Sistemas de ecuaciones lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas de ecuaciones lineales"

Transcripción

1 José María Martíne Mediano (SM, de ecuaciones lineales CTJ5. Resuelve el siguiente sistema de ecuaciones: 9 Lo resolvemos por el método de Gauss E E E E 7 6 La solución es: = ; = ; =.

2 GAJ5. Un fabricante produce tres artículos diferentes (A, B C), cada uno de los cuales precisa para su elaboración tres materias primas (M, M, M ). La siguiente tabla representa el número de unidades de cada materia prima que se requiere para elaborar una unidad de cada producto: Productos A B C M Materias primas M M Se dispone de 5 unidades de M, 7 unidades de M unidades de M. a) Determina las cantidades de artículos A, B C que produce dicho fabricante. b) Si los precios de venta de cada artículo son, respectivamente, 5, 6 euros gasta en cada unidad de materia prima 5, 7 6 euros, respectivamente, determina el beneficio total que consigue con la venta de toda la producción obtenida (utiliando todos los recursos disponibles). Sean,, las cantidades producidas de A, B C, respectivamente. Con los datos dados en 5 la tabla se tiene el sistema: Lo resolvemos por Gauss: 5 7 E E E E E E 7 5 De la segunda ecuación se obtiene: = 5. Sustituendo en la primera tercera ecuaciones: = = 8. b) Si hace 8 unidades de A, 5 de B de C, los vende, tiene unos ingresos por venta de: I = = 5 euros. 5 Los gastos totales son: G = = 98 euros. 5 El beneficio será de 5 98 = 5 euros. José María Martíne Mediano (SM,

3 MAJ5. Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: 5 k Se pide: (a) Discutir el sistema para los distintos valores de k. (b) Resolver el sistema en los casos en los que sea posible. (a) Al tratarse de un sistema homogéneo siempre será compatible: determinado, con solución única, = = = cuando el determinante de la matri de coeficientes sea distinto de ; indeterminado, con infinitas soluciones, cuando ese determinante valga. El determinante de la matri de coeficientes es k 7k 56. Valdrá si k = 8. Será distinto de cuando k 8. En consecuencia: Si k 8 el sistema será compatible determinado. Si k = 8, será compatible indeterminado. 5 (b) Si k 8, como a hemos dicho, la única solución es la trivial. Si k = 8 el sistema queda: 5 8 (puede verse que E = E + E) = (sumando) Llamando = 9t se tendrá: t 7 t 9t José María Martíne Mediano (SM,

4 RMJ5. Estudiar para qué valores de k es compatible el sistema siguiente: k Resolverlo para los valores de k que lo hacen compatible indeterminado. Si multiplicamos la segunda tercera ecuación por queda: k k (Como E = E) k (Restando E E) E E: (k ) Como k + = si k = /, se tendrá: Si k /, el sistema es compatible determinado. Su solución única es: =, = Si k = /, el sistema es compatible indeterminado, equivalente a t solución es: t =, cua José María Martíne Mediano (SM,

5 5 IBS5 5. Tres hermanas, Aine, Clara Marta, decidieron regalar un libro que vale,8 a su padre. Reúnen esta cantidad de forma que Marta aporta una tercera parte de lo que aporten las otras dos juntas que Aine aporte céntimos por cada que aporte Clara. Qué cantidad aporta cada una de las hermanas? (,5 puntos) Sean,, las cantidades que aportan Aine, Clara Marta, respectivamente. Debe cumplirse: + + =,8 ( ) Esto da lugar al sistema:,8 E E E E 5,8,8 7, Cua solución es: =,6; = 7,; = 6, José María Martíne Mediano (SM,

6 6 CVJ5 6. Elena, Pedro Juan colocan diariamente hojas de propaganda sobre los parabrisas de los coches aparcados en la calle. Pedro reparte siempre el % del total de la propaganda, Juan reparte hojas más que Elena entre Pedro Elena colocan 85 hojas en los parabrisas. Plantear un sistema de ecuaciones que permita averiguar cuántas hojas reparten, respectivamente, Elena, Pedro Juan calcular estos valores. Si Pedro reparte hojas, Juan reparte hojas Elena hojas, se cumplen las siguientes relaciones: Pedro, : =,( + + ) Juan, : = + Elena, : + = 85 Queda el sistema,8, 85, (sustituendo),8(85 ),( +), = 66, = = 55 = 65; = Por tanto, Elena reparte 55 hojas, Pedro hojas, Juan 65. José María Martíne Mediano (SM,

7 7 CBJ5 7. En una tienda por comprar dos chaquetas una blusa nos cobran euros. Si volvemos a la tienda compramos una chaqueta, un pantalón devolvemos la blusa nos cobran euros. Si hacemos una tercera vista a la tienda compramos 5 chaquetas, un pantalón una blusa, cuánto nos cobrarán? NOTA: Puede ser de interés obtener el precio de los pantalones blusas en función del de las chaquetas. Sea el precio de una chaqueta, el precio de una blusa el de un pantalón. Tenemos las siguientes ecuaciones: 5, siendo p lo que se paga el tercer día. Transformando el sistema por Gauss queda: p E E 5 p E E p Para que el sistema sea compatible es necesario que = p p = 5. El tercer día nos cobrarán 5 euros. José María Martíne Mediano (SM,

8 8 CNJ5 8. La edad en años de Juan es el doble que la suma de las edades de sus dos hijos: Pedro Luis. A su ve, Pedro es años maor que Luis. Si dentro de años la edad del padre sobrepasa en años a la suma de las edades de los hijos: a) Plantear el correspondiente sistema de ecuaciones. b) Determinar la edad de cada uno de ellos. Sean,, las edades de Juan, Pedro Luis. Se cumple: = ( + ) = + Dentro de años: + = a) El sistema que ha que resolver es: ( ) b) Sustituendo el valor de en las otras dos ecuaciones queda: 6 Igualando: + 6 = + = 9 Luego = =. Las edades son: Juan, años; Pedro, años; Luis, 9 años. José María Martíne Mediano (SM,

9 9 CMS5 9. Los alumnos de un grupo de º de ESO cursan tres asignaturas optativas distintas: Francés, Cultura Clásica Energías alternativas. Si dos alumnos de Francés se hubiesen matriculado de Cultura Clásica, entonces estas dos asignaturas tendría el mismo número de alumnos. Si dos alumnos de Cultura Clásica se hubiesen matriculado en Energías Alternativas, entonces Energías Alternativas tendría doble número de alumnos que Cultura Clásica. Halla el número de alumnos matriculado en cada asignatura. Sean,, los alumnos de Francés, de Cultura Clásica de Energías Renovables, respectivamente. La información es: Francés (F) C C E A Relación Alumnos + + = de F a C C + = + de C C a E A + + = ( ) Se tiene el sistema: + + = = + = 6 Luego: = = 8 = = Ha alumnos matriculados en Francés, 8 en Cultura Clásica en Energías Renovables. José María Martíne Mediano (SM,

10 LRS5. En los tres cursos de una diplomatura ha matriculados un total de 5 alumnos. El número de matriculados en primer curso coincide con los de segundo más el doble de los de tercero. Los alumnos matriculados en segundo más el doble de los de primero superan en 5 al quíntuplo de los tercero. Calcula el número de alumnos que ha matriculados en cada curso. Si el número de alumnos en º, º º es, respectivamente,,,, se tiene: + + = 5 = + + = Esto es: 5 5 (por Gauss) E E E E E E 55 = 5; = ; = En primer curso ha alumnos; en segundo ha alumnos; en tercero, 5 alumnos. José María Martíne Mediano (SM,

11 LRJ5. Tres hermanos quieren reunir 6 euros para comprar un regalo a sus padres. Después de una larga discusión han decidido que el mediano debe poner el doble que el pequeño el maor debe poner dos terceras partes de lo que ponga el mediano. Cuánto debe poner cada uno? Si el maor pone, el mediano el pequeño euros, se debe cumplir: + + = 6 = = / Sustituendo, ( = ; = / = /) se tiene: + + = 6 6 = 78 = 6 El pequeño pone 6 euros; el mediano, euros; el maor 8 euros. José María Martíne Mediano (SM,

12 RMS5. Tres jugadores convienen que el que pierda una partida doblará el dinero que en ese momento tengan los otros dos. Después de haber perdido todos ellos una partida, cada jugador se retira con veinte euros. Cuánto dinero tenían al principio del juego? Llamamos J, J J a los jugadores, que tienen al comenar a jugar,, euros, respectivamente. El juego transcurre como indicamos en la siguiente tabla. Situación inicial Pierde J Pierde J Pierde J Situación final J ( ) ( ) J ( ) ( ) = J ( ) ( ) = 7 Se tiene el sistema: ( ( 7 ) ) 7 5 E E E E E E = ; = 7,5; =,5 El jugador J tenía,5 euros; el segundo, 7,5 euros; el tercero, euros. Notas:. Las partidas las deberá perder siempre el jugador que más dinero tiene. Sólo así podrá doblar la cantidad de los otros dos.. Otra posible ecuación sería + + = 6. José María Martíne Mediano (SM,

13 PVS5. Los 76 niños de una población rural están distribuidos en tres colegios A, B C. Los matriculados en C suponen la cuarta parte de los matriculados en A, la diferencia entre el número de alumnos de A el de alumnos de B es inferior en una unidad al doble de los matriculados en C. Averiguar cuántos niños recibe cada uno de los colegios. Si suponemos que el número de alumnos de los colegios A, B C son,,, respectivamente, se tiene: Número de alumnos: + + = 55 Relación entre el número de alumnos en los distintos colegios: = / = Se obtiene el sistema: 76 (sustituendo = ) 5 76 (Sumando E + E) 7 = 75 = 5 Si = 5 = 5; =. El colegio A tiene alumnos; el colegio B, 5, el colegio C, 5 alumnos. José María Martíne Mediano (SM,

14 CVJ6. Tres constructoras invierten en la compra de terrenos de la siguiente forma: la primera invirtió medio millón de euros en terreno urbano, 5. euros en terreno industrial 5. euros en terreno rústico. La segunda, invirtió 5., euros en terreno urbano, industrial rústico, respectivamente, la tercera,.,.. euros en estos mismos tipos de terreno, respectivamente. Transcurrido un año, venden todos los terrenos. La rentabilidad que obtiene la primera constructora es del,75 %, la de la segunda del,5 %, finalmente, la de la tercera es del %. Determina la rentabilidad de cada uno de los tipos de terreno por separado. Si,, es la rentabilidad de cada uno de los tipos de terreno, urbano, industrial rustico, respectivamente, se tiene el sistema: =,75( ) =,5( ) + + = ( + + ) Simplificando se obtiene: E E E E 7 E E 8 Luego: = %; = %; = 5 % José María Martíne Mediano (SM,

15 5 CNJ6 5. Un agricultor compra semillas de garbanos a, el kilo, de alubias a, el kilo de lentejas a,8 el kilo. En total compra 5 kilos de semillas paga por ellas. Sabiendo que el peso de las lentejas es el doble que lo que pesan, conjuntamente, los garbanos las alubias, calcular qué cantidad de semillas ha comprado de cada legumbre. Sean,, los kilogramos comprados de garbanos, alubias lentejas, respectivamente. Debe cumplirse que: + + = 5 compra 5 kg, +, +,8 = paga = ( + ) Se obtiene el sistema: 5 8 E E 8E E E E 7 5 La solución es: =, = 5, = José María Martíne Mediano (SM,

16 6 CMS 6. Dividimos un número de tres cifras, "", entre la suma de éstas obtenemos de cociente de resto. La cifra de las decenas, "", es igual a la mitad de la suma de las otras dos. La cifra de las unidades, "", es igual a la suma de las otras dos. Hallar el número "". A partir del enunciado se obtienen las siguiente ecuaciones: + + = ( + + ) + = Esto es, el sistema: Haciendo transformaciones de Gauss: 8 9 E 8E 9 6 E E E E = ; = ; = El número buscado es. José María Martíne Mediano (SM,

17 7 ICJ98 7. Se meclan tres clases de vino de la siguiente manera: a) 5 litros de Tenerife, 6 de La Palma de Lanarote, resultando una mecla de pesetas/litro. b) litros de Tenerife, de La Palma 6 de Lanarote, dando un vino de pesetas/litro. c) litros de Tenerife, 6 de La Palma 6 de Lanarote, dando un vino de 6 pesetas/litro. Halla el precio por litro de cada clase de vino. Sean,, el precio, respectivo, del litro de vino de Tenerife, La Palma Lanarote. Con los datos dados, se obtiene el sistema: Multiplicando la tercera ecuación por 6 9 restándole las otras dos ecuaciones, queda: 9 ( = 7) - ( = 68) - ( = ) 6 8 =. Y con esto, =, =. José María Martíne Mediano (SM,

18 8 RMJ98 8. Un capitán tiene tres compañías: una de suios, otra de uavos una tercera de sajones. Al asaltar una fortalea promete una recompensa de 9 escudos que se repartirán de la siguiente forma: el soldado que primero suba todos los de su compañía recibirán un escudo; el resto de la recompensa se repartirá a partes iguales entre el resto de los soldados. Sabiendo que si el primero que sube es un suio, los de las demás compañías reciben medio escudo; si el primero es uavo, los restantes reciben un tercio de escudo, si el primero es sajón, un cuarto de escudo, cuántos hombres ha en cada compañía? Sean,, el número de suios, uavos sajones, respectivamente. De acuerdo con el enunciado se tiene: Haciendo las transformaciones que se indican, queda: E E E E E E José María Martíne Mediano (SM,

http://www.youtube.com/watch?v=puen0s0idwc http://www.youtube.com/watch?v=fhmvwv5wfuo http://www.youtube.com/watch?v=38nysgkjxdg

http://www.youtube.com/watch?v=puen0s0idwc http://www.youtube.com/watch?v=fhmvwv5wfuo http://www.youtube.com/watch?v=38nysgkjxdg .- Sistema ecuaciones lineales por Gauss Resuelve por Gauss 3 7 3 3 3 3 6 http://www.outube.com/watch?vpuen0s0idwc.- Sistema ecuaciones lineales por Gauss Resuelve por Gauss 3-3 5-3 -0 0 http://www.outube.com/watch?vfhmvwv5wfuo

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

1º BACHILLERATO MATEMÁTICAS CCSS

1º BACHILLERATO MATEMÁTICAS CCSS PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 133

6Soluciones a los ejercicios y problemas PÁGINA 133 PÁGINA 33 Pág. P RACTICA Comprueba si x =, y = es solución de los siguientes sistemas de ecuaciones: x y = 4 3x 4y = 0 a) b) 5x + y = 0 4x + 3y = 5 x y = 4 a) ( ) = 5? 4 No es solución. 5x + y = 0 5 =

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Álgebra 1. Sistemas lineales 2. Matrices 3. Determinantes 4. Sistemas lineales con parámetros 1 Sistemas lineales 1. Sistemas de ecuaciones lineales Piensa y calcula

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

EXÁMEN 1 DICIEMBRE EXÁMEN 1 DICIEMBRE. 5º. Resolver e interpretar el sistema. 1. Resolver e interpretar el sistema

EXÁMEN 1 DICIEMBRE EXÁMEN 1 DICIEMBRE. 5º. Resolver e interpretar el sistema. 1. Resolver e interpretar el sistema EXÁMEN DICIEMBRE 5º. Resolver e interpretar el sistema º. Discutir el sistema según los valores de º. La suma de tres cifras de un número es 5 si se intercambia la primera por la segunda el número aumenta

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2. FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

PROBLEMAS DE SISTEMAS DE ECUACIONES

PROBLEMAS DE SISTEMAS DE ECUACIONES PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor

Más detalles

Ejercicios resueltos de porcentajes

Ejercicios resueltos de porcentajes Ejercicios resueltos de porcentajes 1) Calcula los siguientes porcentajes: a) 30% de 600 b) 45% de 81 c) 50% de 340 d) 25% de 48 2) Calcula el término que falta en las siguientes expresiones: a) 40% de

Más detalles

Unidad 1 números enteros 2º ESO

Unidad 1 números enteros 2º ESO Unidad 1 números enteros 2º ESO 1 2 Conceptos 1. Concepto de número entero: diferenciación entre número entero, natural y fraccionario. 2. Representación gráfica y ordenación. 3. Valor absoluto de un número

Más detalles

Tema 4: Problemas aritméticos.

Tema 4: Problemas aritméticos. Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

Para resolver estos problemas podemos seguir tres pasos:

Para resolver estos problemas podemos seguir tres pasos: RESOLUCIÓN DE PROBLEMAS Algunos problemas pueden resolverse empleando sistemas de dos ecuaciones de primer grado con dos incógnitas. Muchas veces se pueden resolver utilizando una sola ecuación con una

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12 BOLETIN Nº MATEMÁTICAS º ESO Ecuaciones sistemas Curso / ) ( ) ) ( ) 8 ( ) ) ) 8 ( ) ( ) ) ( )( ) ) ( )( ) ( ) ) ( ) ( ) ( ) ( ) 8) ( ) 8( ) ( ) ) ( ) ( 8) ( ) ) (8 ) ( ) ( ) ) ( ) ( ) (8 ) ) ( ) ( ) (

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

Cuáles son esos números?

Cuáles son esos números? MATEMÁTICAS PROBLEMAS QUE SE RESUELVEN CON ECUACIONES Para resolver un problema de ecuaciones debes seguir los siguientes pasos: a) Identificar el dato desconocido y asignarle el valor x (si hay dos o

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 196

10Soluciones a los ejercicios y problemas PÁGINA 196 0Soluciones a los ejercicios y problemas PÁGINA 96 Pág. E presiones algebraicas Llamando a un número indeterminado, asocia cada enunciado con la epresión que le corresponde: a) El doble del número. b)

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL ARITMÉTICA MERCANTIL Página 49 REFLEXIONA Y RESUELVE Aumentos porcentuales En cuánto se transforman 50 si aumentan el 1%? 50 1,1 = 80 Calcula en cuánto se transforma un capital C si sufre un aumento del:

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal SISTEMAS DE ECUACIONES DE ENUNCIADO VERBAL CON 3 INCÓGNITAS. RESUELTOS EN ABIERTO PAU Universidad de Oviedo Junio 996 005. En una confitería

Más detalles

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados.

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados. Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) (

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Tenemos 3 formas de juego, la bolsa de acciones, la polla y la polla extraordinaria.

Tenemos 3 formas de juego, la bolsa de acciones, la polla y la polla extraordinaria. Tenemos 3 formas de juego, la bolsa de acciones, la polla y la polla extraordinaria. Bolsa de acciones: En este juego el usuario podrá comprar y vender acciones en los eventos a los cuales se haya registrado,

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

Sistemas de ecuaciones de primer grado con dos incógnitas

Sistemas de ecuaciones de primer grado con dos incógnitas Unidad Didáctica 4 Sistemas de ecuaciones de primer grado con dos incógnitas Objetivos 1. Encontrar y reconocer las relaciones entre los datos de un problema y expresarlas mediante el lenguaje algebraico.

Más detalles

ACTIVIDADES DEL TEMA 4

ACTIVIDADES DEL TEMA 4 ACTIVIDADES DEL TEMA. Resuelve las siguientes ecuaciones: a. 0 0 c. 0 b. 9 0 d. 0. Resuelve las siguientes ecuaciones bicuadradas: a. 0 b. 0. Resuelve las siguientes ecuaciones de primer grado: a. ( -

Más detalles

k) x - 5 + 6 = 11 l) 5x - 2 = 3x - 1 m) 2x - 3 = 4x - 7 n) 5x + 4 = 6x + 3 ñ) 6x - 1 = 8x - 5 o) 3x + 10 = 5x - 6 p) 4x + 1 = 9x - 64

k) x - 5 + 6 = 11 l) 5x - 2 = 3x - 1 m) 2x - 3 = 4x - 7 n) 5x + 4 = 6x + 3 ñ) 6x - 1 = 8x - 5 o) 3x + 10 = 5x - 6 p) 4x + 1 = 9x - 64 Tema : Ecuaciones Resolver las siguientes ecuaciones de primer grado: a) b) c) 0 9 d) - e) f) g) 0 h) i) - j) k) - l) - - m) - - n) ñ) - - o) 0 - p) 9 - q) 9 - r) - 0 s) - - Resolver las siguientes ecuaciones

Más detalles

Tema 8: Problemas con ecuaciones y sistemas. INTENTA RESOLVER TODOS ESTOS PROBLEMAS PLANTEANDO UNA ECUACIÓN

Tema 8: Problemas con ecuaciones y sistemas. INTENTA RESOLVER TODOS ESTOS PROBLEMAS PLANTEANDO UNA ECUACIÓN Matemáticas Ejercicios Tema 8 3º ESO Bloque II: Álgebra Tema 8: Problemas con ecuaciones y sistemas. INTENTA RESOLVER TODOS ESTOS PROBLEMAS PLANTEANDO UNA ECUACIÓN 1.- La base de un rectángulo mide 8 cm

Más detalles

4. Cuáles son los dos números?

4. Cuáles son los dos números? Problemas algebraicos 1 PROBLEMAS (SISTEMAS LINEALES) 1.1 PROBLEMAS (SISTEMAS NO LINEALES) 1.- La razón de dos números es tres quintos y si aumentamos el denominador una unidad y disminuimos el numerador

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

LAS FRACCIONES. Qué significan?

LAS FRACCIONES. Qué significan? LAS FRACCIONES Parte de una unidad: NUMERADOR DENOMINADOR Qué significan? La unidad se divide en cinco partes y cogemos División: = 0 Operador: de 0= 0 =0 =1 Leer y escribir fracciones Para leer fracciones

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico I.- En todos los problemas siguientes de esta sección, encuentra qué número (o números) debe seguir según la sucesión, y explica el por qué. 1) 1, 4, 27, 256,? (5 puntos) R = 3125 Observa que 1=1 1, 4=2

Más detalles

Problemas de Algebra Matricial

Problemas de Algebra Matricial Matrices Problemas de lgebra Matricial Matrices. Eplicitar las siguientes matrices. a) m=, n= a i i, b) m=, n= a si i=, a si i, i, c) m=, n= a, i, d) m=, n= a i i, i. Crear matrices de tal forma que cumplan

Más detalles

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios 1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado:

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado: PARTE - Matemáticas pendientes de 3º ESO 00- NOMBRE: 4º GRUPO:. Resuelve gráficamente los siguientes sistemas de ecuaciones e indica que tipo de sistema son: x x x 3 4. Indica, para cada representación

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

4 Ecuaciones y sistemas

4 Ecuaciones y sistemas Solucionario Ecuaciones y sistemas ACTIVIDADES INICIALES.I. Comprueba si las siguientes ecuaciones tienen como soluciones,,. a) 0 b) 5 () 8 a) 0 () () es solución. 0 8 9 6 0 6 0 0 9 5 5 6 5 es solución.

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Porcentajes. Cajón de Ciencias. Qué es un porcentaje?

Porcentajes. Cajón de Ciencias. Qué es un porcentaje? Porcentajes Qué es un porcentaje? Para empezar, qué me están preguntando cuando me piden que calcule el tanto por ciento de un número? "Porcentaje" quiere decir "de cada 100, cojo tanto". Por ejemplo,

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 ACTIVIDADES DE REPASO MATEMÁTICAS 1º ESO NOMBRE: GRUPO:. Actividades a realizar: 1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 2) Calcula: a) 4 6 + 3 + 9-2 3 = b) 6 (3 + 7) -

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

1. (2 puntos) En la V Caminata Madrileño Manchega, los participantes caminan de Madrid

1. (2 puntos) En la V Caminata Madrileño Manchega, los participantes caminan de Madrid Matemática Discreta Segundo de Ingeniería Informática UAM Curso 2006-2007 Solucionario del examen final del 26-1-2007 Nota bene: A continuación exhibimos algunas de las distintas maneras de abordar los

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL UNIDAD 2 ARITMÉTICA MERCANTIL Página 52 1. Vamos a calcular en cuánto se transforma una cantidad C al sufrir un aumento del 12%: 12 C + 100 C = C + 0,12 C = 1,12 C Conclusión: Si C aumenta el 12%, se transforma

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

no descompone no descompone no descompone

no descompone no descompone no descompone Problema 1. Sea I n el conjunto de los n primeros números naturales impares. Por ejemplo: I 3 = {1, 3, 5, I 6 = {1, 3, 5, 7, 9, 11, etc. Para qué números n el conjunto I n se puede descomponer en dos partes

Más detalles

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES La materia se estructurará en dos partes. Los alumnos que tengan en la primera evaluación menos de un cuatro deberán hacer el martes de Febrero

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

PRUEBAS DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES (CDI)

PRUEBAS DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES (CDI) Portal Fuenterrebollo Pruebas de Conocimientos y Destrezas Indispensables (CDI) PRUEBAS DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES (CDI) 1. Con 39 litros de gasolina el marcador de un coche señala 3 4

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás Problemas de 2 o Bachillerato ciencias sociales) Isaac Musat Hervás 27 de mayo de 2007 2 Índice General 1 Problemas de Álgebra 5 1.1 Matrices, Exámenes de Ciencias Sociales............ 5 1.2 Sistemas de

Más detalles

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh 6 Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer situaciones que pueden resolverse con ecuaciones Traducir al lenguaje matemático enunciados del lenguaje ordinario. Conocer los elementos

Más detalles

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X DP. - AS - 59 7 Matemáticas ISSN: 988-379X 5 Un almacén distribuye cierto producto que fabrican 3 marcas distintas: A, B y C. La marca A lo envasa en cajas de 5 gramos y su precio es de, la marca B lo

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Tema: Ecuaciones y sistemas de ecuaciones

Tema: Ecuaciones y sistemas de ecuaciones Tema: Ecuaciones y sistemas de ecuaciones 1. Las siguientes ecuaciones tienen alguna solución entera. Intenta encontrarlas tanteando. Qué tipo de ecuación es cada una?. a) x + 6 = b) x x = 0 c) x x = 1

Más detalles

PROGRESIONES ARITMÉTICAS PROBLEMAS DE SUCESIONES ARITMÉTICAS

PROGRESIONES ARITMÉTICAS PROBLEMAS DE SUCESIONES ARITMÉTICAS PROGREIONE ARITMÉTICA Ejercicio nº.- En una progresión aritmética sabemos que a y a 5 7. Halla el término general y calcula la suma de los 5 primeros términos. Ejercicio nº.- En una progresión aritmética,

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de cceso a las Universidades de Castilla y León MTEMÁTICS PLICDS LS CIENCIS SOCILES EJERCICIO Nº páginas 2 Tablas OPTTIVIDD: EL LUMNO DEBERÁ ESCOGER UN DE LS DOS OPCIONES Y DESRROLLR LS PREGUNTS

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

TEMA 10: Operaciones financieras. El interés

TEMA 10: Operaciones financieras. El interés UNO: Básicos de interés simple. 1. Calcula el interés que en capitalización simple producen 10.000, al 5% anual durante 3 años. 2. Cuál será el montante obtenido de la operación anterior? 3. Un inversor

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales GUÍA DE MATEMÁTICAS III Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales A continuación veremos algunos problemas que se resuelven con sistemas de ecuaciones algunos ejemplos

Más detalles

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

Guias Multiplicaciones y divisiones. Estudiante: Curso: 4 Fecha:

Guias Multiplicaciones y divisiones. Estudiante: Curso: 4 Fecha: Guias Multiplicaciones y divisiones Estudiante: Curso: 4 _ Fecha: Instrucciones: Lee atentamente cada enunciado. Realiza tu trabajo con lápiz grafito o portaminas, esto te ayudará a corregir en caso de

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Tema 4: Problemas Aritméticos

Tema 4: Problemas Aritméticos Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios

Más detalles

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE Índice de contenidos: 1. Ley Financiera de capitalización a interés vencido. 1.1. Equivalencia de capitales. 1.2. Tipos de interés equivalentes.

Más detalles

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 1 SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 102. PAU Universidad de Oviedo Fase General OPCIÓN A junio 2010 Dos amigos, Ana y Nicolás, tienen en total 60 euros. Además se

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

PROBLEMAS FINANCIEROS

PROBLEMAS FINANCIEROS PROBLEMAS FINANCIEROS 1. Por un artículo que estaba rebajado un 12% hemos pagado 26,4 euros. Cuánto costaba antes de la rebaja? (Sol: 30 ) 2. Un ordenador cuesta 1 036 euros sin I.V.A. Sabiendo que se

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles