MATRICES. M(n) ó M nxn A =

Documentos relacionados
MATRICES. M(n) ó M nxn A =

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATRICES. Matriz de los coeficientes. Matriz de las incógnitas. Matriz de los términos independientes. Matriz ampliada. Información general

MATRICES OPERACIONES BÁSICAS CON MATRICES

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara

Matrices y determinantes

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a.

Matrices 2º curso de Bachillerato Ciencias y tecnología

Matrices. Álgebra de matrices.


Matrices, Determinantes y Sistemas Lineales.

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz.

Algebra lineal Matrices

TEMA 7: MATRICES. OPERACIONES.

Matrices y determinantes

Matrices y sistemas de ecuaciones

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Tema 1: MATRICES. OPERACIONES CON MATRICES

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices y Sistemas Lineales

Matriz sobre K = R o C de dimensión m n

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

Matrices, determinantes y sistemas de ecuaciones lineales

Teoría Tema 7 Operar con matrices

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

Matrices y determinantes

Una matriz es un conjunto de elementos pertenecientes a un cuerpo ( o, normalmente). Los elementos están ordenados en filas y columnas:

APÉNDICE A. Algebra matricial

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Estadística III Repaso de Algebra Lineal

ELEMENTOS DE ALGEBRA LINEAL

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales

SISTEMAS Y MATRICES LECCIÓN 8

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

UNIDAD 3 FUNCIONES, MATRICES Y DETERMINANTES. Matrices. Dr. Daniel Tapia Sánchez

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Conjuntos y matrices. Sistemas de ecuaciones lineales

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Sistemas de ecuaciones lineales. Matrices

Matemáticas Empresariales II

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

Matrices. Primeras definiciones

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss:

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

MATRICES. Jaime Garrido Oliver

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

ALGEBRA y ALGEBRA LINEAL

Matrices: Una ordenación de números dispuestos en filas y columnas, encerrados entre corchetes

Matrices y Determinantes. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC

Semana 14 [1/28] Matrices. 22 de julio de Matrices

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:

Matrices y Sistemas Lineales

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

En general, llamaremos matriz de dimensión mxn a un conjunto de m.n números reales distribuidos en m filas y n columnas.

1. Lección 3: Matrices y Determinantes

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices.

Matrices y Sistemas Lineales

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

TEMA 7. Matrices y determinantes.

Matrices y Determinantes.

TEST DE DETERMINANTES

Capítulo 2. Determinantes Introducción. Definiciones

CAPÍTULO VIII MATRICES

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...

Conceptos Preliminares

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATEMÁTICAS II: MATRICES Y DETERMINANTES

MATRICES DETERMINANTES

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn

Matrices, determinantes, sistemas de ecuaciones lineales.

1. Matrices. Operaciones con matrices

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.

Matrices. En este capítulo: matrices, determinantes. matriz inversa

Repaso de álgebra de matrices y probabilidad. Javier Santibáñez (IIMAS, UNAM) Regresión Semestre / 58

Tema I. Matrices y determinantes

Programa EUROPA Ayuda a la Mejora en el Aprendizaje Matemáticas Cuarta sesión

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.

Sistemas de Ecuaciones Lineales y Matrices

Operaciones con matrices

Transcripción:

MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos en m filas y n columnas a1.n a 2.1 a a 2.n ( a i.j ) i 1,2,3,,m M M M j 1,2,3,n a m.1 a m.2 a m.n K puede ser el cuerpo R ó C y en caso de no decir nada en contra será el cuerpo de los reales. Cada elemento de una matriz lleva dos subíndices, el primero corresponde a la fila del elemento y el segundo a la columna. Nomenclatura. Sí m1, se llama matriz fila. Sí n1, se llama matriz columna. Sí m n, se llama matriz rectangular. Sí mn, se llama matriz cuadrada. Notaciones l conjunto de matrices de orden m n, cuyos elementos toman valores en cuerpo K se denota por M(m,n,K). Sí KR, es usual la notación M(m,n) ó M m n en lugar de M(m,n,R). El conjunto de matrices cuadradas de orden n se denota por M(n,K). Sí KR, se suele denotar M(n) ó M nxn Matriz nula (0) es aquella matriz en que a ij 0 i1,2,,m, j1,2,,n. Hay una matriz nula para cada orden de matrices. Se define como diagonal principal de una matriz cuadrada de orden n a los elementos de la forma: a ii i1,2,,m Se define como traza de una matriz cuadrada, a la suma de los elementos de la diagonal principal Traza Tr() a 11 +a 22 +.+a nn Operaciones con matrices. Propiedades y estructura de las operaciones. a) Igualdad: Dos matrices y B del mismo orden m n son iguales sí a ij b ij, i 1,2,,m, y j 1,2,,n b) Suma: Dadas dos matrices y B del mismo orden m n se define la matriz suma C+B como la matriz de orden m n tal que c ij a ij +b ij i1,2,,m, j1,2,,n.1.2 L.n +.1 +.2 +.n a 2.1 a L a 2.n b 2.1 b L b 2.n a 2.1 + b 2.1 a + b L a 2.n + b 2.n + M M M M M M M M M m.1 a m.2 L a m.n b m.1 b m.2 L b m.n m.1 + a m.1 a m.2 + a m.2 L a m.n + a m.n Propiedades de la suma: Commutativa. + B B + sociativa. ( + B) + C + (B + C) Elemento neutro. + 0 Elemento opuesto. + ( ) 0 c) Producto por un número: Dada una matriz de orden m n y un elemento λ R la matriz B λ (producto de la matriz por el número λ) es una matriz de orden m n cuyo elemento genérico b ij λ a ij I 1,2,,m, j1,2,,n 1

λ λ L λ a1.n a 2.1 a L a 2.n λ a 2.1 λ a L λ a 2.n λ M M M M M M m.1 a m.2 L a m.n λ a m.1 λ a m.2 L λ a m.n Propiedades de producto por escalares k ( + B) k + k B (k 1 + k 2 ) k 1 + k 2 (k 1 k 2 ) k 1 (k 2 ) I 0 0 d) Producto de matrices: Dadas dos matrices, de orden m n y B de orden n p, su matriz producto C B es una matriz de orden m p. Para multiplicar matrices se toman los elemento de la 1ª matriz como vectores fila y los elementos de la 2ª matriz como vectores columnas, de está forma, la matriz producto estará formada por los productos escalares de los vectores fila de la 1ª matriz por los vectores columna de la 2ª matriz. a1.n.1.2.p a 2.1 a a 2.n b 2.1 b b 2.p m n Bn p M M M M M M m.1 a m.2 a m.n b n.1 b b n.p 644444 F.1 7 C.1.1 + b2.1 + + a1.nbn.1 644444 F.2 7C.1 a2.1.1 + ab2.1 + + a2.nbn.1 M 64444 44 F.m7 C.1 4 am.1.1 + am.2b2.1 + + am.nbn.1 F.1 C.2 6444447 1.1 1.2 1.2 F.2 C.2 64444474 44444 8 2.1 1.2 M F.m C.2 6444444 74 m.1 1.2 m.2 1.n 2.n m.n F.1 C.p 6444447.p + b2.p + + a1.nbn.p F.2 C.p 64444474 44444 8 a2.1.p + ab2.p + + a2.nbn.p M F.m C.p 6444444 74 a + + + m.1.p am.2b2.p am.nbn.p La condición necesaria y suficiente para que dos matrices se puedan multiplicar es que el número de filas de la 1ª matriz sea igual al número de columnas de la segunda matriz, ya que de esta forma el número de componentes de los vectores fila de la 1ª matriz será igual al número de componentes de los vectores columna de la 2ª matriz, pudiéndose en este caso multiplicar escalarmente ambos vectores. El producto de matrices no es conmutativo, salvo en dos excepciones: i) El producto de una matriz por su inversa. I ii) El producto de una matriz por la matriz identidad. I I. Propiedades del producto de matrices sociativa. (B C) ( B) C Distributiva por la izquierda. (B+C) B+ C Distributiva por la derecha. (B+C) B +C k ( B) (k ) B (k B) e) Trasposición de matrices: Dada una matriz de orden m n se define su matriz traspuesta, que se denota t,, ó t como la matriz que se obtiene al intercambiar en la matriz las filas con las columnas de tal forma que los términos de la matriz traspuesta se relacionan con los de la matriz inicial mediante la siguiente relación: a ij a ji i1,2,,n, j1,2,,m. Si el el orden la matriz en m n, el su traspuesta será n m. 1 2 1 0 t Ejemplo: : 3 2 3 4 0 4 Las principales propiedades de la trasposición de matrices son ( t ) t (+B) t t +B t ( B) t B t t 2

(k ) t k t f) Inversa de una matriz: Sea una matriz de orden n. Si existe una matriz B M n n tal que B B I n Se dice que es invertible o no singular (regular). En tal caso la matriz B se denomina inversa de y se denota por. No todas las matrices de orden n tienen inversa. La condición necesaria y suficiente para que una matriz de orden n tenga inversa es que su determinante sea distinto de cero. Propiedades: - La inversa de la matriz inversa es la propia matriz. ( ) - Si dos matrices admiten inversa, la inversa del producto es el producto de las 1 2 2 1 inversas cambiado de orden. ( ) t 1 - La inversa de la traspuesta es igual a la traspuesta de la inversa. ( ) ( ) t El cálculo de la matriz inversa se puede hacer por tres métodos diferentes: - Método de Gauss. - Método de Gauss-Jordan. - Por determinantes GUSS: Sea a 2.1 a a 2.3 3.1 a 3.2 a 3.3 M 1 0 0 TRNSFORMCIONES 1 0 0 M.1.2.3 EQUIVLENTES a 2.1 a a 2.3 M 0 1 0 0 1 0 M b 2.1 b b 2.3 3.1 a 3.2 a 3.3 M 0 0 1 0 1 M b 3.1 b 3.2 b3.3 se obtiene como inversa de :.1.2.3 b2.1 b b2.3 b3.1 b3.2 b3.3 GUSS JORDN Se plantea como una ecuación donde la inversa de ( ) es una matriz genérica con n n incógnitas que se denomina X: X I la ecuación se resuelve multiplicando las dos matrices del primer término e igualando la matriz producto obtenida con la matriz identidad del segundo miembro término a término, obteniendo n sistemas de n ecuaciones con n incógnitas. La resolución de los n sistema permite calcular los n n elementos de la matriz inversa. Ejemplo: Sea 2 1 3 2, su matriz inversa será de la forma x y X, y deberá cumplir la ecuación: z t 2 1 x y 1 0 3 2 z t 1 operando el primer miembro: 2x + z 2y + t 1 3x + 2z 3y + 2t igualando las dos matrices término a término: 1.1: 2x + z 1 1.2 : 2y + t 0 2.1: 3x + 2z 0 : 3y + 2t 1 0 1 3

a partir de estas igualdades se pueden plantear dos sistemas de 2 2: 2x + z 1 2y + t 0 y 3x + 2z 0 3y + 2t 1 las soluciones respectivas de cada sistema son (2, 3), (,2) por lo que la matriz inversa es: 2 3 1 2 POR DETERMINNTES t adj ( ) Se realiza por pasos: 0 No 1. Se calcula el determinante de : 0 2. Se calcula la adj 3. Se traspone la adjunta de. ( adj ) t 4. Se divide cada elemento de la traspuesta de la adjunta por el determinante de Principales tipos de matrices cuadradas. Una matriz cuadrada de orden n es: a - Triangular superior sí a ij 0 i>j. 0 a a 0 0 a 0 0 - Triangular inferior sí a ij 0 i<j. a 2.1 a 0 3.1 a 3.2 a 3.3 0 0 - Diagonal sí a ij 0 sí i j. 0 a 0 0 0 a 3.3 a 0 0 - Escalar sí es diagonal y a ii a i1,2,,n. 0 a 0 0 a 1 0 0 - Unidad sí es escalar y a ii 1 i1,2,,n. 0 1 0 0 1 - Regular sí tiene elemento inverso para la operación producto de matrices. la matriz inversa se la denota por. I. (NOT 0) - Singular sí no es regular. - Simétrica sí t - ntisimétrica sí t. (También se denomina hemisimétrica). - Periódica si p N / p+1. Sí p es el menor número que verifica la igualdad, p es el período. - Idempotente sí ². - Nilpotente sí n N / n 0. - Involutiva Si ² I - Ortogonal sí t. 1.3 2.3 3.3 4

Rango de una matriz. El rango de una matriz de orden m n es el número de vectores fila o vectores columna linealmente independientes. Se denotará rang, Rg ó rg. El rango de una matriz como máximo será menor o igual a la menor de sus dimensiones. Para calcular el rango de una matriz hay dos métodos: i) Método de Gauss. Se triangulariza la matriz, una vez triangularizada, el rango es el número de términos distintos de cero de la diagonal principal ii) Por menores. El rango de una matriz es igual al orden del mayor menor distinto de cero que exista en la matriz. Sea una matriz de dimensión m n. Se llama menor de orden p de al determinante de cada submatriz cuadrada formada por los elementos situados en las intersecciones de p filas y p columnas de, es decir, obtenida suprimiendo las m p filas y las n p columnas restantes. Se dice que el rango de una matriz es r, y se escribe rg r, si: Hay algún menor de orden r no nulo. Cualquier menor de orden mayor r es nulo. En él calculo del rango de una matriz ahorra mucho trabajo la técnica de orlar menores. De está forma, si se quiere estudiar el rango n en una matriz, se busca un menor de orden n distinto de cero. Para saber si la matriz puede tener rango n, bastará estudiar los menores orlados del menor distinto de cero de un orden menor, es decir solo los menores de orden n que contengan al menor de orden n. Ejemplo La matriz más típica de este curso es la 3 4, que corresponde a la matriz ampliada de un sistema de 3 3, normalmente se verá de la siguiente forma: a 2.1 a a 2.3 b2 3.1 a 3.2 a 3.3 b3 en la matriz existen cuatro menores de orden 3 a 2.1 a a 2.3 ; a 2.1 a b2 ; a 2.1 b2 a 2.3 ; b 2 a a 2.3 a 3.1 a 3.2 a 3.3 a 3.1 a 3.2 b3 a 3.1 b3 a 3.3 b3 a 3.2 a 3.3 tomando como referencia el menor de orden dos: a 2.1 a 0 sus menores orlados son: a 2.1 a a 2.3 ; a 2.1 a b 2 a 3.1 a 3.2 a 3.3 a 3.1 a 3.2 b3 si alguno de ellos es distinto de cero, el rango de será 3. Sí los dos son nulos, el rango de será 2, no siendo necesario estudiar los otros dos menores de orden 3. El Rg( B) mín (Rg, RgB) 5