) ( ) ( ) ( ) ( ) Opción A ( ) ( ) ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: a b entonces la función Eamen. ª evaluación 4//8 Oción A Ejercicio. (Puntuación máima: untos) Obtener el valor del siguiente límite: lim ( + ) t ln 4t dt 5 Alicación del teorema fundamental del cálculo integral: Si f ( ) es continua

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ECUACIONES Y GRAFICA DE LA CIRCUNFERENCIA Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los siguientes son ejemlos de ecuaciones:

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Objetivos a cubrir Volumen de un sólido : Secciones transversales. Volumen de un sólido de revolución : Método del disco.

Más detalles

Práctico N o 1. Números Complejos

Práctico N o 1. Números Complejos Práctico N o. Números Comlejos ) Clasi car los siguientes números comlejos en reales o imaginarios. Eseci car en cada caso cuál es la arte real y cuál es la imaginaria: a) 5 + 7i b) c) 5 d) i e) f) + g)

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

E.U.P. de Sevilla, Fundamentos Matemáticos de la Ingeniería, Electrónica. Convocatoria de Septiembre ( ), primera parte.

E.U.P. de Sevilla, Fundamentos Matemáticos de la Ingeniería, Electrónica. Convocatoria de Septiembre ( ), primera parte. E.U.P. de Sevilla, Fundamentos Matemáticos de la Ingeniería, Electrónica. Convocatoria de Setiembre (-9-), rimera arte. PROBLEMA A) [ untos] Dada la función f() e : i) Localice el máimo absoluto de f()

Más detalles

EJERCICIOS RESUELTOS DE CALCULO I. Alvaro Cabrera Javier

EJERCICIOS RESUELTOS DE CALCULO I. Alvaro Cabrera Javier EJERCICIOS RESUELTOS DE CALCULO I Alvaro Cabrera Javier 4 de setiembre de 4 Alvaro Cabrera Javier CALCULO I - CHUNGARA ÍNDICE GENERAL Índice general. NUMEROS REALES Y DESIGUALDADES 7. VECTORES EN EL PLANO.

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

E.T.S. INGENIEROS INDUSTRIALES. PLAN U.N.E.D CÁLCULO INFINITESIMAL II. 1 o CURSO. CÓDIGO: a SEMANA. CONVOCATORIA DE JUNIO 2006.

E.T.S. INGENIEROS INDUSTRIALES. PLAN U.N.E.D CÁLCULO INFINITESIMAL II. 1 o CURSO. CÓDIGO: a SEMANA. CONVOCATORIA DE JUNIO 2006. E.T.S. INGENIEROS INUSTRIALES. PLAN. U.N.E. CÁLCULO INFINITESIMAL II. o CURSO. CÓIGO: 88 a SEMANA. CONVOCATORIA E JUNIO 6.. ados la función +y si 6= y f (, y) = y si =y yelconjuntom = {(, y) R / ( 4) +

Más detalles

Solución: A las coordenadas del punto C; general del lugar geométrico, las denotaremos como (x; y). (),C xy

Solución: A las coordenadas del punto C; general del lugar geométrico, las denotaremos como (x; y). (),C xy Geometría Analítica; C. H. Lehmann. Ejercicio, gruo 8, caítulo II, ágina. Los etremos de la base de un triángulo son los untos A (0; 0) B (; 0). Hallar la ecuación del lugar geométrico del vértice ouesto

Más detalles

Ejercicios Resueltos. 1 Cálculo de integrales dobles en coordenadas rectángulares cartesianas

Ejercicios Resueltos. 1 Cálculo de integrales dobles en coordenadas rectángulares cartesianas Universidad de Santiago de Chile Autores: Miguel Martínez Concha Facultad de Ciencia Carlos Silva Cornejo eartamento de Matemática y CC. Emilio Villalobos Marín Ejercicios Resueltos Cálculo de integrales

Más detalles

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que

Más detalles

Matemáticas I: C2-2015

Matemáticas I: C2-2015 Matemáticas : - 5 Problema.Sobre una determinada montaña, la elevación z arriba de un unto (x; ) en el lano XOY a nivel del mar es de z :x :4, donde x, z están en metros. El eje x ositivo señala hacia

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones PÁGINA 363 SOLUCIONES 1. La solución: Lo que nos pide el problema es hallar el área del recinto rayado. Este recinto es un trapecio y su area es:. Queda: x

Más detalles

Tema 1. Cinemática de partícula

Tema 1. Cinemática de partícula Tema 1. Cinemática de artícula Cinemática de artícula Tema 1 1. Introducción. Vectores osición, velocidad y aceleración 3. 4. Método gráfico en movimiento rectilíneo 5. de varias artículas Mecánica II

Más detalles

B(1;1) Figura 5.1: Coronas de f(z) = (z 1)/z 2. La serie de Laurent en la bola B(1; 1) coincide con la serie de Taylor. Usamos la serie de g(z) = z 2,

B(1;1) Figura 5.1: Coronas de f(z) = (z 1)/z 2. La serie de Laurent en la bola B(1; 1) coincide con la serie de Taylor. Usamos la serie de g(z) = z 2, Capítulo 5 Series de Laurent Problema 5. Hallar las series de Laurent centradas en z = de la función fz = z /z. La función f es holomorfa salvo en z =. Por tanto, si centramos las series en z =, tendremos

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2016-2017) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

MATEMÁTICAS III. Bernardo Acevedo Frias. UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES

MATEMÁTICAS III. Bernardo Acevedo Frias. UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES MATEMÁTICAS III Bernardo Acevedo Frias. UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIALES MANIALES. JUNIO 4 ii Contenido Prologo vii Suer cies. Introducción.................................... De nición de

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

Curvas. 1 Representación analítica de curvas Cambio admisible de parámetro... 7

Curvas. 1 Representación analítica de curvas Cambio admisible de parámetro... 7 Curvas M. Eugenia Rosado María Deartamento de Matemática Alicada Escuela Técnica Suerior de Arquitectura, UPM Avda. Juan de Herrera 4, 8040-Madrid, Sain E-mail: eugenia.rosado@um.es Índice 1 Reresentación

Más detalles

Tema 11: Diferenciabilidad en varias variables.

Tema 11: Diferenciabilidad en varias variables. Tema 11: Diferenciabilidad en varias variables. José M. Salazar Noviembre de 2016 Tema 11: Diferenciabilidad en varias variables. Lección 14. Diferenciabilidad en varias variables. Lección 15. Aplicaciones

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Septiembre de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Septiembre de 2006 Resolución del examen de Matemáticas II de Selectividad Andalucía Septiembre de 006 Antonio Francisco Roldán López de Hierro * de mayo de 007 Opción A Ejercicio Sea f R R la función de nida por f (x) =

Más detalles

1. Suponiendo que la ecuación dada de ne a y como función implícita de x calcular dy dx ; d2 y

1. Suponiendo que la ecuación dada de ne a y como función implícita de x calcular dy dx ; d2 y FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA E.U. P. de Sevilla, curso 8-9 Ingeriería Técnica Instrial. Esecialidades Electricidad, Electrónica Mecánica. Bloue II: Cálculo diferencial e integral de funciones

Más detalles

Un i d a d 5. d i fe r e n C i a L es d e o r d e n s U pe r i o r. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 5. d i fe r e n C i a L es d e o r d e n s U pe r i o r. Objetivos. Al inalizar la unidad, el alumno: Un i d a d 5 má x i m o s, mínimos y d i fe r e n C i a L es d e o r d e n s U pe r i o r Objetivos Al inalizar la unidad, el alumno: Identificará los puntos críticos, máximos y mínimos absolutos y relativos

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Proceso Selectivo para la XXIII IMC, Bulgaria

Proceso Selectivo para la XXIII IMC, Bulgaria Proceso Selectivo ara la XXIII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Esera la indicación ara voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( )

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( ) MATEMATICA CPU FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES Sean los olinomios ( 5, q (, r ( y s ( a) Hallar los olinomios: i ( q( ii r( q( s( iii r ( s( iv r ( ( q( b) Calcular: i () ii q ( ) iii (

Más detalles

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z Demostrar que Re z + Im z z para todo z C. Encontrar las soluciones de z = z. 3 Representar cada uno de los siguientes conjuntos: (a) z + i =, (b) z + i 3, (c) Re(z i) =, (d) z i = 4. 4 Demostrar que si

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16 Examen final Análisis Complejo

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16 Examen final Análisis Complejo AMPLIACIÓN DE MATEMÁTICAS. Curso 015/16 Examen final. 14 6 016 Análisis Complejo Nombre y apellidos: DNI: No está permitido el uso de calculadora programable. Los cálculos deben ser exactos y los ángulos

Más detalles

ANÁLISIS REAL Y COMPLEJO. INGENIERÍA TELEMÁTICA EXAMEN FEBRERO 2003

ANÁLISIS REAL Y COMPLEJO. INGENIERÍA TELEMÁTICA EXAMEN FEBRERO 2003 EXAMEN FEBRERO 23 La ecuación e x 1 x = admite la raíz real x =. Probar que no puede tener otra. Justi car porqué es impropia y calcular la integral Z 2 1 dx x p ln x Estudiar la continuidad y las derivadas

Más detalles

Procesamiento Digital de Imágenes

Procesamiento Digital de Imágenes Visión or Comutadora Unidad III Procesamiento Digital de Imágenes Rogelio Ferreira Escutia Contenido 1) Oeraciones Individuales a) Transformaciones Punto a Punto b) Transformaciones de 2 Imágenes Punto

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010 UPR Deartamento de Ciencias Matemáticas RUM MATE 37 Primer Eamen Parcial de octubre de 00 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso de

Más detalles

PRIMER CONTROL. 13 de Noviembre de 2012.

PRIMER CONTROL. 13 de Noviembre de 2012. GRAO EN QUÍMICA. MATEMÁTICAS. (Evaluación continua) PRIMER CONTROL. 13 de Noviembre de 2012. 1.- Sea f : R 3 R 3 la aplicación lineal f(x, y, z) = (x + z, 2x + ay az, 4x + z), (a R) a) Matriz de la aplicación

Más detalles

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2 MATEMÁTICA APLICADA CÁLCULO E.T.S.I. INFORMÁTICOS UPM o G.I.I. SOLUCIONES EXAMEN FINAL 6/6/04 er EXAMEN PARCIAL. Calcule los siguientes ites, si existen: a n + n 3n. b n n + 3 n +n a El ite presenta una

Más detalles

Teorema 1 (Cambio de Variable en R n ).

Teorema 1 (Cambio de Variable en R n ). Vamos a estudiar en este segundo capítulo sobre los cambios de variable para funciones de varias variables, algunos de los más habituales: los cambios de coordenadas a coordenadas polares en el plano,

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

SEGUNDO PARCIAL (3/6/2015)

SEGUNDO PARCIAL (3/6/2015) NOMBE Y nº de MATÍCULA: SEGUNDO PACIAL (3/6/15) 1.. (.5 ptos.) Calcular la integral doble: y sin(x ) dxdy, siendo el recinto acotado del primer cuadrante limitado por las curvas de ecuaciones respectivas

Más detalles

Derivadas en variedades

Derivadas en variedades Derivadas en variedades Luis Guijarro UAM 19 de mayo de 2010 Luis Guijarro ( UAM) Derivadas en variedades 19 de mayo de 2010 1 / 68 Curvas suaves en una variedad Definición Una curva suave en una variedad

Más detalles

e x 1 + kx b) Halla los intervalos de crecimiento, decrecimiento, concavidad, así como los extremos y puntos de inflexión de la función:

e x 1 + kx b) Halla los intervalos de crecimiento, decrecimiento, concavidad, así como los extremos y puntos de inflexión de la función: Matemáticas Convocatoria Extraordinaria 4 de junio de 14 1 3 puntos) a) Estudia el ite: en función del valor del parámetro real k e x 1 + kx x 1 cos x b) Halla los intervalos de crecimiento, decrecimiento,

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Industriales Telecomunicación Curso 010-011 Grados E.T.S.I. Industriales Telecomunicación Ejercicios resueltos 1 f x, x e Representar el dominio de la función x x El dominio es el conjunto de

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 9 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

Funciones implícitas y su derivada

Funciones implícitas y su derivada Funciones implícitas su derivada 4 Al considerar la función con ecuación x 3x 5x f, es posible determinar f ( x ) con los teoremas enunciados anteriormente, a que f es una función dada implícitamente en

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES 13 LA INTEGRAL DEFINIDA. APLICACIONES REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

Tema 5: Funciones homogéneas

Tema 5: Funciones homogéneas Tema 5: Funciones homogéneas f se dice homogénea de grado α si se verifica: f(λ x) = λ α f( x), x, λ > 0 Propiedades: 1. Si f y g son homogéneas de grado α, entonces f ± g es también homogénea de grado

Más detalles

1+ p 2 +::::+ p n n p n

1+ p 2 +::::+ p n n p n Final de Análisis Matemático. o de C. Matemáticas. Junio 004 )Calcúlense los límites i) lim n! + +::::+ n n n ii) lim n! e+e +::::+e n Ln(n+) ) Estúdiese el límite en 0; el comortamiento en + y en ; la

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas.

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas. MATEMATICAS ESPECIALES I - 17 PRACTICA 1 Aplicaciones de la Teoría de funciones analíticas. Aplicaciones del Teorema de los residuos para calcular integrales reales. 1. Integrales del tipo π R(cos t, sin

Más detalles

1 Estudio local de una super cie

1 Estudio local de una super cie 1 Estudio local de una super cie Sea S R 3 una super cie con parametrización regular: Se tiene ~r : D R 2! R 3 ; ~r(u; v) = (x(u; v); y(u; v); z(u; v)) : ~r u (u; v) = (x u (u; v); y u (u; v); z u (u;

Más detalles

Matemáticas III Tema 6 Integrales de superficie

Matemáticas III Tema 6 Integrales de superficie Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

Ejemplo de EFICIENCIAS - Matemáticas

Ejemplo de EFICIENCIAS - Matemáticas Ejemplo de EFICIENCIAS - Matemáticas Este examen consta de dos partes. En la primera parte hay 40 preguntas de selección múltiple que deben responderse en un tiempo máximo de dos horas. En la segunda parte

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2017-2018) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

Estabilidad de polinomios

Estabilidad de polinomios Estabilidad de olinomios Félix Monasterio-Huelin 15 de abril de 2016 Índice Índice 1 Índice de Figuras 1 Índice de Tablas 1 1. Estabilidad de sistemas lineales 2 2. Estabilidad de olinomios 3 3. Tabla

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por Cálculo I Curso 2010/2011 Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 5 de julio de 2011 (275 p) 1) Se considera la función f : (0, ) (0, ) definida por f(x) = 1 + ex x e x a)

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

RESUMEN TEORIA MATEMATICAS 5

RESUMEN TEORIA MATEMATICAS 5 RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO 1.

Más detalles

UNIVERSIDAD TECNOL OGICA NACIONAL FACULTAD REGIONAL ROSARIO

UNIVERSIDAD TECNOL OGICA NACIONAL FACULTAD REGIONAL ROSARIO UNIVERSIDAD TECNOL OGICA NACIONAL FACULTAD REGIONAL ROSARIO ANÁLISIS MATEMÁTICO II PRÁCTICA Autores Mariana Perez Pablo Sabatinelli Directora de Catedra Angelica Arnulfo 5 Esta agina queda en blanco Funciones

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 3 de Julio de 2001 Primera parte ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. de Julio de Primera parte Ejercicio. Se considera la función definida por la determinación principal del arco tangente, es decir f (x) =

Más detalles

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 1: PRESIÓN. ECUACIÓN GENERAL DE LA HIDROSTÁTICA

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 1: PRESIÓN. ECUACIÓN GENERAL DE LA HIDROSTÁTICA UNIDD HIDRÚLIC. GENERLIDDES Caítulo PRESIONES EN LOS LÍQUIDOS : HIDROSTTIC SECCIÓN : PRESIÓN. ECUCIÓN GENERL DE L HIDROSTÁTIC INTRODUCCIÓN La Hidrostática es la arte de la Hidráulica que estudia los líquidos

Más detalles