CÁLCULO VECTORIAL SEMESTRE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO VECTORIAL SEMESTRE"

Transcripción

1 SERIE # CÁLCULO VECTORIAL SEMESTRE 009-

2 SEMESTRE: 009- Página ) Sea la superficie de ecuación z = f x, y y su naturaleza. función ( ) z = x y x y, obtener los puntos críticos de la P ( 0,0 ) máximo relativo, P (, ) punto silla, P (, ) punto silla, 4 (, ) silla, P5 (, ) punto silla. P punto ) Sea z = x x y + y + x y +, obtener los puntos críticos de la función z = f x, y y la naturaleza de los mismos. ( ) P 0, mínimo relativo, P, punto silla, P (, ) punto silla. ) Determinar los puntos máximos y mínimos relativos, así como los puntos silla de la función f ( x, y )= x + y + x y 8. P ( ) punto silla, P ( ) mínimo relativo, P ( ) máximo relativo, P ( ) 0,0 punto silla. 0,, 0 4, 4) Determinar los valores extremos de la función z = x + y - x + y. Un mínimo relativo igual a cero en ( ) 0,0 valor 8 z =. 7 P y un máximo relativo en P 4, de 5) Determinar los puntos donde la función f ( x, y ) = cos hx + sen hy tiene valores máximos, mínimos o puntos silla. La función no tiene puntos críticos.

3 SEMESTRE: 009- Página 6) Obtener los puntos críticos de la función z = y + x y x y + 6 y determinar la naturaleza de cada uno de los puntos obtenidos. P ( ) máximo relativo, P ( ) mínimo relativo, P ( ) punto silla, P ( ) 0,0 punto silla. 0, 4, 4, 7) Calcular los valores extremos de la función (, ) x + y 4. f x y x + y +x - y - = en la región Los valores extremos son: f ( -,) = mínimo y f (,- ) = 8.65 máximo. 8) La ecuación cartesiana de la superficie S es x + y + z + = 0. Determinar el punto de S más próximo al origen. Hacer uso del método de la segunda derivada para el análisis de valores extremos. El punto ( 0,0, ) es el mas cercano (distancia mínima) al origen. 9) Dada la función z = x + xy + 5x + y, determinar sus puntos críticos y la naturaleza de cada uno de ellos. P ( 0,0 ) mínimo relativo, P P4 (, ) punto silla. 5, 0 máximo relativo, P (, ) punto silla, 0) Determinar, si existen valores extremos para la función La función no tiene valores extremos. z = (x -) - y.

4 SEMESTRE: 009- Página 4 ) Se desea construir una ventana de área máxima como la mostrada en la figura. Utilizar el método de la segunda derivada para calcular las dimensiones de dicha ventana si su perímetro debe medir 0 m x =, y = 4 + π 4 + π ) Determinar los valores extremos de la función f(x, y)= x + y + 5 en la región cerrada R del plano XY limitada por las gráficas de y = f presenta 4 máximos absolutos, en: f(-, 5) = 9 f(, 5) = 9 f(-,- 5) = 9 f(,- 5) = 9 y un mínimo, relativo y absoluto en PC ( 0, 0 ) = 5 5, y = - 5 y x - y = 4. ) Utilizar el método de los multiplicadores de Lagrange para determinar las coordenadas de los vértices de la hipérbola representada por la ecuación xy = 4. Nota: La hipérbola tiene su centro en el origen. V (,) y V (, ).

5 SEMESTRE: 009- Página 5 4) Aplicar el análisis de la variación de una función para establecer las ecuaciones de las rectas sobre las cuales se localizan los ejes de la elipse de ecuación 5x +8xy+5y = 9. Sugerencia : Tomar en cuenta que la elipse tiene su centro en el origen. y = x, y = x. 5) Calcular la distancia mínima entre el punto A (,-, ) y la superficie de ecuación z = x + y. Distancia mínima de unidades. 6) Sea la función f ( x, y ) = x + xy + 4y con la restricción ( ) obtener los máximos y mínimos. g x, y = x y = 5 y = 5 5 7) Determinar las coordenadas del punto de la superficie z = xy+ que esta mas cerca del origen. P ( 0, 0, ) 8) Determinar los máximos y mínimos, tanto absolutos como relativos, de la función f ( x, y ) = 4 x y en la región ( ) {, 5 } R = x y x + y. f presenta mínimos absolutos sobre todos los puntos de la frontera.

6 SEMESTRE: 009- Página 6 m abs = f (0,0) = máximos realativo y absoluto. 9) Una partícula se mueve en el espacio a lo largo de la curva: Determinar las cotas máxima y mínima que alcanzara dicha partícula. x + y = 8 C : x + y + z = 0 Cota máxima en (,, 7 ), cota mínima en (,, ). 0) El paraboloide z = x + y es cortado por el plano z = 4 + x + y. Utilizar el método de los multiplicadores de Lagrange para calcular el punto de la curva de intersección entre el paraboloide y el plano que esté mas alejado del origen. P (,, 8 ) ) Utilizar el método de los multiplicadores de Lagrange para obtener los valores extremos de la función z = x + y, sujeta a la restricción cos x - y - 5 = 0. f ( 0, 4) = 6 ) Se desea construir un envase de lámina en forma de cilindro recto con tapa, que tenga un volumen de litros. Si el m de lámina cuesta $ Cuáles deben ser las dimensiones del envase para que su costo sea mínimo?. r =, h = π π ) Determinar las dimensiones del radio r y de la altura h del cilindro que puede ser inscrito en una esfera de radio R, de tal modo que su superficie total sea máxima.

7 SEMESTRE: 009- Página 7 R r =, h = R 4) Calcular el área de la región del plano XY limitada por la elipse de ecuación 5 x 4 x y + 5 y 88 = 0. (Sugerencia: el área de una elipse con semiejes, a y b es igual a π ab ; determinar el valor de las constantes a y b con el método de los multiplicadores de Lagrange). A = π u 5) Se tiene que diseñar un campo deportivo que esté formado por un rectángulo con dos semicírculos en sus extremos. La parte rectangular debe tener un área de 5000 m, y el campo debe estar rodeado por una barda. Cuáles deberán ser las dimensiones del patio de modo que la longitud de la barda que se necesita sea mínima?. x = 50 π, y = 00 π 6) Si la suma de tres números positivos a, b, c es S, cuáles son sus valores si la raíz cúbica de su producto debe ser máxima? a = S, b = S, c = S.

8 SEMESTRE: 009- Página 8 7) En un aeropuerto se desea tender un cable eléctrico desde un contacto en el piso, localizado en el punto A (,,0 ), hasta un anuncio luminoso montado sobre una superficie plana inclinada de ecuación x = y - z +. Calcular: a) La longitud mínima de cable que se puede unir al plano con el contacto. b) Las coordenadas del punto sobre el plano mas cercano al contacto. a).06 unidades de longitud 5 4 b) P,, 8) Un arco metálico cuya configuración geométrica esta representada por las ecuaciones y - x = 0 x + y + 4z 7 = 0 T x, y, z = x y z + 0. Determinar los puntos donde el esta en un medio con temperatura ( ) arco tiene mayor temperatura. Puntos mas calientes Puntos mas fríos,,,, y y,,.,,. 9) Calcular el valor de los extremos absolutos de la función ( ) definida sobre la región R = ( x, y ) x + y 4; y 0.. { } Mínimo absoluto igual a 4 en (,0 ) y en ( ) Máximo absoluto igual a en ( 0, )., 0. f x, y = y + y x

9 SEMESTRE: 009- Página 9 0) Determinar los valores máximos y mínimos de la función f x, y = y + x 4x y + 4 en una región del dominio de f limitado por las líneas ( ) x = 4, y =, x y =. Mínimo absoluto igual a en (,0 ). Máximo absoluto igual a 7 en ( 4, ). ) Determinar los valores extremos de la función (, ) definida por R = ( x, y ) x + 4y 4. { } El valor extremo de la función (, ) f x y y x f x y y x = sobre la región R = es 6 y se obtiene en cuatro puntos diferentes los cuales se concluye son máximos absolutos. Mínimos absolutos sobre los ejes coordenados: m=0 ) Calcular el valor máximo de la función z = xy en el círculo x + y. La función z tiene un valor máximo absoluto igual, en los puntos, y ) Una placa semicircular esta definida por la región R = x, y x + y ; y 0; x, y { ( ) } La temperatura T, en grados centígrados, en cualquier punto P ( x, y ) de la placa, está dada por T ( x, y ) = x + y y. Calcular las coordenadas de los puntos mas fríos y mas calientes de dicha placa. El punto mas frío es 0, más calientes con C. con 0.5 C y los puntos (,0) y (,0) son los

10 SEMESTRE: 009- Página 0 4) Determinar el máximo absoluto y el mínimo absoluto de la función f ( x, y ) = x x + y cuyo dominio se restringe a Df = { ( x, y ) x + y ; x, y }. El máximo absoluto es 9 4 y se presenta en los puntos, mínimo absoluto es y se presenta en el punto, 0 4. y, y el 5) Para la función ( ) naturaleza de cada uno de ellos. f x, y = x ang tan( y), obtener sus puntos críticos y determinar la A 0, 0 f presenta un punto silla. En ( ) 6) Determinar los valores extremos de la función f ( x, y ) = xy en la región R = ( x, y ) x + y a, para f ( x, y ) > 0. { } a a Máximos absolutos en A, a a y B, y su valor es a. 7) Se desea construir un ducto desde el punto P, hasta el punto S, los costos por cada Km de ducto son: de k en el tramo PQ, k en el tramo QR, y de k en el tramo RS. Determinar las dimensiones de X y Y para que el costo del ducto sea mínimo.

11 SEMESTRE: 009- Página X = y Y = 8) Calcular los valores extremos de la función por ( ) {, 0 } D = x y x + y + y. z = x + y + cuyo dominio esta dado f ( o, o) = : mínimo relativo y abs. f (0, ) = 5 : máximo absoluto.

SERIE # 1 CÁLCULO VECTORIAL

SERIE # 1 CÁLCULO VECTORIAL SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,

Más detalles

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se

Más detalles

9. Diferenciación de funciones reales de varias variables reales

9. Diferenciación de funciones reales de varias variables reales 9.2. Extremos 9.2.1. POLINOMIOS DE TAYLOR Polinomios de Taylor y de McLaurin Se llama polinomio de Taylor de orden n 1 de la función f(x, y) en (a, b) al polinomio: f(a, b) f(a, b) n (x, y) = f(a, b) +

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

Escuela Politécnica Superior de Málaga. CÁLCULO

Escuela Politécnica Superior de Málaga. CÁLCULO Escuela Politécnica Superior de Málaga. CÁLCULO 4. Funciones de varias variables. 1. Describe y dibuja en el plano el dominio de las siguientes funciones en el espacio: f(x, y) = f(x, y) = 36 4x 2 9y 2

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Definición valor extremo: Si f(x,y) està definida en una regiòn R y P 0 =(a, es un punto de R, entonces: a) f(a, es un valor máximo local de f si f(a, f(x,y) para todos los

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo. SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico

Más detalles

GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V

GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V 1) Determinar el dominio de las siguientes funciones dando el resultado en parentesis para:. y = x + 4. y = 3x c). y = x 3 x+ ) Obtener el rango para

Más detalles

ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013

ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013 ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013 Tema: Aplicaciones de las Derivadas Parciales. 1. Demuestre que el plano tangente al cono z = a 2 x 2 + b 2 y 2 pasa por el origen.

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones: Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com FUNCIONES

Más ejercicios y soluciones en fisicaymat.wordpress.com FUNCIONES FUNCIONES 1- a) Dibuje el recinto plano limitado por la parábola y=4x-x 2 y las tangentes a la curva en los puntos de intersección con el eje de las abscisas. b) Halle el área del recinto dibujado en a).

Más detalles

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) = JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,

Más detalles

APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN

APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN 1. Calcular, aplicando la definición de derivada: f (), siendo f (x) = 3x 1 1 f ( ), siendo f (x) = x 1 Solución: 1; 4. Determinar el dominio y la expresión de

Más detalles

Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) VERANO

Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) VERANO Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) VERANO - 2014 Práctica 6: Extremos 1. Sea f(x) = x 4 1 3 x3 3 2 x2, calcular máximos y mínimos absolutos en el intervalo [-5,5]. Hacer

Más detalles

Derivadas Parciales. Aplicaciones.

Derivadas Parciales. Aplicaciones. RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

MATE1207 Cálculo Vectorial Tarea 2 Individual Entregue a su profesor en la Semana 11 (Ma Vi. 21 de Octubre)

MATE1207 Cálculo Vectorial Tarea 2 Individual Entregue a su profesor en la Semana 11 (Ma Vi. 21 de Octubre) Universidad de los Andes Departamento de Matemáticas MAT27 Cálculo Vectorial Tarea 2 Individual ntregue a su profesor en la Semana (Ma. 8 - Vi. 2 de Octubre) Segundo xamen Parcial: Sábado 29 de Octubre,

Más detalles

Departamento de Matemática Aplicada y Estadística Ampliación de Matemáticas Hoja 5. Optimización no lineal

Departamento de Matemática Aplicada y Estadística Ampliación de Matemáticas Hoja 5. Optimización no lineal Departamento de Matemática Aplicada y Estadística Ampliación de Matemáticas Hoja 5. Optimización no lineal 1. Si Ω 1 y Ω 2 son dos subconjuntos convexos no vacíos de R,demuestraque a) Ω 1 ± Ω = {x 1 ±

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1 Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los pares de ángulos alternos

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

Ejercicios propuestos para el cálculo de áreas

Ejercicios propuestos para el cálculo de áreas Aplicaciones geométricas y mecánicas de la integral definida 191 Ejercicios propuestos para el cálculo de áreas 1) Calcular el área de la figura limitada por la parábola verticales = 1, = y el eje OX y

Más detalles

Gráfica de la función f de X en Y El conjunto X se llama dominio de la función f.

Gráfica de la función f de X en Y El conjunto X se llama dominio de la función f. FUNCIONES Y SUS GRÁFICAS Funciones y notación de funciones Una relación entre dos conjuntos X e Y es un conjunto de pares ordenados, cada uno de la forma (, y) donde es un elemento del conjunto X e y,

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( )

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( ) SERIE DE ÁLULO VETORIAL 1 PROFESOR: PEDRO RAMÍREZ MANNY TEMA 1 Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. f x, y = x + y 6x + 6y + 8 1) (

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1 TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

Álgebra Lineal Agosto 2016

Álgebra Lineal Agosto 2016 Laboratorio # 1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos u = i 2j + 3k; v = 3i 2j + 4k 3) u = 15i 2j + 4k; v = πi + 3j k 3) u = 2i 3j; v = 3i + 2j

Más detalles

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

Ingeniería Civil Matemática Universidad de Valparaíso.

Ingeniería Civil Matemática Universidad de Valparaíso. * Ejercicios Álgebra Ingeniería Civil Matemática Universidad de Valparaíso. Prof: Gerardo Honorato CIRCUNFERENCIA. PREGUNTAS 1. 1) Escribir la ecuación de la circunferencia de centro C = ( 3, 7) y radio

Más detalles

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x).

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x). VRANO D 24 UNIVRSIDAD SIMON BOLIVAR P2A.- un segundo examen parcial de alguna fecha anterior. 1.- Calcule la integral : γ f.ds = γ Pdx+Qdy+Rdz, siendo γ la poligonal ABC, con A(1,, 2), B(1, 3, ), C(, 1,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS (Apuntes en revisión para orientar el aprendizaje) SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS - Leer cuidadosamente el enunciado para comprender la problemática presentada y ver qué se pretende

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

2015/2. Ejercicios cálculo diferencial cdx24 Derivada y aplicaciones

2015/2. Ejercicios cálculo diferencial cdx24 Derivada y aplicaciones 015/ Ejercicios cálculo diferencial cd4 Derivada y aplicaciones 6. Encuentre la derivada de la función usando la definición de derivada, y muestre que obtiene el mismo resultado encontrándola nuevamente

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna [email protected] Índice. Integrales iteradas 2. Teorema

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando

Más detalles

GEOMETRÍA ANALÍTICA PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES

GEOMETRÍA ANALÍTICA PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES CONTENIDO: 1. Conceptos básicos (Problemas 1-18). Línea recta (Problemas 19-6). Circunferencia (Problemas 7-4) 4. Parábola (Problemas 44-6)

Más detalles

DEPARTAMENTO DE CÁLCULO Y GEOMETRIA ANALITICA SEMESTRE 2017-1 SERIE CURVAS EN EL ESPACIO

DEPARTAMENTO DE CÁLCULO Y GEOMETRIA ANALITICA SEMESTRE 2017-1 SERIE CURVAS EN EL ESPACIO SEMESTRE 017-1 1. Obtener una ecuación vectorial de la curva que se obtiene por el desplazamiento de un punto tal que su abscisa es -5 mientras que su cota es el triple de la tangente de su ordenada..

Más detalles

Funciones (1) 1. Halla el dominio de las siguientes funciones: 1 d. f(x)= x h. f(x)= e. f(x)= a. f(x)=2x. g. f(x)= x

Funciones (1) 1. Halla el dominio de las siguientes funciones: 1 d. f(x)= x h. f(x)= e. f(x)= a. f(x)=2x. g. f(x)= x TEMA 4. Funciones() Nombre CURSO: BACH CCSS Funciones (). Halla el dominio de las siguientes funciones: a. f()=2 d. f()= 2 6 b. f()= 3 2 e. f()= 2 5 6 c. f()= f. f()= 2 6 g. f()= 2 4 h. f()= 2 2 3 2 5

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

Tema 3: Diferenciabilidad de funciones de varias variables

Tema 3: Diferenciabilidad de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 2009-2010. Tema 3: Diferenciabilidad de funciones de varias variables 1. Calcular las dos derivadas parciales de primer orden:

Más detalles

Rotaciones alrededor de los ejes cartesianos

Rotaciones alrededor de los ejes cartesianos Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.

Más detalles

MATEMÁTICA. Exámenes tipo INGRESO ESCUELA NAVAL MILITAR

MATEMÁTICA. Exámenes tipo INGRESO ESCUELA NAVAL MILITAR INGRESO ESCUELA NAVAL MILITAR MATEMÁTICA Exámenes tipo. Jorge tiene un círculo de madera, de 40 cm. de diámetro. Él corta con una sierra por la mitad a lo largo de AD. De una de las mitades vuelve a cortar

Más detalles

5º Prueba de Evaluación continua (CÓNICAS) 5 de junio de 2012

5º Prueba de Evaluación continua (CÓNICAS) 5 de junio de 2012 Grupo C ETSI de Topografía, Geodesia y Cartografía º Prueba de Evaluación continua (CÓNICAS) de junio de 0.- Clasificar la cónica x y xy x y = 0 A = ; A = 0 Cónica no degenerada. = = = < 0 A c la cónica

Más detalles

ETSII Febrero Análisis Matemático.

ETSII Febrero Análisis Matemático. Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2

c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2 Junio 010 1A. a) Enuncia el teorema de Bolzano. (0,5 puntos) 1 b) Se puede aplicar dicho teorema a la función f ( x) 1 x en algún intervalo? (1 punto) c) Demuestra que la función f(x) anterior y g(x) =

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh

Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh Módulo 1 DERIVADAS 1.1 Reglas de diferenciación Reconocimiento de saberes Ejercicio 1 Relacione convenientemente cada una de las siguientes epresiones: (considere > 0 ) ln ( e ) ln ln ( e ) ln e ln + ln

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS 10 APLICACIONES DE LAS DERIVADAS REFLEXIONA Y RESUELVE Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: Relación de la curvatura con el signo de la segunda derivada

Más detalles

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

Cálculo Diferencial y Geometría Analítica Agosto 2016

Cálculo Diferencial y Geometría Analítica Agosto 2016 Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos

Más detalles

Cálculo Diferencial y Geometría Analítica Enero 2015

Cálculo Diferencial y Geometría Analítica Enero 2015 Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos

Más detalles

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses:

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: CÓNICAS 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: a) b) c) a) =(3,1), A(5,1), A (1,1), B(3,), B (3,0) e=0'866; b) =(-,1), A(-1,1), A (-3,1),B(-,4/3), B (-,/3),

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

CAPITULO I : FUNCIONES VECTORIALES DE VARIABLE REAL.

CAPITULO I : FUNCIONES VECTORIALES DE VARIABLE REAL. BALOTARIO(PDF) APITULO I : FUNIONES VETORIALES DE VARIABLE REAL. t t t.-dadas las curvas : f ( t) ( e cos t; e sent; e ), 0t, : g ( t ) ( t ; t ; t ) a) Hallar el punto de intersección de. b) Si desde

Más detalles

1. Optimización sobre intervalos intervalos cerrados

1. Optimización sobre intervalos intervalos cerrados Universidad Autónoma Metropolitana (Iztapalapa) Cálculo Diferencial (CA53-14o) Tarea # 4 1. Optimización sobre intervalos intervalos cerrados Para cada uno de los siguientes dos problemas, el dominio de

Más detalles