Álgebra Lineal - Exámenes
|
|
|
- Irene Alcaraz Navarro
- hace 7 años
- Vistas:
Transcripción
1 Álgebra Lineal Dpto. de Matemáticas (EPSI Gijón) Página 1 Álgebra Lineal - Exámenes Ejercicio n o 1 Constrúyase una función f que, dada una matriz, nos devuelva su primera fila, el elemento que ocupa el lugar (1,1) en la misma y el determinante de la matriz que resulta al multiplicar la matriz dada por su traspuesta. Ejercicio n o 2 Constrúyase una función f que, dada una matriz A, de orden n n y un vector v, de orden n 1, nos devuelva una matriz tal que su columna enésima coincida con v y el resto de columnas coincida con las de la matriz A. Ejercicio n o 3 Constrúyase una función f que, dados dos números naturales n y m cualesquiera, nos devuelva una matriz de orden n m tal que el elemento que ocupa el lugar (n, m) valga 100 y el resto de los elementos valgan 5. Ejercicio n o 4 Constrúyase una función que, dada una matriz cualquiera, calcule su inversa cuando ésta exista, y que muestre un mensaje indicando que la matriz no es inversible en caso contrario. Ejercicio n o 5 Constrúyase una función que, dada una matriz, nos devuelva su última fila y el producto de dicha matriz por su traspuesta. Ejercicio n o 6 3x +y +z 7t 10w = 10 14x +12y +9z +23t 7w = 3 a) Pruébese que es compatible e indeterminado. b) Calcúlese una solución particular del mismo. c) Resuélvase completamente.
2 Álgebra Lineal Dpto. de Matemáticas (EPSI Gijón) Página 2 Ejercicio n o 7 4x 11y +3z 6t +11w = 3 17x +12y +2z +22t +w = 13 Discútase y resuélvase completamente. Ejercicio n o 8 5x +5y 2z 2t = 6 5x 10y +7z +7t = 9 5x +z +t = 7 5x 3z 3t = 1 Discútase y resuélvase completamente. Ejercicio n o 9 Resuélvase el sistema: 5x 4y +3z 6t +2w = 4 2x +y z t +w = 6 x +2y +z t +3w = 19 2x y z +t w = 12 x 6y +z +t +4w = 4 Ejercicio n o 10 3x +y +z 7t 10w = 10 14x +12y +9z +23t 7w = 3 a) Calcúlese una solución particular del mismo utilizando el comando rref y analizando adecuadamente el sistema equivalente que se obtiene. b) Resuélvase completamente el sistema dado.
3 Álgebra Lineal Dpto. de Matemáticas (EPSI Gijón) Página 3 Ejercicio n o 11 a) Constrúyase una función, f, que dados una matriz A y un vector columna b, con el mismo número de filas que A, discuta el sistema AX = b. b) Discútase, utilizando la función anterior, el siguiente sistema 4x 11y +3z 6t +11w = 3 17x +12y +2z +22t +w = 13 y resuélvase completamente. Ejercicio n o 12 Constrúyase un fichero.m que dados los generadores de dos subespacios vectoriales, U1 y U2, y un vector v de R n cualesquiera, nos diga si v pertenece o no a la intersección de ambos subespacios. Ejercicio n o 13 Constrúyase un fichero.m tal que dados dos vectores cualesquiera de R 4 nos indique si forman o no un sistema generador del subespacio : V = {(x, y, z, t) R 4 x + y = 0, z + t = 0} Ejercicio 14 Constrúyase un fichero que, dado un vector v cualquiera de R 4, nos indique si pertenece o no al subespacio V = {(x, y, z, t) R 4 x + z + t = 0} Ejercicio n o 15 Constrúyase un fichero.m tal que, dados tres vectores cualesquiera de R 4, nos indique si forman o no un sistema generador del subespacio : V = {(x, y, z, t) R 4 x = 0} Ejercicio n o 16 Constrúyase, usando la estructura f or...end, una función ejercicio2 que, dado un número natural, n, devuelva la suma de los cubos de todos los números naturales desde el 1 hasta el n, y que, en el caso de que el usuario metiera un número no natural, de un mensaje de error explicativo.
4 Álgebra Lineal Dpto. de Matemáticas (EPSI Gijón) Página 4 Ejercicio n o 17 Sea f : R 3 R 4 la aplicación lineal cuya matriz asociada en las bases canónicas de ambos A = a) Calcular una base del subespacio Imf. b) Siendo V = {(x, y, z, t) R 4 x + y + z + t = 0}, calcular una base del subespacio V + Imf. Ejercicio n o 18 Constrúyase un fichero.m que, dada la matriz asociada a una aplicación lineal, nos indique si ésta es suprayectiva o no. Ejercicio n o 19 Sea f : R 3 R 4 la aplicación lineal cuya matriz asociada en las bases B 1 de R 3 y B 2 de R 4 es A = Sabiendo que la matriz asociada a f en las bases C 1 (base canónica) de R 3 y B 2 de R 4 es : B = calcúlense las coordenadas de los vectores de B 1 en la base canónica. Ejercicio n o 20 Dada f : R 5 R 4, aplicación lineal cuya matriz asociada en las bases canónicas de R 5 y de R 4, respectivamente, es la matriz de coeficientes del sistema anterior, calcúlese una base del subespacio f(v ), siendo. V = {(x, y, z, t, w) R 4 x = 0, y = 0}
5 Álgebra Lineal Dpto. de Matemáticas (EPSI Gijón) Página 5 Ejercicio n o 21 Sea f : R 3 R 4 la aplicación lineal cuya matriz asociada en las bases canónicas de ambos A = a) Calcular una base del subespacio Imf. b) Siendo V = {(x, y, z, t) R 4 x + y + z + t = 0}, calcular una base del subespacio V + Imf. Ejercicio n o 22 Sea f : R 4 R 3 la aplicación lineal cuya matriz asociada en las bases canónicas de ambos A = a) Calcular una base del subespacio V + Kerf, siendo V el subespacio de R 4 engendrado por los vectores v 1 = (0, 0, 0, 1) y v 2 = ( 1, 1, 1, 1). b) Dada la base U de R 4 formada por los vectores: u 1 = ( 1, 1, 0, 0), u 2 = (0, 0, 1, 1), u 3 = (1, 0, 0, 1), u 4 = (0, 0, 1, 1) calcular la matriz asociada a f respecto de las bases U de R 4 y canónica de R 3. Ejercicio n o 23 Sea f : R 3 R 4 la aplicación lineal cuya matriz asociada en las bases canónicas de ambos A = a) Calcular una base del subespacio Imf. b) Siendo V = {(x, y, z, t) R 4 x + y + z t = 0}, calcular una base del subespacio V + Imf.
6 Álgebra Lineal Dpto. de Matemáticas (EPSI Gijón) Página 6 Ejercicio n o 24 Constrúyase un fichero.m que, dada la matriz asociada a una aplicación lineal, nos indique si ésta es suprayectiva o no. Ejercicio n o 25 Constrúyase, usando la estructura f or...end, una función ejercicio2 que, dado un número natural, n, devuelva la suma de los cubos de todos los números naturales desde el 1 hasta el n, y que, en el caso de que el usuario metiera un número no natural, de un mensaje de error explicativo. Ejercicio n o 26 La evolución del peso de un niño en sus primeros cuatro años de vida ha sido la siguiente: Años Peso(Kg) a) Calcular la parábola y = at 2 + bt + c que mejor ajusta estos datos mediante mínimos cuadrados. b) Utilizando el apartado anterior, estimar el peso del niño cuando tenga 8 años. Ejercicio n o 27 Una empresa ha obtenido los siguientes datos que relacionan el número de agentes de ventas con las ventas anuales. N o de Agentes Ventas anuales (millones de euros) 2, 3 3, 2 4, 1 5 6, 1 7, 2 Sean x el número de agentes de ventas e y las ventas anuales(en millones de euros). a) Determínese la recta, y = ax + b, de mínimos cuadrados que relaciona x con y. b) Utilícese el apartado anterior para estimar las ventas anuales que habría si se contara con 14 agentes.
7 Álgebra Lineal Dpto. de Matemáticas (EPSI Gijón) Página 7 Ejercicio n o 28 Encontrar la recta y = at + b de mejor ajuste mediante mínimos cuadrados para los siguientes datos experimentales relativos a la posición de un ciclista respecto de la línea de partida. Tiempo en horas 0, 5 1 1, 5 2 Posición en Km Ejercicio n o 29 Cierto experimento relaciona dos cantidades x e y mediante la siguiente ecuación: y = ax 2 + bx + c donde a, b, y c son parámetros a determinar. Los datos experimentales son los siguientes: x 2 3 1, , 6 0, 7 4, 1 1, 9 5 y 0, 1 2, 7 1, 1 5, 5 3, 4 3 2, 8 4 1, 9 5, 5 Calcúlense a, b y c por el método de los mínimos cuadrados.
ÁLGEBRA SELECTIVIDAD C y L
ÁLGEBRA SELECTIVIDAD C y L JUNIO 2004 1. Se tiene una matriz M cuadrada de orden 3 cuyas columnas son respectivamente C1, C2 y C3 y cuyo determinante vale 2. Se considera la matriz A cuyas columnas son
ÁLGEBRA SELECTIVIDAD C y L
ÁLGEBRA SELECTIVIDAD C y L JUNIO 2004 1. Se tiene una matriz M cuadrada de orden 3 cuyas columnas son respectivamente C1, C2 y C3 y cuyo determinante vale 2. Se considera la matriz A cuyas columnas son
ESPACIOS VECTORIALES Y APLICACIONES LINEALES
Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes
Capítulo 3. Espacios vectoriales Sistemas de vectores
Capítulo 3 Espacios vectoriales Comenzaremos este apartado resolviendo problemas relacionados con sistemas de vectores en espacios vectoriales. Dado un sistema de vectores veremos como estudiar su dependencia
Álgebra lineal. Noviembre 2018
Álgebra lineal. Noviembre 08 Opción A Ejercicio. (Puntuación máxima:,5 puntos) Sea el siguiente sistema de ecuaciones lineales: 4ax + 4ay + z = a ax + y az = a, se pide: 4ax + 4ay + az = 4 (,5 puntos)
TEMA V. Espacios vectoriales
TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,
Ejercicio 1 (Curso 2016/2017) Considérense las matrices: k A C C
EJERCICIOS DE MRICES Y DEERMINNES (Selectividad Madrid) Ejercicio (Curso 06/07) Considérense las matrices: 3 0 = B = C = 3 40 ( punto) Determínese la matriz C. ( punto) la matriz X que verifica: X + 3B
Relación 1. Espacios vectoriales
MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR
Apellidos: Nombre: NIF:
Universidad de Oviedo EPS de ingeniería de Gijón Dpto. Matemáticas Algebra Lineal 7/06/008 Segunda parte Apellidos: Nombre: NIF: Ejercicio 1 Sea f : R 3 R [x] una aplicación lineal definida en las bases
Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás 15 de noviembre de 2016 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................
Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos Isaac Musat Hervás 4 de octubre de 2016 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................
Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 7 de abril de 08 hora y 5 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN. Se considera el sistema lineal de ecuaciones, dependiente del parámetro real
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva
Asignatura: ÁLGEBRA LINEAL Fecha: 6 de Julio de Fecha publicación notas: 6 de Julio de Fecha revisión examen: de Julio de Duración del examen: horas y media APELLIDOS Y NOMBRE: DNI: Titulación:. ( punto:,
Matemáticas para la Empresa
Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)
SOLUCIONES A LA AUTOEVALUACIÓN - Aplicaciones lineales
SOLUCIONES A LA AUTOEVALUACIÓN - Aplicaciones lineales A) Soluciones a las Cuestiones C-) a) Sí puede, si la matriz, que es 4x, tiene rango. b) No puede, pues la matriz, que es x, no puede tener rango.
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 05 de abril de 2018 1 hora y 15 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN 1. Dadas las matrices A ( 2 1 1 2 ), B ( 0 1 ) e I la matriz identidad de
PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06
PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x
Ejercicios resueltos de Examenes anteriores
FACULTAD DE CIENCIAS EXACTAS DPTO. DE MATEMÁTICAS UNIVERSIDAD ANDRÉS BELLO Álgebra Lineal FMM Ejercicios resueltos de Examenes anteriores. (a) Sea A ( ) 2. Calcule las matrices P y J tal que A P JP 8 5.
Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.
Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
1.- Definir: Vectores linealmente dependientes y Sistemas ligados.
Prueba de Evaluación Continua Grupo B 23-03-11 1- Definir: Vectores linealmente dependientes Sistemas ligados Demostrar que un conjunto de vectores son linealmente dependientes si sólo si uno de ellos
ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =
ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}
ESPACIOS VECTORIALES
Capítulo 1 CONCEPTOS TEÓRICOS ESPACIO VECTORIAL Un conjunto E = {a, b, c, } de elementos (llamados vectores) se dice que constituyen un espacio vectorial sobre un cuerpo conmutativo K (que generalmente
ETSI de Topografía, Geodesia y Cartografía
3ª Prueba de Evaluación Continua 7 05 12 (Grupo C) Espacio vectorial 1. a) Definir vectores linealmente dependientes en un espacio vectorial V. u,u,,u de un espacio vectorial V son b) Demostrar que si
2. [2014] [EXT-B] Sabiendo que el determinante de la matriz A = es 2, calcula los siguientes determinantes indicando, en
MasMatescom - + m [4] [EXT-A] Considera el siguiente sistema de ecuaciones: m++ -+ +m a) Halla los valores del parámetro m para los que el sistema tiene una única solución b) Halla los valores del parámetro
Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales:
Ejercicio 1 De los siguientes subconjuntos de R 3 decida cuales son subespacios y cuales no: a) U 1 = {(x,y,z) / x = 1 = y+z} b) U 2 = {(x,y,z) / x+3y = 0,z 0} c) U 3 = {(x,y,z) / x+2y+3z= 0 = 2x+y} d)
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos k 1 0 Problema 1 (2 puntos) Se considera la matriz A = 7 k k 1 1 k a) Estudíese para qué
SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales.
SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. A) Soluciones a las Cuestiones C-1) a) Sí, por ejemplo el eje X, formado por los vectores de la forma (λ, 0), que se identificarían con el número
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO 013-014 1 0 Ejercicio 1º.- Dada la matriz: A 1 1 a) (1,5 puntos) Determina los valores de λ para los
Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz
Septiembre 008: Sea A una matriz 3 x 3 de columnas C 1, C y C 3 (en ese orden). Sea B la matriz de columnas C 1 + C, C 1 + 3C 3 y C (en ese orden). Calcular el determinante de B en función de A. (1 punto)
ÁLGEBRA LINEAL I Práctica 6
ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2016 2017) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos
Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10
Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas Curso 2009/10 Hoja 1 Preliminares 1 Resuelve los siguientes sistemas de ecuaciones de números complejos: { z 1 + iz 2 = 1 i 3z 1 + (1
Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:
6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.
Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular
Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Septiembre 2017) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Septiembre 207) Selectividad-Opción A Tiempo: 90 minutos a + a Problema (2 puntos) Se considera la matriz A = a a a 0 a a) Estúdiese para
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales 1º) Resuelve, si es posible, cada uno de los siguientes sistemas: a) b) c) a) Sistema incompatible b) Sistema compatible indeterminado: c) Sistema compatible indeterminado:
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina
Tema 3. Sistemas de ecuaciones lineales
Tema 3. Sistemas de ecuaciones lineales 1. Resuelve, si es posible, cada uno de los siguientes sistemas: x + 2y + z = 1 x + 2y + z = 2 x + 2y + z = 0 a 2x + y + 2z = 2 b 2x + y + 2z = 10 c x y = 1 3x +
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales.
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Ejercicios 1.- Determinar el rango de la siguiente matriz: 0 1 3 4 1 3 5. Solución. 0 1 3 4 1 3 5 AT 1( 1) AT 1 ( 1)T 14 ( 1 )
Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero
Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:
Aplicaciones Lineales
Aplicaciones Lineales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aplicaciones Lineales 1 / 47 Objetivos Al finalizar este tema tendrás que: Saber si una aplicación es
MATEMÁTICAS PARA ECONOMISTAS I MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
MATEMÁTICAS PARA ECONOMISTAS I MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES 1.- Dadas las siguientes matrices Efectúe si es posible : a) A + B b) B A c) B 2.- Dadas las siguientes matrices Efectúe
ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13
00_Principios 10/8/10 09:47 Página 7 ÍNDICE Prólogo... 9 Capítulo 1. ESPACIOS VECTORIALES... 11 Conceptos Teóricos... 11 Ejercicios y Problemas resueltos... 13 Capítulo 2. MATRICES Y DETERMINANTES... 21
Aplicaciones Lineales. Diagonalización de matrices.
Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición
EJERCICIOS DE LOS EXÁMENES DE ÁLGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO
EJERCICIOS DE LOS EXÁMENES DE ÁLGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO 014-015 1 m Ejercicio 1º.- Sea I la matriz identidad de orden A 1 1 a) (1,5 puntos) Encuentra los valores de m para los cuales se
ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando
ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación
Tema 4: Sistemas de ecuaciones lineales.
Tema 4: Sistemas de ecuaciones lineales 1 Rango de una matriz Definición Sea A Mat n m (K) Se llama rango de filas de A, y se denota por rg f (A) la dimensión del subespacio vectorial generado por las
Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados:
10 Departamento de Álgebra. Universidad de Sevilla Tema 3. Sección 1. Variedades lineales. Definición. Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios
1.5.3 Sistemas, Matrices y Determinantes
1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,
SEGUNDO PARCIAL - EJERCICIOS DE REPASO
Algebra y Geometría 28 SEGUNDO PARCIAL - EJERCICIOS DE REPASO 3-6-8 ESPACIOS VECTORIALES. Construya en R 2 un subconjunto que sea: a cerrado para la suma y resta de vectores, pero no para la multiplicacion
2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012
2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 1. En R 2 se define la suma: (a 1, b 1 ) + (a 2, b 2 ) = (a 1 + a 2, b 1 + b 2 ) y el producto por un escalar: λ(a, b) = (0,
PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,
PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene
PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) a) A = ( 1 0
PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) JUNIO 6: OPCIÓN B. Ejercicio. (Puntuación máxima: 3 puntos) Encontrar todas las matrices X cuadradas x que satisfacen la
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
UNIBERTSITATERA SARTZEKO PROBAK 2016ko EKAINA
UNIBERTSITATERA SARTZEKO PROBAK 016ko EKAINA MATEMATIKA II PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 016 MATEMÁTICAS II Azterketa honek bi aukera ditu. Haietako bati erantzun behar diozu. Ez ahaztu azterketako
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales º Resuelve, si es posible, cada uno de los siguientes sistemas: x + y + z = a x + y + z = x + y + z = 4 x + y + z = b x + y + z = 0 x + y + z = a Sistema incompatible b
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.
ACTIVIDADES INICIALES
2 Determinantes ACTIVIDADES INICIALES I. Enumera las inversiones que aparecen en las siguientes permutaciones y calcula su paridad, comparándolas con la permutación principal 1234. a) 1342 b) 3412 c) 4321
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz
Septiembre 2008: Sea A una matriz 3 x 3 de columnas C 1, C 2 y C 3 (en ese orden). Sea B la matriz de columnas C 1 + C 2, 2C 1 + 3C 3 y C 2 (en ese orden). Calcular el determinante de B en función de A
OPCIÓN A. x 2 2x si x < 1,
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2016-2017 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
MATRICES Octubre 2015
MATRICES Octubre 015 5 4 1. Sea la matriz 1 1 4 4 1 a) Prueba que 0 donde I es la matriz identidad y 0 es una matriz con todos sus elementos igual a 0. b) Calcula A 3. (J 007) Sean las matrices 0, 1,,
N o de examen: ESCRIBIR LAS RESPUESTAS AQUÍ Este examen consta de diez preguntas tipo verdadero/falso y diez ejercicios
N o de examen: NOMBRE: C.I.: Examen de Geometría y Álgebra Lineal 1 22 de julio de 2014 Instituto de Matemática y Estadística Rafael Laguardia Facultad de Ingeniería ESCRIBIR LAS RESPUESTAS AQUÍ 1 2 3
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015-coincidente) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 015-coincidente) Selectividad-Opción A Tiempo: 90 minutos Problema 1 ( puntos) Se considera el sistema de ecuaciones dependiente del parámetro
Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.
Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
EXAMEN DE MATRICES Y DETERMINANTES
EXAMEN DE MATRICES Y DETERMINANTES 14 10 16 Ejercicio 1. Tres personas, A, B, C, quieren comprar las siguientes cantidades de fruta: A: kg de peras, 1 kg de manzanas y 6 kg de naranjas. B: kg de peras,
Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...
Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u
, siendo A t la matriz traspuesta de A. 5. [2013] [EXT-A] a) Discutir el sistema de ecuaciones lineales según los valores del parámetro m: 1 2.
MasMatescom [4] [EXT-A] a) Resolver la siguiente ecuación matricial X A = B-C, siendo A = 5, B = - y C = - b) Sean F, F y F las filas de una matriz cuadrada de orden cuyo detereminante vale 5 Calcular
Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución
Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución Respuestas a la versión 1: (La versión 1 es aquélla cuyo primer ejercicio dice Un sistema lineal de m ecuaciones
