Métodos Matemáticos I

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos Matemáticos I"

Transcripción

1 E. de Ingenierías Industriales Métodos Matemáticos I Jesús Rojo

2

3 1 Semidiscretización de la ecuación del calor

4 El Método de Líneas (MOL) Se considera el siguiente problema, ligado a una ecuación parabólica u(x, t) = 2 u(x, t) t x 2, x [0, 1], t 0, u(x, 0) = sen πx, u(0, t) = u(1, t) = 0 que representa, por ejemplo, la distribución de temperaturas en una barra de longitud 1 con distribución inicial sen πx, x [0, 1] y temperatura 0 en los extremos, a lo largo de todo el proceso. Es fácil comprobar que su única solución viene dada por u(x, t) = e π2t sen πx (o sea, la temperatura tiende a 0 con rapidez).

5 Definimos en x [0, 1] los nodos o sea, nodos x n = n h, con h = 1, n = 0, 1,... N 1, N N 0 = x 0 < x 1 < x 2 <... < x N 1 < x N = 1 separados por distancias h. Para cada x n nos vamos a referir a la semirecta vertical (x n, t), t 0 y a considerar en ella una función de t, descripción de la solución de la ecuación original en derivadas parciales, pero limitada a la semirecta, en definitiva u n (t) = u(x n, t), t [0, + ]. Nótese que, para los extremos de la barra, las u 0 (t) y u N (t) valen obligatoriamente u 0 (t) = u(x 0, t) = u(0, t) = 0 u N (t) = u(x N, t) = u(1, t) = 0

6 pero no son conocidas las que corresponden a los otros índices n = 1,... N 1. Como se observa, hemos hecho una discretización en una de las variables, la x, pero no en la otra, t, que sigue siendo continua. Esto justifica el nombre dado a este procedimiento, que acaba obteniendo las soluciones (generalmente numéricas) a lo largo de las líneas x = x n, t [0, + ]. Vamos a ver cómo somos capaces de decir qué es lo que verifican las funciones u n (t) = u(x n, t), t [0, + ], n = 0, 1,... N 1, N. Fijado un valor de t [0, + ], la función (una diferente para cada valor de t ) f : x u(x, t) es tal que 2 u(x, t) x 2 = f (x),

7 y, en particular, 2 u(x n, t) x 2 = f (x n ). Aproximando esta derivada por la fórmula usual, acabamos obteniendo 2 u(x n, t) x 2 = u(x n 1, t) 2 u(x n, t) + u(x n+1, t) h 2 + O(h 2 ), Ahora bien, u(x, t) verifica y, en definitiva 2 u(x n, t) x 2 = u(x n, t) = u t n(t), n = 1,... N 1, u n(t) = u n 1(t) 2 u n (t) + u n+1 (t) h 2 + O(h 2 ). Es decir, las funciones u n (t) consideradas antes son solución del sistema lineal de ecuaciones diferenciales ordinarias

8 u n = 1 h 2 (u n 1 2 u n + u n+1 ), n = 1,... N 1, con un error de truncación de O(h 2 ). Agrupando las soluciones escalares en el vector de funciones u(t) = (u 1 (t), u 2 (t),..., u N 1 (t)), y teniendo en cuenta que las funciones u 0 (t) y u N (t) son (condiciones de contorno) idénticamente nulas, escribimos matricialmente este sistema como u = 1 h 2 A u, donde A es la matriz A =

9 Por otra parte, la condición inicial (para u) u(x, 0) = sen πx, da origen ahora a las condiciones iniciales para este sistema u n (0) = u(x n, 0) = sen πx n = sen(π n h), que garantizan solución única del sistema. Resumiendo, el Método de Líneas (MOL) permite resolver numéricamente la ecuación parabólica en derivadas parciales como un sistema lineal y de coeficientes constantes de ecuaciones diferenciales ordinarias. Naturalmente, aquí entran en juego los métodos de resolución numérica de este tipo de sistemas. Es conveniente aclarar el carácter más o menos stiff que pueda tener este sistema lineal, y es lo que examinamos a continuación. Este hecho nos moverá a usar unos u otros métodos, dependiendo del carácter citado.

10 Que el sistema anterior sea stiff depende de los autovalores de la matriz 1 A. A estas alturas ya nos son conocidos y valen h2 µ n = 4 ( h 2 sen n π ) 2, n = 1,..., N 1. 2 N (A es ahora la matriz B, para la matriz B ya tratada en el capítulo destinado al caso parabólico). Son reales y negativos, y más negativos cuando se hace decrecer el tamaño de h, que es el objetivo si se desea minimizar el error de truncación del sistema aproximado, cuya truncación es del orden O(h 2 ). O sea, nos encontramos no sólo ante un problema stiff, sino que nos interesa de alguna manera acentuar dicho carácter.

11 Puesto que se trata de un ejemplo sencillo, sabemos que la (única) solución del sistema lineal es u n (t) = e 4 N2 (sen π 2 N ) 2t sen n π N, n = 1,..., N 1, hecho que vamos a comprobar. Por un lado, u n(t) = 4 N 2 ( sen π 2 N Por el otro, recordando que h = 1/N, 1 h 2 (u n 1(t) 2 u n (t) + u n+1 (t)) ( sen = N 2 e 4 N2 (sen π 2 N ) 2 t ) 2 e 4 N 2 (sen π 2 N ) 2t sen n π N. (n 1)π N 2 sen n π N ) (n + 1)π + sen. N La parte N 2 e 4 N2 (sen π 2 N ) 2t es común a ambas expresiones; para el resto, aplicando sen(a + b) + sen(a b) = 2 sen a cos b para a = n π/n y b = π/n, se tiene

12 sen (n 1)π 2 sen n π N N = 2 sen n π + sen (n + 1)π N N + 2 sen n π N cos π N = 2 sen n π ( 1 cos π ), N N y aplicando ahora cos 2 a = 1 2 sen 2 a, a = π 2 N, la igualdad continua como = 2 sen n π ( N 2 sen π ) 2 2 N ( = 4 sen π ) 2 n π sen 2 N N, lo que prueba que, efectivamente u n(t) = 1 h 2 (u n 1(t) 2 u n (t) + u n+1 (t)).

13 Además, estas soluciones u n (t) del sistema verifican también la condición inicial u n (0) = sen(π n h) = sen n π N. Desde el punto de vista numérico, ayudándose de métodos adecuados para sistemas stiff, es posible, haciendo que h 0, conseguir una aproximación suficiente de las soluciones sobre nodos situados sobre las semirrectas x = x n. Desde el punto de vista matemático, las soluciones u n (t) deberían también aproximarse a las trazas sobre x n = n h = n/n de la solución conocida u(x, t) del problema parabólico original. Y así es cuando h 0 o N ya que y lim N sen π 2 N π 2 N = 1, lim u n(t) = e π2 t sen n π h = e π2 t sen π x n = u(x n, t). N

14 El Método de Líneas (MOL) que hemos descrito en un ejemplo lleva una Ecuación en derivadas parciales a un sistema de Ecuaciones diferenciales ordinarias cuando se buscan soluciones numéricas para valores nodales de una de las variables, 0 = x 0 < x 1 < x 2 <... < x N 1 < x N = 1 en el ejemplo. Naturalmente que, a continuación, la búsqueda de la solución numérica de este sistema lleva a la discretización en la otra variable, y las soluciones se calculan para nodos 0 = t 0 < t 1 < t 2 <.... Finalmente, el proceso total es un método en diferencias para la Ecuación en derivadas parciales, pero ejecutado en dos tiempos independientes. La discretización en t en el ejemplo, es en principio independiente de la inicial en x, e incluso puede evitarse esta discretización cuando el sistema resultante presenta una solución analítica razonablemente sencilla.

15 En este sentido, el MOL tiene un interés que puede ir más allá de lo numérico, ligando una Ecuación en derivadas parciales con un problema, ya en una sola variable, de Ecuaciones diferenciales ordinarias. Y es este campo, numéricamente o no, hay gran cantidad de resultados utilizables. Finalmente no hay que olvidar el carácter stiff del sistema que resulta en la generalidad de los casos, que lleva a que los avances hacia valores más y más cercanos de los nodos x n sean prudentes.

Métodos Matemáticos I

Métodos Matemáticos I E. de Ingenierías Industriales 2012-13 Métodos Matemáticos I Jesús Rojo 1 El problema hiperbólico y el método explícito en diferencias 2 El problema hiperbólico Abordaremos un tipo de problemas que suelen

Más detalles

Métodos Matemáticos I

Métodos Matemáticos I E. de Ingenierías Industriales 2012-13 Métodos Matemáticos I Jesús Rojo 1 Métodos numéricos: métodos de un paso 2 3 4 Métodos numéricos: métodos de un paso Consideremos lo que hemos llamado un problema

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos 4. Ampliación de EDP. Resolución numérica Ampliación de Matemáticas y Métodos Numéricos M a Luz Muñoz Ruiz José Manuel González Vida Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez Departamento

Más detalles

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son Tiempo total: 2 horas 4 minutos Problema 1 [2 puntos]. Colgamos una masa m de un muelle vertical cuya constante de Hooke es λ. El medio ofrece una resistencia igual a µ veces la velocidad instantánea.

Más detalles

No usar por academias

No usar por academias ECUACIONES DIFERENCIALES I Grupo D 1 de septiembre de 003 Apellidos: Nombre: D.N.I.: Firma: 1. Considérese la ecuación y = 1 + y x. i) Hallar su solución general. ii) Dibujar aproximadamente sus curvas

Más detalles

Det A I. Pero como el. Det se obtienen una

Det A I. Pero como el. Det se obtienen una VLORES Y VECTORES CRCTERISTICOS VLORES Y VECTORES CRCTERISTICOS En diversos campos de la matemática la ingeniería surge el problema de calcular los valores escalares los vectores de tal manera que para

Más detalles

Métodos Matemáticos I

Métodos Matemáticos I E. de Ingenierías Industriales 2012-13 Métodos Matemáticos I Jesús Rojo 1 Los métodos implícitos 2 3 Los métodos implícitos En lugar del método de Runge-Kutta explícito de 3 etapas k 1 = f (x n, y n )

Más detalles

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única.

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única. I. Resolución numérica de Problemas de Contorno en E.D.O.: Métodos en diferencias finitas 1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: y (x) + 4 sen x y (x) 4

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Introducción al Cálculo Numérico

Introducción al Cálculo Numérico Tema 1 Introducción al Cálculo Numérico 1.1 Introducción El Cálculo Numérico, o como también se le denomina, el Análisis numérico, es la rama de las Matemáticas que estudia los métodos numéricos de resolución

Más detalles

Métodos Matemáticos I

Métodos Matemáticos I E. de Ingenierías Industriales 2012-13 Métodos Matemáticos I Jesús Rojo Parte 3. Métodos en diferencias para las E.D.P. Las ecuaciones en derivadas parciales; ecuaciones de segundo orden Generalidades

Más detalles

Un vector está representado por cuatro elementos: origen, dirección, sentido y módulo.

Un vector está representado por cuatro elementos: origen, dirección, sentido y módulo. CÁLCULO VECTORIAL Escalares y vectores. Al estudiar la Física nos encontramos con dos tipos diferentes de magnitudes físicas: magnitudes escalares y magnitudes vectoriales.son magnitudes escalares aquellas

Más detalles

Métodos Matemáticos I

Métodos Matemáticos I E. de Ingenierías Industriales 2012-13 Métodos Matemáticos I Jesús Rojo 05. Sistemas autónomos: métodos de Runge-Kutta 1 Presentación de los sistemas 2 3 Presentación de los sistemas Ya dijimos que, cuando

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

14 Sistemas lineales de ecuaciones diferenciales con coeficientes

14 Sistemas lineales de ecuaciones diferenciales con coeficientes Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 14 Sistemas lineales de ecuaciones diferenciales con coeficientes constantes 14.1 Definición Se llama sistema lineal con coeficientes constantes al

Más detalles

Métodos en diferencias para problemas de contorno

Métodos en diferencias para problemas de contorno Métodos numéricos de resolución de ecs. en derivadas parciales Curso 2006-07. Prácticas 1 y 2 Métodos en diferencias para problemas de contorno 1 Resultados sobre existencia de solución de un problema

Más detalles

Métodos Matemáticos I

Métodos Matemáticos I E. de Ingenierías Industriales 2012-13 Métodos Matemáticos I Jesús Rojo Parte 2. Estabilidad lineal y métodos para ecuaciones stiff Estabilidad lineal Estabilidad no lineal 1 La ecuación test Comenzamos

Más detalles

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales parabólicas

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales parabólicas Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales parabólicas Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla

Más detalles

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Métodos Iterativos Introducción Definición Métodos Iterativos Método de Jacobi Convergencia Método de Gauss

Más detalles

Métodos numéricos para problemas de contorno

Métodos numéricos para problemas de contorno Métodos numéricos para problemas de contorno Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia (UPV) Métodos numéricos para PVF 1 / 28 Programa 1 Introducción

Más detalles

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica ANÁLISIS MATEMÁTICO BÁSICO DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Curvas Paramétricas Dada una curva paramétrica γ : [a, b] R R n t γ(t) = (f 1 (t), f 2 (t),, f n (t)), donde las funciones f k : [a,

Más detalles

Práctica 7. La ecuación del calor

Práctica 7. La ecuación del calor eqcalor.nb Práctica 7. La ecuación del calor La ecuación del calor u t k u xx modela la distribución de la temperatura u!x, t"en una barra delgada de longitud fija L. n esta práctica, estudiaremos dicha

Más detalles

Selectividad Matemáticas II junio 2014, Andalucía

Selectividad Matemáticas II junio 2014, Andalucía Selectividad Matemáticas II junio 04, Andalucía Pedro González Ruiz 3 de junio de 04. Opción A Problema. Sea f : R R, definida por f(x) = x 3 +ax +bx+c.. Hallar a, b y c para que la gráfica de f tenga

Más detalles

Métodos Numéricos con Diferencias Finitas para EDPs de evolución

Métodos Numéricos con Diferencias Finitas para EDPs de evolución Práctica 6 Métodos Numéricos con Diferencias Finitas para EDPs de evolución En esta práctica resolveremos algunas ecuaciones en derivadas parciales mediante métodos numéricos que discretizan tanto el espacio

Más detalles

Modelo de reactor cilíndrico

Modelo de reactor cilíndrico Universitat Politècnica de València Dpto. de Ingeniería Química y Nuclear Modelo de reactor cilíndrico Antoni Vidal-Ferràndiz, Sofia Carlos, Gumersindo Verdú 12 de mayo de 2016 Índice 1 Introducción Solución

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 003-004. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 6: Ecuaciones en derivadas parciales. 6.1 Series de Fourier

Más detalles

Resolución de la ecuación de Difusión en 2-D y 3-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad.

Resolución de la ecuación de Difusión en 2-D y 3-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad. XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 1-5 septiembre 009 (pp. 1 8) Resolución de la ecuación de Difusión en -D y 3-D utilizando diferencias

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 3. Diferencias finitas para la ecuación del calor. 3.1 Resolviendo la ecuación del calor Vamos a resolver la ecuación del calor

Más detalles

SIMULACIÓN NUMÉRICA - 11/12 Ejercicios 1. u = (a bv)u, v = (cu d)v, a = d = 1, b = 0,02, c = 0,03.

SIMULACIÓN NUMÉRICA - 11/12 Ejercicios 1. u = (a bv)u, v = (cu d)v, a = d = 1, b = 0,02, c = 0,03. SIMULACIÓN NUMÉRICA - 11/12 Ejercicios 1 1. Consideremos el sistema de Lotka-Volterra u = (a bv)u, v = (cu d)v, a = d = 1, b = 0,02, c = 0,03. a) Hacer uso de ode45 para integrar el sistema con valores

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso PRUEBAS DE EVALUACIÓN

E.T.S.I. Industriales y Telecomunicación Curso PRUEBAS DE EVALUACIÓN E.T.S.I. Industriales y Telecomunicación Curso 00-0 A continuación se presentan 5 preguntas con 4 respuestas posibles. En cada pregunta hay una única respuesta correcta. Cada pregunta acertada y bien justificada

Más detalles

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2009, Andalucía

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2009, Andalucía Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 009, Andalucía Pedro González Ruiz septiembre de 011 1. Opción A Problema 1.1 Se considera la función f : [1,+

Más detalles

Métodos Matemáticos I

Métodos Matemáticos I E. de Ingenierías Industriales 2012-13 Métodos Matemáticos I Jesús Rojo 1 El problema elíptico que vamos a tratar 2 3 4 El problema de Dirichlet Abordaremos sólo el caso en que la ecuación es u(x, y)

Más detalles

Prueba evaluable de programación con Maxima

Prueba evaluable de programación con Maxima Prueba evaluable de programación con Maxima Criterios de evaluación Cada uno de los ejercicios que componen esta prueba evaluable sobre la primera parte de la asignatura Física Computacional 1 se evaluará,

Más detalles

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 207 Práctica N : Número de condición.

Más detalles

Prueba evaluable de programación con Maxima

Prueba evaluable de programación con Maxima Prueba evaluable de programación con Maxima Criterios de evaluación Cada uno de los ejercicios que componen esta prueba evaluable sobre la primera parte de la asignatura Física Computacional 1 se evaluará,

Más detalles

Ecuaciones diferenciales con derivadas parciales

Ecuaciones diferenciales con derivadas parciales Ecuaciones diferenciales con derivadas parciales Contenido 1. Solución numérica de ecuaciones en derivadas parciales. Formulas para derivar parcialmente 3. Solución de la ecuación de Laplace 1. Solución

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

1.1) Escribir la solución de elementos nitos del problema. en (0, 1) u (0) = u (1) = 0. con el valor estimado por la fórmula del error.

1.1) Escribir la solución de elementos nitos del problema. en (0, 1) u (0) = u (1) = 0. con el valor estimado por la fórmula del error. Examen Extraordinario de Métodos Matemáticos de la Especialidad (Técnicas Energéticas). 7 de Junio de 16 1.1) Escribir la solución de elementos nitos del problema d u + du + u f en (, 1) u () u (1). (1)

Más detalles

I Ecuaciones diferenciales ordinarias (EDO) y sistemas de EDO 1. 2 EDO de primer orden 5

I Ecuaciones diferenciales ordinarias (EDO) y sistemas de EDO 1. 2 EDO de primer orden 5 Resumen Índice general iii v I Ecuaciones diferenciales ordinarias (EDO) y sistemas de EDO 1 1 Introducción 3 2 EDO de primer orden 5 2.1 EDO de primer orden resueltas respecto a la derivada..............

Más detalles

Introducción a EDP: Ecuaciones hiperbólicas y parabólicas

Introducción a EDP: Ecuaciones hiperbólicas y parabólicas Clase No. 27: MAT 251 Introducción a EDP: Ecuaciones hiperbólicas y parabólicas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1)

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1) CÁLCULO NUMÉRICO I (Tema - Relación 1) 1 Cuáles de los siguientes algoritmos son finitos? a) Cálculo del producto de dos números enteros. b) Cálculo de la división de dos números enteros. c) Cálculo de

Más detalles

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Programación Lineal María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Qué es la Programación Lineal? Introducción La Programación

Más detalles

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0.

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0. CAPÍTULO 1 INTRODUCCIÓN Ejercicios resueltos Problema 1. Desarrolle un modelo simplificado de un coete como un cuerpo sujeto a la gravedad que se mueve en vertical por el empuje de una fuerza de propulsión

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de

Más detalles

02 Elementos finitos para tensión/ compresión axial. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

02 Elementos finitos para tensión/ compresión axial. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 02 Elementos finitos para tensión/ compresión axial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 El método de los elementos finitos El método de los elementos

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del segundo examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

Lectura 4 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 4 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 20 Lectura 4 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 Series de Fourier 2 / 20 Motivación: las series de Fourier constituyen una importante herramienta para la

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0 CÁLCULO NUMÉRICO I (Ejercicios Temas 1 y ) 1 Cuáles de los siguientes algoritmos son finitos? (a) Cálculo del producto de dos números enteros. (b) Cálculo de la división de dos números enteros. (c) Cálculo

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Hermes Pantoja Carhuavilca 1 de

Más detalles

Resolución de la ecuación de Ondas en 2-D y 3-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad.

Resolución de la ecuación de Ondas en 2-D y 3-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad. XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 1-5 septiembre 009 (pp. 1 8) Resolución de la ecuación de Ondas en -D y 3-D utilizando diferencias

Más detalles

INTRODUCCIÓN AL MÉTODO DEL ELEMENTO FINITO

INTRODUCCIÓN AL MÉTODO DEL ELEMENTO FINITO INTRODUCCIÓN AL MÉTODO DEL ELEMENTO FINITO El método del elemento finito es una técnica numérica para resolver problemas que se pueden describir por ecuaciones diferenciales parciales o que pueden ser

Más detalles

CENTRO INTERNACIONAL DE MÉTODOS NUMÉRICOS EN INGENIERÍA CALTEP Ejemplos de Validación Caso Bidimensional II. E. Sala F.

CENTRO INTERNACIONAL DE MÉTODOS NUMÉRICOS EN INGENIERÍA CALTEP Ejemplos de Validación Caso Bidimensional II. E. Sala F. CENTRO INTERNACIONAL DE MÉTODOS NUMÉRICOS EN INGENIERÍA CALTEP 2000 Ejemplos de Validación Caso Bidimensional II E. Sala F. Zárate Informe Técnico No. IT 381 parte B-2, Octubre 2001 CALTEP 2000 Ejemplos

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

Jorge Mozo Fernández Dpto. Matemática Aplicada

Jorge Mozo Fernández Dpto. Matemática Aplicada Álgebra y Ecuaciones Diferenciales Lineales y Matemáticas II E.T.S. Ingenieros de Telecomunicación I.T. Telecomunicación Esp. Telemática y Sistemas de Telecomunicación Curso 2009-2010 Tema 11: Introducción

Más detalles

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 207 Uso de operadores Lista de ejercicios # 3 Sistemas de ecuaciones diferenciales (3PII206

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Sistemas de Ecuaciones Diferenciales Ordinarias.

Sistemas de Ecuaciones Diferenciales Ordinarias. E.E.I. CÁLCULO II Y ECUACIONES DIFERENCIALES Curso 2016-17 Lección 23 (Martes 25 abr 2017) Sistemas de Ecuaciones Diferenciales Ordinarias. 1. Observaciones generales sobre los sistemas de ecuaciones diferenciales

Más detalles

r r a) Clasificar el sistema x = Ax en función del parámetro r R.

r r a) Clasificar el sistema x = Ax en función del parámetro r R. Examen Final de Ecuaciones Diferenciales Fecha: 15 de junio de 2012 3 Problemas (7.5 puntos) Tiempo total: 3 horas Problema 1 [2.5 puntos]. Queremos dibujar el croquis de un sistema lineal 2D y realizar

Más detalles

MÉTODO DE LOS ELEMENTOS FINITOS.

MÉTODO DE LOS ELEMENTOS FINITOS. de MÉTODO DE LOS ELEMENTOS FINITOS. Castillo Madrid, 23 de Noviembre de 26 Índice de 2 3 4 de de El de los Elementos Finitos (M.E.F.) es un procedimiento numérico para resolver ecuaciones diferenciales

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES MAGNITUDES ESCALARES Y VECTORIALES En física se distinguen dos tipos de magnitudes, las escalares y las vectoriales. -Una magnitud escalar se describe completamente con un valor numérico con una unidad

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

Métodos Matemáticos I

Métodos Matemáticos I E. de Ingenierías Industriales 2012-13 Métodos Matemáticos I Jesús Rojo 1 El problema parabólico y el método de las diferencias hacia adelante 2 3 4 5 6 El problema parabólico Abordaremos ahora un tipo

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Unidad didáctica 5 Sistemas de ecuaciones 1.- Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas está formado por dos ecuaciones lineales y dos incógnitas,

Más detalles

Apuntes y Ejemplos Unidad No. 5

Apuntes y Ejemplos Unidad No. 5 Método de Spline 1. Planteo del problema a partir de las condiciones El trazador cúbico o spline es un conjunto de polinomios de tercer grado que se genera a partir de un conjunto de puntos y, para calcularlo,

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

Órdenes y funciones básicas (segunda parte) Práctica 2.

Órdenes y funciones básicas (segunda parte) Práctica 2. Práctica 2. Órdenes y funciones básicas (segunda parte) Operaremos con matrices, resolveremos ecuaciones y Objetivos: sistemas y calcularemos límites, derivadas e integrales 2 3 7 Una matriz es una lista

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es 1 Índice 1. Definiciones 3 2. Herramientas 5 2.1. Factorización de polinomios: Regla

Más detalles

El cuestionario virtual estara disponible los días 11, 12, 13, 14, 15 y 16 de enero.

El cuestionario virtual estara disponible los días 11, 12, 13, 14, 15 y 16 de enero. Fundamentos de Matematicas. Prueba de Evaluación a Distancia. Curso 016-17 Se debe marcar una sola respuesta correcta. Cada pregunta acertada suma 1 punto, las incorrectas restan 0.. Las preguntas en blanco

Más detalles

E IDENTIFICAR ECUACIONES E IDENTIDADES

E IDENTIFICAR ECUACIONES E IDENTIDADES DISTINGUIR OBJETIVO E IDENTIFICAR ECUACIONES E IDENTIDADES NOMBRE: CURSO: FECHA: IDENTIDADES Y ECUACIONES Una igualdad algebraica está formada por dos epresiones algebraicas separadas por el signo igual

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización

Más detalles

Dinámica de Fluidos Computacional: DFC Discretización temporal. Versión 0.1.0

Dinámica de Fluidos Computacional: DFC Discretización temporal. Versión 0.1.0 Dinámica de Fluidos Computacional: DFC Discretización temporal. Versión 0.1.0 Curso de adaptación al grado en ingeniería aeroespacial para ingenieros técnicos aeronáuticos Adrián Lozano Durán adrian@torroja.dmt.upm.es

Más detalles

Jorge Mozo Fernández Dpto. Matemática Aplicada

Jorge Mozo Fernández Dpto. Matemática Aplicada Álgebra y Ecuaciones Diferenciales Lineales y Matemáticas II E.T.S. Ingenieros de Telecomunicación I.T. Telecomunicación Esp. Telemática y Sistemas de Telecomunicación Curso 9- Tema : Series de Fourier

Más detalles

TEMA 4.- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS

TEMA 4.- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS TEMA 4- SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS 41 - Introducción Denición: Un sistema de ecuaciones diferenciales de primer orden en el que sus derivadas estén dadas explícitamente se puede expresar

Más detalles

Métodos numéricos para sistemas de ecuaciones. (Prácticas) Damián Ginestar Peiró UNIVERSIDAD POLITÉCNICA DE VALENCIA

Métodos numéricos para sistemas de ecuaciones. (Prácticas) Damián Ginestar Peiró UNIVERSIDAD POLITÉCNICA DE VALENCIA Métodos numéricos para sistemas de ecuaciones (Prácticas) Damián Ginestar Peiró UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 Índice general 1. Introducción a las ecuaciones en derivadas parciales 3 1.1. Problemas

Más detalles

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax.

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax. Examen Final de Ecuaciones Diferenciales Fecha: 7 de junio de 013 3 Problemas (7.5 puntos) Tiempo total: horas 30 minutos Problema 1 [.5 puntos]. Consideramos la matriz A = α 1 0 1 α 0, α R, 0 0 cuyos

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

1) Utiliza métodos exclusivamente analíticos para resolver las dos cuestiones siguientes:

1) Utiliza métodos exclusivamente analíticos para resolver las dos cuestiones siguientes: 5.- UNA FUNCIÓN Considera la función f, de dominio + R, definida por f(x) = 3x ln x 1) Utiliza métodos exclusivamente analíticos para resolver las dos cuestiones siguientes: 1.1) Estudia f en cuanto a

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Resolución de la ecuación de Schrödinger monodimensional

Resolución de la ecuación de Schrödinger monodimensional Resolución de la ecuación de Schrödinger monodimensional I. FUNDAMENTO TEÓRICO En Mecánica cuántica, el estado físico de un sistema unidimensional de una partícula viene descrito completamente por una

Más detalles

Formulación de Galerkin El método de los elementos finitos

Formulación de Galerkin El método de los elementos finitos Clase No. 28: MAT 251 Formulación de Galerkin El método de los elementos finitos Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

3.1. La Optimización Lineal El Planteamiento

3.1. La Optimización Lineal El Planteamiento Gerardo Febres Última revisión: 2016.03.23 3.1. La Optimización Lineal 3.1.1.- El Planteamiento Planteemos un problema extremadamente sencillo. Hacer máximas las ganancias obtenidas al vender tornillos.

Más detalles

Diseño óptimo de estructuras. p. 1/30. mecánicas bajo incertidumbre en las cargas

Diseño óptimo de estructuras. p. 1/30. mecánicas bajo incertidumbre en las cargas Diseño óptimo de estructuras mecánicas bajo incertidumbre en las cargas Felipe Alvarez y Miguel Carrasco II Encuentro Núcleo Científico Milenio Sistemas Complejos de Ingeniería Universidad de Chile 15-16

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J

Más detalles

Lista de ejercicios # 5

Lista de ejercicios # 5 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas

Más detalles

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales elípticas

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales elípticas Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales elípticas Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

Análisis de Fourier. Resumen de los apuntes de D. Antonio Cañada Villar. Sergio Cruz Blázquez. Curso 2015/2016

Análisis de Fourier. Resumen de los apuntes de D. Antonio Cañada Villar. Sergio Cruz Blázquez. Curso 2015/2016 Análisis de Fourier Resumen de los apuntes de D. Antonio Cañada Villar Curso 2015/2016 Sergio Cruz Blázquez Índice 1 El espacio L 2 (a, b) Definición y primeras notas El espacio L 1 (a, b) L 2 (a, b) como

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Auxiliar 1: Métodos Numéricos

Auxiliar 1: Métodos Numéricos Facultad de Ciencias Físicas y Matemáticas Departamento de Física Semestre 2008-1 FI1A2- Sistemas Newtonianos Profesor Hugo Arellano S. Auxiliares: César Casanova M., Juan González B., Daniela Opitz O.

Más detalles

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier Métodos con series de Fourier Definición: Función periódica La función (), definida para toda, es periódica si existe un número positivo tal que (+)=() para toda. El número en un periodo de la función.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales CAPíTULO 6 Sistemas de ecuaciones lineales 1 Rango de una matriz a 11 a 1n Sea A = M m n (K) El rango por filas de la matriz A es la dimensión del a m1 a mn subespacio vectorial de K n generado por sus

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles