Teorema Isoperimétrico
|
|
|
- Lorenzo García Santos
- hace 7 años
- Vistas:
Transcripción
1 Teorema Isoperimétrico Geometría plana Efraín Soto Apolinar aprendematematicas.org.mx 23 de Diciembre de 2009 Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
2 Teorema Isoperimétrico Teorema 1 (Teorema Isoperimétrico) De todos los triángulos que se pueden dibujar con un área fija, el equilátero es el que tiene el menor perímetro. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
3 Demostración Empezamos dibujando un triángulo con área fija. Para eso consideramos un segmento AB fijo que servirá de base para el triángulo de área fija y una recta l paralela al segmento AB: l A B Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
4 Ahora vamos a ubicar el tercer vértice del triángulo en un punto sobre la recta l: C 1 l A B Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
5 Ahora vamos a ubicar el tercer vértice del triángulo en un punto sobre la recta l: C 1 l A B Este vértice puede moverse a lo largo de la recta l y el área del triángulo permanece fija, pues su base y su altura son constantes. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
6 Nosotros queremos encontrar el punto sobre la recta l donde debemos ubicar el tercer vértice del triángulo para que el perímetro de este triángulo sea mínimo. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
7 Nosotros queremos encontrar el punto sobre la recta l donde debemos ubicar el tercer vértice del triángulo para que el perímetro de este triángulo sea mínimo. C 2 C 1 l A B Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
8 Nosotros queremos encontrar el punto sobre la recta l donde debemos ubicar el tercer vértice del triángulo para que el perímetro de este triángulo sea mínimo. C 2 C 1 l A B Dónde crees que debe estar ese punto? Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
9 Exacto, Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
10 Exacto, el punto de intersección de la mediatriz del segmento AB y la recta l: C l A B Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
11 Exacto, el punto de intersección de la mediatriz del segmento AB y la recta l: C l A B Hasta aquí hemos visto que de todos los triángulos con una base fija y un área dada, el isósceles es el que tiene el mínimo perímetro. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
12 Ahora vamos a tomar otro lado como base y vamos a hacer lo mismo: trazamos su mediatriz y la intersectamos con la recta que pase por el vértice opuesto y que sea paralela al lado considerado: Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
13 Ahora vamos a tomar otro lado como base y vamos a hacer lo mismo: trazamos su mediatriz y la intersectamos con la recta que pase por el vértice opuesto y que sea paralela al lado considerado: C A B Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
14 Ahora vamos a tomar el siguiente lado como base y hacemos de nuevo lo mismo: trazamos su mediatriz y la intersectamos con la recta que pase por el vértice opuesto y que sea paralela al lado considerado: Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
15 Ahora vamos a tomar el siguiente lado como base y hacemos de nuevo lo mismo: trazamos su mediatriz y la intersectamos con la recta que pase por el vértice opuesto y que sea paralela al lado considerado: C A B Ad infinitum... Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
16 Sabes a dónde vamos a ir a parar realizando este procedimiento un número infinito de veces? Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
17 Sabes a dónde vamos a ir a parar realizando este procedimiento un número infinito de veces? Correcto! Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
18 Sabes a dónde vamos a ir a parar realizando este procedimiento un número infinito de veces? Correcto! Obtenemos un triángulo equilátero: Pues el triángulo equilátero es isósceles respecto de todos sus lados. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
19 Siguiente Teorema Isoperimétrico Ahora consideramos un cuadrilátero. Teorema 2 (Teorema Isoperimétrico) De todos los cuadriláteros que se pueden dibujar con un área fija, el cuadrado es el que tiene el menor perímetro. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
20 De nuevo, empezamos considerando un cuadrilátero cualquiera: Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
21 De nuevo, empezamos considerando un cuadrilátero cualquiera: A este cuadrilátero podemos trazarle una de sus diagonales, y aplicar el procedimiento del triángulo dos veces una para cada triángulo formado con los lados del cuadrilátero, cada vez que obtengamos uno nuevo. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
22 Trazamos dos paralelas a la diagonal y encontramos la intersección de la mediatriz con cada una de las paralelas. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
23 Trazamos dos paralelas a la diagonal y encontramos la intersección de la mediatriz con cada una de las paralelas. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
24 Trazamos dos paralelas a la diagonal y encontramos la intersección de la mediatriz con cada una de las paralelas. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
25 Trazamos dos paralelas a la diagonal y encontramos la intersección de la mediatriz con cada una de las paralelas. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
26 Trazamos dos paralelas a la diagonal y encontramos la intersección de la mediatriz con cada una de las paralelas. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
27 Trazamos dos paralelas a la diagonal y encontramos la intersección de la mediatriz con cada una de las paralelas. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
28 Trazamos dos paralelas a la diagonal y encontramos la intersección de la mediatriz con cada una de las paralelas. Estos puntos nos ayudan a encontrar un cuadrilátero con la misma área, pero con un perímetro menor. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
29 Si continuamos con el mismo procedimiento un número infinito de veces, qué figura vamos a obtener? Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
30 Si continuamos con el mismo procedimiento un número infinito de veces, qué figura vamos a obtener? Correcto!, Vamos a obtener un cuadrilátero que es isósceles respecto de ambas diagonales, es decir, vamos a obtener un cuadrado. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
31 Teorema Isoperimétrico Teorema 3 (Caso general) En general, de todos los poĺıgonos de n lados con un área fija, el de mínimo perímetro es el poĺıgono regular. Otra manera de establecer el mismo resultado es: Teorema 4 (Segunda versión) En general, de todos los poĺıgonos de n lados con un perímetro fijo, el de máxima área es el poĺıgono regular. Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
32 Final Quién NO tiene preguntas? Efraín Soto Apolinar (aprendematematicas.org.mx) Teorema Isoperimétrico 23 de Diciembre de / 15
Número de Diagonales
Número de Diagonales Geometría plana Efraín Soto Apolinar aprendematematicas.org.mx 4 de diciembre de 009 Efraín Soto Apolinar (aprendematematicas.org.mx) Número de Diagonales 4 de diciembre de 009 1 /
2.-GEOMETRÍA PLANA O EUCLIDIANA
2.-GEOMETRÍA PLANA O EUCLIDIANA 2.2.-Cuadriláteros. Definición, clasificación y notación. Clasificación de los cuadriláteros: Paralelogramos y no paralelogramos. Los cuadriláteros son los polígonos de
UNIDAD 8 Geometría analítica
Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.
FORMAS POLIGONALES TEMA 8
FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:
n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.
MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono
TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES
TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...
Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo
TEMA Nombre IES ALFONSO X EL SABIO
1. Trazar la mediatriz del segmento AB 2. Trazar la perpendicular a la semirrecta s en su extremo A sin prolongar ésta 3. Dividir el arco de circunferencia en dos partes iguales. 4. Dividir gráficamente
Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº
Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS SATISFACTORIO ACEPTABLE MEJORABLE TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº Ejercicios TEMA 12 FIGURAS PLANAS Y ESPACIALES (1º ESO) Página
TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2009 2010 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
Polígono regular de 3 lados: Triángulo equilátero
Se pueden construir todos los polígonos regulares con regla y compás siguiendo las reglas que hemos establecido para estas construcciones? Vamos a ver la construcción de los mismos partiendo de unos ejes
Definición y Clasificación de Polígonos. Definición
Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono
Soluciones Nota nº 1
Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos
TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad
TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.
DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X
- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas
Alonso Fernández Galián Geometría plana elemental Rectas RECTAS Y ÁNGULOS Una recta es una línea que no está curvada, y que no tiene principio ni final. Tipos de ángulos Los ángulos se clasifican según
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por
Polígonos. Triángulos
CLAVES PARA EMPEZAR Cada hora equivale a una abertura de 360 o : 12 30 o A las 12 h: ángulo 0 o A las 11 h y a la 1 h: ángulo 30 o A las 9 h y a las 3 h: ángulo 90 o A las 7 h y a las 5 h: ángulo 150 o
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
Geometría
Geometría Geometría www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2012 Contenido 1. Geometría 2 1.1. Definiciones....................................... 2 1.2. Postulados........................................
Perpendiculares, mediatrices, simetrías y proyecciones
Perpendiculares, mediatrices, simetrías y proyecciones 1. Calcular en cada caso la ecuación de la recta perpendicular a la dada, y que pasa por el punto P que se indica: a) 5x 2y 3 0 P( 1, 3) b) x 4 y
Apuntes de Dibujo Técnico
APUNTES DE DIBUJO TÉCNICO 1. Materiales para trazados geométricos. - La Escuadra y el Cartabón. El juego de escuadra y cartabón constituye el principal instrumento de trazado. Se deben usar de plástico
TALLER No. 17 GEOMETRÍA
TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?
Distancia entre un punto y una recta
Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular
Triángulos. Definición y clasificación
Profr. Efraín Soto polinar. Triángulos En esta sección empezamos el estudio de las figuras geométricas planas creadas de segmentos de rectas. uando la figura está formada por tres segmentos de recta y
polígono 3 Triángulo 4 Cuadrilátero 5 Pentágono 6 Hexágono 7 Heptágono 8 Octógono 9 Eneágono 10 Decágono 11 Undecágono 12 Dodecágono 20 Icoságono
TEMA: POLÍGONOS Y ÁNGULOS. POLÍGONOS REGULARES. POLÍGONOS Un polígono es una figura cerrada cuyos lados son segmentos. La palabra polígonos se puede interpretar como: figura de muchos ángulos. Los triángulos,
CONSTRUCCIONES GEOMÉTRICAS. Efraín Soto Apolinar
CONSTRUCCIONES GEOMÉTRICS Efraín Soto polinar TÉRMINOS DE USO Derechos Reservados c 2010. Todos los derechos reservados a favor de Efraín Soto polinar. Soto polinar, Efraín. Construcciones Geométricas.
Figuras planas. Definiciones
Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal
LA RECTA Y SUS ECUACIONES
UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos
LOS POLIGONOS. 1. Definiciones.
LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).
Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano.
GEOMETRÍA PLANA Dibujo Geométrico La geometría es la parte de las matemáticas que estudia las propiedades y las medidas de las figuras planas y tridimensionales en el espacio. La palabra procede de dos
Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
Tema 2: --TRAZADOS DE FORMAS POLIGONALES
Tema 2: --TRAZADOS DE FORMAS POLIGONALES 1.- TRIÁNGULOS: - CLASIFICACIÓN Y PUNTOS NOTABLES 2.- CUADRILÁTEROS: PROPIEDADES Y CLASIFICACIÓN 3.- POLÍGONOS REGULARES: CLASIFICACIÓN Y CONSTRUCCIÓN Ø INTRODUCCIÓN:
1.3.-Trazados geométricos básicos.
1.3.-Trazados geométricos básicos. 1.3.1.-Notaciones Los elementos básicos del dibujo técnico son el punto, la recta y el plano. El punto no tiene dimensión, podemos considerarlo como una posición del
EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1
EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
POLÍGONOS REGULARES. Ejemplo: Hexágono 360º / 6 = 60º. TRIÁNGULO 3 120º 60º 180º (3-2)= 180º CUADRADO 4 90º 90º 180º (4-2)= 360º
A B G C F LADO D E A B G C F D E APOTEMA DIAGONALES RADIO 360º / n (180º- ) ELEMENTOS Y PROPIEDADES DE LOS POLÍGONOS REGULARES. (Ilustración nº 1). Diagonal: Es el segmento que une dos vértices no consecutivos.
EDUCACIÓN PLÁSTICA Y VISUAL BLOQUE: GEOMETRÍA CUADERNO ADAPTADO 1º E.S.O. Alumno/a: Curso escolar: Grupo: 1º
EDUCACIÓN PLÁSTICA Y VISUAL BLOQUE: GEOMETRÍA CUADERNO ADAPTADO 1º E.S.O. Alumno/a: Curso escolar: Grupo: 1º TEMA 1. TRAZADOS GEOMÉTRICOS (tema 7 del libro) INTRODUCCIÓN: LOS MATERIALES DE DIBUJO Vamos
D. Es una figura geométrica formada por la intersección de dos líneas rectas en un punto llamado vértice.
SEGUNDO PERIODO - PRUEBA DE GEOMETRÍA GRADO 601-602 - 603 1 Un triángulo se define como: A. Polígono formado por tres lados. B. Polígono formado por dos lados. C. Polígono formado por dos lados. D. Es
GEOMETRÍA. Instrumentos geométricos básicos: Reglas: regla graduada y la regla T Escuadra y cartabón transportador Compás
GEOMETRÍA La geometría como palabra tiene dos raíces griegas: GEO = tierra y METRÓN = medida; es decir, significa: medida de la tierra. Es la rama de las matemáticas que estudia las propiedades de las
El polígono es una porción del plano limitado por una línea poligonal cerrada.
UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los
Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.
4º Unir la última división (5) con el extremo B del segmento, y por las demás divisiones trazar paralelas a la recta anterior.
TEM 2: POLÍGONOS TEOREM DE THLES El Teorema de Thales sirve para dividir un segmento en partes iguales. Para ellos seguimos los siguientes pasos. Repite los pasos a la derecha. 1º Dibujar el segmento que
12 fichas de dibujo geométrico, trazado de figuras geométricas, manejo del compás.
Guía didáctica rápida. Colección de trabajos de geometría para quinto de primaria. R.Vázquez Versión 1. 2015-16 www.ricardovazquez.es 9 fichas de «aprende a hacer cosas importantes», los elementos básicos
TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA Actividades de Ingreso Año 2009 Profesorado
2.-GEOMETRÍA PLANA O EUCLIDIANA
2.-GEOMETRÍA PLANA O EUCLIDIANA 2.1.-Triángulos. Definición, clasificación y notación. Puntos notables, ortocentro, circuncentro, baricentro e incentro. Propiedades de las medianas. Los Triángulos son
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO
2ª EVALUACIÓN AMPLIACIÓN MATEMÁTICAS TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 1. EL PUNTO El punto es uno de los conceptos primarios de geometría. El punto no es un objeto físico y no tiene dimensiones
ACTIVIDADES PROPUESTAS
GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
Problemas y ejercicios de áreas de polígonos
Problemas y ejercicios de áreas de polígonos 1Un campo rectangular tiene 170 m de base y 28 m de altura. Calcular: 1Las hectáreas que tiene. 2El precio del campo si el metro cuadrado cuesta 15. 2 Calcula
Unidad 7 Figuras planas. Polígonos
Polígonos 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono.- Halla la medida de los ángulos interiores de: a) Un octógono regular.
El ejercicio de la demostración en matemáticas
El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa (hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.
Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos
INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA
Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,
Unidad Didáctica 8. Formas Poligonales
Unidad Didáctica 8 Formas Poligonales 1.- Polígonos Es una palabra de origen griego. Se compone de POLI que significa varios, y gono o ángulo. Por lo tanto un polígono es una figura geométrica plana limitada
SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano
SGUICEG04MT-A16V1 SOLUCIONARIO Ubicación de puntos, distancia longitudes en el plano cartesiano 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA UBICACIÓN DE PUNTOS, DISTANCIA Y LONGITUDES EN EL PLANO CARTESIANO Ítem
TEMA 5: GEOMETRÍA PLANA. Contenidos:
Contenidos: - Elementos básicos del plano: punto, recta y segmento. Rectas paralelas y perpendiculares. Ángulos: definición, clasificación y medida. - Instrumentos de dibujo. Construcción de segmentos,
La carrera geométrica
La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros
lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 16. Geometría analítica Matemáticas I 1º Bachillerato 0,2
lasmatematicaseu Pedro astro Ortega 16 Geometría analítica Matemáticas I 1º achillerato 1 Escribe las ecuaciones vectorial paramétricas de la recta que pasa por tiene dirección paralela al vector u 7 u
Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1
SGUICEG047EM33-A17V1 Bloque 33 Guía: Ubicación de puntos, distancia longitudes en el plano cartesiano TABLA DE CORRECCIÓN UBICACIÓN DE PUNTOS, DISTANCIAS Y LONGITUDES EN EL PLANO CARTESIANO N Clave Dificultad
Definición, Clasificación y Propiedades de los Triángulos
Definición, Clasificación y Propiedades de los Triángulos Que es un Triángulo? Un triángulo es un polígono de tres lados y tres ángulos. Trigonometría Básica Ing. Gonzalo Carranza E. TRIÁNGULO es un polígono
TEMA 5 GEOMETRÍA ANALÍTICA
TEMA 5 GEOMETRÍA ANALÍTICA Ecuación general de la recta. Una recta queda determinada por un vector que tenga su dirección (llamado vector director) y un punto que pertenezca a esa recta. Tipos de ecuaciones
TEMA 6: GEOMETRÍA EN EL PLANO
TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación
DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS
DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS 1.1.1 1.1.2 Las figuras geométricas, como los polígonos, aparecen en muchos lugares. En estas lecciones, los alumnos estudiarán más atentamente los polígonos y
Halla los siguientes perímetros y áreas:
73 CAPÍTULO 9: LONGITUDES Y ÁREAS.. Matemáticas 1º y º de ESO 1. TEOREMA DE PITÁGORAS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes
Caracterización de la parábola como lugar geométrico plano 1 Ficha del estudiante
Caracterización de la parábola como lugar geométrico plano 1 Ficha del estudiante Actividad 1 LA DEFINICIÓN DE PARÁBOLA A PARTIR DE SU PROPIEDAD FOCO DIRECTRIZAS Una parábola es el lugar geométrico determinado
POLÍGONOS. EQUIVALENCIAS
IUJO TÉNIO II. 2º HILLERTO POLÍGONOS. EQUIVLENIS 1 2 a 5 a/2 L4 M 4 b 3 a/2 OS POLÍGONOS SON EQUIVLENTES UNO MNTIENEN L MISM ÁRE TRIÁNGULOS EQUIVLENTES ENTRE SÍ altura (h) base El área de un cuadrilátero
Soluciones Nota nº 2. Problemas propuestos 1. El segmento AC es una diagonal del cuadrado ABCD. Reconstruir el cuadrado.
Soluciones Nota nº 2 Problemas propuestos 1. El segmento AC es una diagonal del cuadrado ABCD. Reconstruir el cuadrado. Si el segmento AC fuera una diagonal del rectángulo ABCD, que no es cuadrado, es
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
Taller de Construcciones clásicas de Geometría con Cabri-Géomètre
Taller de Construcciones clásicas de Geometría con Cabri-Géomètre Días 11, 12 y 13 de noviembre de 2008 Juan Francisco Padial y Eugenia Rosado [email protected] [email protected] El taller consiste
TEMA 4. TRANSFORMACIONES EN EL PLANO
TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica
1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?
Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos
ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto
Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen
TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:
TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
TEMA 5. Geometría. Teoría. Matemáticas
1 La Geometría trata sobre las formas y sus propiedades. A su vez, se puede dividir en: Geometría plana: trata de las figuras en el plano, (dos dimensiones) Geometría tridimensional: trata de figuras en
Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:
3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-
INICIACIÓN A GEOGEBRA
INICIACIÓN A GEOGEBRA Geogebra es un programa libre creado en 2002 por Markus Hohenwarter de la Universidad Johannes Kepler de Linz en Austria. Tal como su nombre indica, Geogebra es un programa que mezcla
Cuadrilátero conocido su lado, AB, con la escuadra. Se apoya la escuadra por su hipotenusa sobre la regla y se traza el lado, AB, del cuadrado.
Elementos geométricos / Cuadrilátero 47 Cuadrilátero conocido su lado, AB, con la escuadra Se apoya la escuadra por su hipotenusa sobre la regla y se traza el lado, AB, del cuadrado. Se desliza hacia arriba
Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.
Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo
TEMA 6: LAS FORMAS POLIGONALES
EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado
DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo
DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo 1. Construir un triángulo equilátero conocida la altura. 2. Construir un triángulo isósceles conocida
12Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P RACTICA Puntos Si los puntos 6 6 y son vértices de un cuadrado cuál es el cuarto vértice? 6 6 P P Los puntos y son vértices de un paralelogramo.
3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:
III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden
CARÁCTER DE LA GEOMETRÍA ANALÍTICA
CARÁCTER DE LA GEOMETRÍA ANALÍTICA La Geometría Elemental, conocida a por el estudiante, se denomina también Geometría PURA para distinguirla del presente estudio. Recordaremos que por medio de un sistema
TRIÁNGULOS Y CUADRILÁTEROS.
TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº
CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los pares de ángulos alternos
Tema 2 2 Geometría métrica en el pla no
Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el
