CÁLCULO VECTORIAL SEMESTRE
|
|
|
- Aurora Torregrosa Ramos
- hace 7 años
- Vistas:
Transcripción
1 SERIE # CÁLCULO VECTORIAL SEMESTRE 009-
2 SEMESTRE: 009- Página ) Sea la superficie de ecuación z = f x, y y su naturaleza. función ( ) z = x y x y, obtener los puntos críticos de la P ( 0,0 ) máximo relativo, P (, ) punto silla, P (, ) punto silla, 4 (, ) silla, P5 (, ) punto silla. P punto ) Sea z = x x y + y + x y +, obtener los puntos críticos de la función z = f x, y y la naturaleza de los mismos. ( ) P 0, mínimo relativo, P, punto silla, P (, ) punto silla. ) Determinar los puntos máximos y mínimos relativos, así como los puntos silla de la función f ( x, y )= x + y + x y 8. P ( ) punto silla, P ( ) mínimo relativo, P ( ) máximo relativo, P ( ) 0,0 punto silla. 0,, 0 4, 4) Determinar los valores extremos de la función z = x + y - x + y. Un mínimo relativo igual a cero en ( ) 0,0 valor 8 z =. 7 P y un máximo relativo en P 4, de 5) Determinar los puntos donde la función f ( x, y ) = cos hx + sen hy tiene valores máximos, mínimos o puntos silla. La función no tiene puntos críticos.
3 SEMESTRE: 009- Página 6) Obtener los puntos críticos de la función z = y + x y x y + 6 y determinar la naturaleza de cada uno de los puntos obtenidos. P ( ) máximo relativo, P ( ) mínimo relativo, P ( ) punto silla, P ( ) 0,0 punto silla. 0, 4, 4, 7) Calcular los valores extremos de la función (, ) x + y 4. f x y x + y +x - y - = en la región Los valores extremos son: f ( -,) = mínimo y f (,- ) = 8.65 máximo. 8) La ecuación cartesiana de la superficie S es x + y + z + = 0. Determinar el punto de S más próximo al origen. Hacer uso del método de la segunda derivada para el análisis de valores extremos. El punto ( 0,0, ) es el mas cercano (distancia mínima) al origen. 9) Dada la función z = x + xy + 5x + y, determinar sus puntos críticos y la naturaleza de cada uno de ellos. P ( 0,0 ) mínimo relativo, P P4 (, ) punto silla. 5, 0 máximo relativo, P (, ) punto silla, 0) Determinar, si existen valores extremos para la función La función no tiene valores extremos. z = (x -) - y.
4 SEMESTRE: 009- Página 4 ) Se desea construir una ventana de área máxima como la mostrada en la figura. Utilizar el método de la segunda derivada para calcular las dimensiones de dicha ventana si su perímetro debe medir 0 m x =, y = 4 + π 4 + π ) Determinar los valores extremos de la función f(x, y)= x + y + 5 en la región cerrada R del plano XY limitada por las gráficas de y = f presenta 4 máximos absolutos, en: f(-, 5) = 9 f(, 5) = 9 f(-,- 5) = 9 f(,- 5) = 9 y un mínimo, relativo y absoluto en PC ( 0, 0 ) = 5 5, y = - 5 y x - y = 4. ) Utilizar el método de los multiplicadores de Lagrange para determinar las coordenadas de los vértices de la hipérbola representada por la ecuación xy = 4. Nota: La hipérbola tiene su centro en el origen. V (,) y V (, ).
5 SEMESTRE: 009- Página 5 4) Aplicar el análisis de la variación de una función para establecer las ecuaciones de las rectas sobre las cuales se localizan los ejes de la elipse de ecuación 5x +8xy+5y = 9. Sugerencia : Tomar en cuenta que la elipse tiene su centro en el origen. y = x, y = x. 5) Calcular la distancia mínima entre el punto A (,-, ) y la superficie de ecuación z = x + y. Distancia mínima de unidades. 6) Sea la función f ( x, y ) = x + xy + 4y con la restricción ( ) obtener los máximos y mínimos. g x, y = x y = 5 y = 5 5 7) Determinar las coordenadas del punto de la superficie z = xy+ que esta mas cerca del origen. P ( 0, 0, ) 8) Determinar los máximos y mínimos, tanto absolutos como relativos, de la función f ( x, y ) = 4 x y en la región ( ) {, 5 } R = x y x + y. f presenta mínimos absolutos sobre todos los puntos de la frontera.
6 SEMESTRE: 009- Página 6 m abs = f (0,0) = máximos realativo y absoluto. 9) Una partícula se mueve en el espacio a lo largo de la curva: Determinar las cotas máxima y mínima que alcanzara dicha partícula. x + y = 8 C : x + y + z = 0 Cota máxima en (,, 7 ), cota mínima en (,, ). 0) El paraboloide z = x + y es cortado por el plano z = 4 + x + y. Utilizar el método de los multiplicadores de Lagrange para calcular el punto de la curva de intersección entre el paraboloide y el plano que esté mas alejado del origen. P (,, 8 ) ) Utilizar el método de los multiplicadores de Lagrange para obtener los valores extremos de la función z = x + y, sujeta a la restricción cos x - y - 5 = 0. f ( 0, 4) = 6 ) Se desea construir un envase de lámina en forma de cilindro recto con tapa, que tenga un volumen de litros. Si el m de lámina cuesta $ Cuáles deben ser las dimensiones del envase para que su costo sea mínimo?. r =, h = π π ) Determinar las dimensiones del radio r y de la altura h del cilindro que puede ser inscrito en una esfera de radio R, de tal modo que su superficie total sea máxima.
7 SEMESTRE: 009- Página 7 R r =, h = R 4) Calcular el área de la región del plano XY limitada por la elipse de ecuación 5 x 4 x y + 5 y 88 = 0. (Sugerencia: el área de una elipse con semiejes, a y b es igual a π ab ; determinar el valor de las constantes a y b con el método de los multiplicadores de Lagrange). A = π u 5) Se tiene que diseñar un campo deportivo que esté formado por un rectángulo con dos semicírculos en sus extremos. La parte rectangular debe tener un área de 5000 m, y el campo debe estar rodeado por una barda. Cuáles deberán ser las dimensiones del patio de modo que la longitud de la barda que se necesita sea mínima?. x = 50 π, y = 00 π 6) Si la suma de tres números positivos a, b, c es S, cuáles son sus valores si la raíz cúbica de su producto debe ser máxima? a = S, b = S, c = S.
8 SEMESTRE: 009- Página 8 7) En un aeropuerto se desea tender un cable eléctrico desde un contacto en el piso, localizado en el punto A (,,0 ), hasta un anuncio luminoso montado sobre una superficie plana inclinada de ecuación x = y - z +. Calcular: a) La longitud mínima de cable que se puede unir al plano con el contacto. b) Las coordenadas del punto sobre el plano mas cercano al contacto. a).06 unidades de longitud 5 4 b) P,, 8) Un arco metálico cuya configuración geométrica esta representada por las ecuaciones y - x = 0 x + y + 4z 7 = 0 T x, y, z = x y z + 0. Determinar los puntos donde el esta en un medio con temperatura ( ) arco tiene mayor temperatura. Puntos mas calientes Puntos mas fríos,,,, y y,,.,,. 9) Calcular el valor de los extremos absolutos de la función ( ) definida sobre la región R = ( x, y ) x + y 4; y 0.. { } Mínimo absoluto igual a 4 en (,0 ) y en ( ) Máximo absoluto igual a en ( 0, )., 0. f x, y = y + y x
9 SEMESTRE: 009- Página 9 0) Determinar los valores máximos y mínimos de la función f x, y = y + x 4x y + 4 en una región del dominio de f limitado por las líneas ( ) x = 4, y =, x y =. Mínimo absoluto igual a en (,0 ). Máximo absoluto igual a 7 en ( 4, ). ) Determinar los valores extremos de la función (, ) definida por R = ( x, y ) x + 4y 4. { } El valor extremo de la función (, ) f x y y x f x y y x = sobre la región R = es 6 y se obtiene en cuatro puntos diferentes los cuales se concluye son máximos absolutos. Mínimos absolutos sobre los ejes coordenados: m=0 ) Calcular el valor máximo de la función z = xy en el círculo x + y. La función z tiene un valor máximo absoluto igual, en los puntos, y ) Una placa semicircular esta definida por la región R = x, y x + y ; y 0; x, y { ( ) } La temperatura T, en grados centígrados, en cualquier punto P ( x, y ) de la placa, está dada por T ( x, y ) = x + y y. Calcular las coordenadas de los puntos mas fríos y mas calientes de dicha placa. El punto mas frío es 0, más calientes con C. con 0.5 C y los puntos (,0) y (,0) son los
10 SEMESTRE: 009- Página 0 4) Determinar el máximo absoluto y el mínimo absoluto de la función f ( x, y ) = x x + y cuyo dominio se restringe a Df = { ( x, y ) x + y ; x, y }. El máximo absoluto es 9 4 y se presenta en los puntos, mínimo absoluto es y se presenta en el punto, 0 4. y, y el 5) Para la función ( ) naturaleza de cada uno de ellos. f x, y = x ang tan( y), obtener sus puntos críticos y determinar la A 0, 0 f presenta un punto silla. En ( ) 6) Determinar los valores extremos de la función f ( x, y ) = xy en la región R = ( x, y ) x + y a, para f ( x, y ) > 0. { } a a Máximos absolutos en A, a a y B, y su valor es a. 7) Se desea construir un ducto desde el punto P, hasta el punto S, los costos por cada Km de ducto son: de k en el tramo PQ, k en el tramo QR, y de k en el tramo RS. Determinar las dimensiones de X y Y para que el costo del ducto sea mínimo.
11 SEMESTRE: 009- Página X = y Y = 8) Calcular los valores extremos de la función por ( ) {, 0 } D = x y x + y + y. z = x + y + cuyo dominio esta dado f ( o, o) = : mínimo relativo y abs. f (0, ) = 5 : máximo absoluto.
SERIE # 1 CÁLCULO VECTORIAL
SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,
Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica
Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se
9. Diferenciación de funciones reales de varias variables reales
9.2. Extremos 9.2.1. POLINOMIOS DE TAYLOR Polinomios de Taylor y de McLaurin Se llama polinomio de Taylor de orden n 1 de la función f(x, y) en (a, b) al polinomio: f(a, b) f(a, b) n (x, y) = f(a, b) +
Funciones de varias variables: continuidad derivadas parciales y optimización
Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio
Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.
Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites
De x = 1 a x = 6, la recta queda por encima de la parábola.
Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área
Escuela Politécnica Superior de Málaga. CÁLCULO
Escuela Politécnica Superior de Málaga. CÁLCULO 4. Funciones de varias variables. 1. Describe y dibuja en el plano el dominio de las siguientes funciones en el espacio: f(x, y) = f(x, y) = 36 4x 2 9y 2
1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:
APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Definición valor extremo: Si f(x,y) està definida en una regiòn R y P 0 =(a, es un punto de R, entonces: a) f(a, es un valor máximo local de f si f(a, f(x,y) para todos los
Aplicaciones físicas
Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:
Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.
Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =
CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES
GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)
1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.
SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico
GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V
GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V 1) Determinar el dominio de las siguientes funciones dando el resultado en parentesis para:. y = x + 4. y = 3x c). y = x 3 x+ ) Obtener el rango para
ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013
ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013 Tema: Aplicaciones de las Derivadas Parciales. 1. Demuestre que el plano tangente al cono z = a 2 x 2 + b 2 y 2 pasa por el origen.
Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.
Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía
Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:
Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =
Análisis II Análisis matemático II Matemática 3.
Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el
INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.
INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,
EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera
EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco
y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.
. Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x
Más ejercicios y soluciones en fisicaymat.wordpress.com FUNCIONES
FUNCIONES 1- a) Dibuje el recinto plano limitado por la parábola y=4x-x 2 y las tangentes a la curva en los puntos de intersección con el eje de las abscisas. b) Halle el área del recinto dibujado en a).
DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA
SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -
Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013
Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio
Matemáticas III Andalucía-Tech
Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo
Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =
JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN 1. Calcular, aplicando la definición de derivada: f (), siendo f (x) = 3x 1 1 f ( ), siendo f (x) = x 1 Solución: 1; 4. Determinar el dominio y la expresión de
Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) VERANO
Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) VERANO - 2014 Práctica 6: Extremos 1. Sea f(x) = x 4 1 3 x3 3 2 x2, calcular máximos y mínimos absolutos en el intervalo [-5,5]. Hacer
Derivadas Parciales. Aplicaciones.
RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
MATE1207 Cálculo Vectorial Tarea 2 Individual Entregue a su profesor en la Semana 11 (Ma Vi. 21 de Octubre)
Universidad de los Andes Departamento de Matemáticas MAT27 Cálculo Vectorial Tarea 2 Individual ntregue a su profesor en la Semana (Ma. 8 - Vi. 2 de Octubre) Segundo xamen Parcial: Sábado 29 de Octubre,
Departamento de Matemática Aplicada y Estadística Ampliación de Matemáticas Hoja 5. Optimización no lineal
Departamento de Matemática Aplicada y Estadística Ampliación de Matemáticas Hoja 5. Optimización no lineal 1. Si Ω 1 y Ω 2 son dos subconjuntos convexos no vacíos de R,demuestraque a) Ω 1 ± Ω = {x 1 ±
3 Integración en IR n
a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =
Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1
Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº
CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los pares de ángulos alternos
SERIE # 4 CÁLCULO VECTORIAL
SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el
Ejercicios propuestos para el cálculo de áreas
Aplicaciones geométricas y mecánicas de la integral definida 191 Ejercicios propuestos para el cálculo de áreas 1) Calcular el área de la figura limitada por la parábola verticales = 1, = y el eje OX y
Gráfica de la función f de X en Y El conjunto X se llama dominio de la función f.
FUNCIONES Y SUS GRÁFICAS Funciones y notación de funciones Una relación entre dos conjuntos X e Y es un conjunto de pares ordenados, cada uno de la forma (, y) donde es un elemento del conjunto X e y,
CÁLCULO VECTORIAL SEMESTRE
SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto
9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES
9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,
Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias
Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos
Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( )
SERIE DE ÁLULO VETORIAL 1 PROFESOR: PEDRO RAMÍREZ MANNY TEMA 1 Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. f x, y = x + y 6x + 6y + 8 1) (
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
Funciones Reales de Varias Variables
Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
ACTIVIDADES GA ACTIVIDAD
ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema
Álgebra Lineal Agosto 2016
Laboratorio # 1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos u = i 2j + 3k; v = 3i 2j + 4k 3) u = 15i 2j + 4k; v = πi + 3j k 3) u = 2i 3j; v = 3i + 2j
VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES
VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES
Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:
UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,
GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.
GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de
Ingeniería Civil Matemática Universidad de Valparaíso.
* Ejercicios Álgebra Ingeniería Civil Matemática Universidad de Valparaíso. Prof: Gerardo Honorato CIRCUNFERENCIA. PREGUNTAS 1. 1) Escribir la ecuación de la circunferencia de centro C = ( 3, 7) y radio
MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x).
VRANO D 24 UNIVRSIDAD SIMON BOLIVAR P2A.- un segundo examen parcial de alguna fecha anterior. 1.- Calcule la integral : γ f.ds = γ Pdx+Qdy+Rdz, siendo γ la poligonal ABC, con A(1,, 2), B(1, 3, ), C(, 1,
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a
SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS
(Apuntes en revisión para orientar el aprendizaje) SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS - Leer cuidadosamente el enunciado para comprender la problemática presentada y ver qué se pretende
Problemas Tema 3 Enunciados de problemas de Derivabilidad
página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
2015/2. Ejercicios cálculo diferencial cdx24 Derivada y aplicaciones
015/ Ejercicios cálculo diferencial cd4 Derivada y aplicaciones 6. Encuentre la derivada de la función usando la definición de derivada, y muestre que obtiene el mismo resultado encontrándola nuevamente
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.
ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x
Integración múltiple: integrales dobles
Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna [email protected] Índice. Integrales iteradas 2. Teorema
sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x
1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =
ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green
ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..
ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8
ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,
SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:
SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie
APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos
Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando
GEOMETRÍA ANALÍTICA PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES
PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES CONTENIDO: 1. Conceptos básicos (Problemas 1-18). Línea recta (Problemas 19-6). Circunferencia (Problemas 7-4) 4. Parábola (Problemas 44-6)
DEPARTAMENTO DE CÁLCULO Y GEOMETRIA ANALITICA SEMESTRE 2017-1 SERIE CURVAS EN EL ESPACIO
SEMESTRE 017-1 1. Obtener una ecuación vectorial de la curva que se obtiene por el desplazamiento de un punto tal que su abscisa es -5 mientras que su cota es el triple de la tangente de su ordenada..
Funciones (1) 1. Halla el dominio de las siguientes funciones: 1 d. f(x)= x h. f(x)= e. f(x)= a. f(x)=2x. g. f(x)= x
TEMA 4. Funciones() Nombre CURSO: BACH CCSS Funciones (). Halla el dominio de las siguientes funciones: a. f()=2 d. f()= 2 6 b. f()= 3 2 e. f()= 2 5 6 c. f()= f. f()= 2 6 g. f()= 2 4 h. f()= 2 2 3 2 5
UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.
UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta
LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y
Tema 3: Diferenciabilidad de funciones de varias variables
Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 2009-2010. Tema 3: Diferenciabilidad de funciones de varias variables 1. Calcular las dos derivadas parciales de primer orden:
Rotaciones alrededor de los ejes cartesianos
Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.
MATEMÁTICA. Exámenes tipo INGRESO ESCUELA NAVAL MILITAR
INGRESO ESCUELA NAVAL MILITAR MATEMÁTICA Exámenes tipo. Jorge tiene un círculo de madera, de 40 cm. de diámetro. Él corta con una sierra por la mitad a lo largo de AD. De una de las mitades vuelve a cortar
5º Prueba de Evaluación continua (CÓNICAS) 5 de junio de 2012
Grupo C ETSI de Topografía, Geodesia y Cartografía º Prueba de Evaluación continua (CÓNICAS) de junio de 0.- Clasificar la cónica x y xy x y = 0 A = ; A = 0 Cónica no degenerada. = = = < 0 A c la cónica
ETSII Febrero Análisis Matemático.
Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2
Junio 010 1A. a) Enuncia el teorema de Bolzano. (0,5 puntos) 1 b) Se puede aplicar dicho teorema a la función f ( x) 1 x en algún intervalo? (1 punto) c) Demuestra que la función f(x) anterior y g(x) =
GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]
Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo
Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh
Módulo 1 DERIVADAS 1.1 Reglas de diferenciación Reconocimiento de saberes Ejercicio 1 Relacione convenientemente cada una de las siguientes epresiones: (considere > 0 ) ln ( e ) ln ln ( e ) ln e ln + ln
INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:
INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular
APLICACIONES DE LAS DERIVADAS
10 APLICACIONES DE LAS DERIVADAS REFLEXIONA Y RESUELVE Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: Relación de la curvatura con el signo de la segunda derivada
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores
Funciones de varias variables
Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder
Cálculo Diferencial y Geometría Analítica Agosto 2016
Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos
Cálculo Diferencial y Geometría Analítica Enero 2015
Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos
CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses:
CÓNICAS 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: a) b) c) a) =(3,1), A(5,1), A (1,1), B(3,), B (3,0) e=0'866; b) =(-,1), A(-1,1), A (-3,1),B(-,4/3), B (-,/3),
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
CAPITULO I : FUNCIONES VECTORIALES DE VARIABLE REAL.
BALOTARIO(PDF) APITULO I : FUNIONES VETORIALES DE VARIABLE REAL. t t t.-dadas las curvas : f ( t) ( e cos t; e sent; e ), 0t, : g ( t ) ( t ; t ; t ) a) Hallar el punto de intersección de. b) Si desde
1. Optimización sobre intervalos intervalos cerrados
Universidad Autónoma Metropolitana (Iztapalapa) Cálculo Diferencial (CA53-14o) Tarea # 4 1. Optimización sobre intervalos intervalos cerrados Para cada uno de los siguientes dos problemas, el dominio de
