Funciones Vectoriales

Documentos relacionados
Curvas en el espacio.

CALCULO VECTORIAL. Campos vectoriales

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos

Curvas en el plano y en el espacio

Resumen Segundo Parcial, MM-502

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

La Integral Definida

5.2 Integral Definida

6. Curvas en el espacio

FUNCIONES VECTORIALES

Primitiva de una función.

Tema 4. Integración de Funciones de Variable Compleja

La Integral de Riemann

C alculo Octubre 2010

El problema del área. Tema 5: Integración. Integral de Riemann. Particiones de un intervalo. Sumas superior e inferior

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera

TEMA 5: INTEGRACIÓN. f(x) dx.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

El Teorema de Arzela-Ascoli Rodrigo Vargas

Integral Definida. Tema Introducción. 6.2 Definición de Integral Definida

5. Integral y Aplicaciones

Teorema de Green. 6.1 Introducción

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

TEMA 2. DETERMINANTES

IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

La Integral Multiplicativa

Grado en Química Bloque 1 Funciones de una variable

1. Introducción: longitud de una curva

INTEGRACIÓN DE FUNCIONES COMPLEJAS SOBRE CURVAS

Geometría diferencial de curvas y superficies - Taller 1

Tema 4: Integrales Impropias

Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Funciones de una variable real II Integrales impropias

RESOLUCIÓN DE EJERCICIOS DE COLOQUIO CLASIFICADOS POR TEMAS

1. INTEGRALES DEFINIDAS E IMPROPIAS

ANALISIS MATEMATICO II INTEGRAL DEFINIDA

y ) = 0; que resulta ser la

Introducir los elementos básicos del cálculo diferencial e integral de funciones numéricas de una variable real.

Integrales sobre caminos

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García

Transcripción:

Pntoj Crhuvilc Cálculo

Agend Algebr de Función Algebr de Función

Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t) que depende de t. Si l prtícul se mueve en el espcio su posición qued determind por tres coordends x(t), y(t) y z(t) dependientes de t. En el primer cso l posición de l prtícul se describe medinte un vector de dimensión dos cuys componentes depende de t y en el segundo cso medinte un vector de tres coordends cuys componentes están en función de t. Esto nos llev considerr un tipo nuevo de funciones. 3 Algebr de Función

4 Algebr de Función

(Definición) Un función de l form r(t) = f (t) i + g(t) j Plno ò r(t) = f (t) i + g(t) j + h(t) k Espcio es un función, donde ls funciones componentes f, g y h son funciones del prmetro t. Tmbién se denotn como r(t) = (f (t), g(t)) ó r(t) = (f (t), g(t), h(t)) 5 Algebr de Función

Ejemplos 1. Se r : I R R 3 tl que r(t) = (1 2t, 3 + t, 1 + t) 2. Se r : I R R 3 tl que r(t) = ( cos t, b sin t3 + t, t) 3. Se r : I R R 4 tl que r(t) = ( t, t 2, t 3, 2t + 1 ) 4. Se r : I R R 3 tl que r(t) = t, t 2, 3 1 t2 25 t4 6 Algebr de Función

Ejemplos 1. Hllr l función que describ los límites de l región 7 Algebr de Función 2. Hllr un función cuyo domio se el intervlo [ 3, 3] y cuyo rngo se el triángulo de vértice (1, 0, 0); (0, 1, 0); (0, 0, 1)

Dominio y Rngo Dd l función r : I R R n r(t) = (r 1 (t), r 2 (t),..., r n (t)) Donde r i : I R i {1, 2,..., n} Definición (Dominio) { } n Dom(r) = t I R / t Dom(r i ) i=1 8 Algebr de Función Definición (Rngo) Rng(r) = {(r 1 (t), r 2 (t),..., r n (t) / t Dom(r)}

Ejemplo Ejemplo Dd l función Hllr el dominio. r(t) = ( 9 t 2, 1 ) t 2 5t + 6, t [[t]] 9 Algebr de Función

Algebr de Definición Se r y u funciones es con dominios Dom(r) y Dom(u) respectivmente φ es un función rel con Dom(φ) entonces 1. (r ± u)(t) = r(t) ± u(t) Dom(r ± u) = Dom(r) Dom(u) 2. (r.u)(t) = r(t).u(t) Dom(r.u) = Dom(r) Dom(u) 3. (φ.r)(t) = φ(t).r(t) Dom(φ.r) = Dom(φ) Dom(r) 4. (r u)(t) = r(t) u(t) Dom(r u) = Dom(r) Dom(u) Pr R 3 10 Algebr de Función

Definición Decir que lim t r(t) = L signific que, pr cd ɛ > 0 dd existe un δ > 0 tl que r(t) L < ɛ, siempre que 0 < t < δ, es decir, 0 < t < δ r(t) L < ɛ Algebr de 11 Función Ejemplo ( ) Demuestre que lim t, t 2 + 1 = (1, 2) t 1

Teorem Si r(t) = (f (t), g(t), h(t)) entonces lim r(t) = (lim f (t), lim g(t), lim h(t)) t t t t siempre que existn los límites de ls funciones componentes. Ejemplo Dd l función r(t) = Evlur lim t 0 r(t) ( t sin t, 2 ) t, [[t2 1]] Algebr de 12 Función

Teorem Si u y v son dos funciones es tles que lim lim v(t) existen, se cumple t 1. lim (u + v)(t) = lim u(t) + lim v(t) t t t 2. lim (u.v)(t) = lim u(t). lim v(t) t t t 3. lim (u v)(t) = lim u(t) lim v(t) t t t t u(t), Algebr de 13 Función

Función Definición Se r un función, se dice que r es un función continu en si: 1. r() está definid 2. lim r(t) existe t 3. lim r(t) = r() t Algebr de 14 Función Si lgun de ls tres condiciones no cumple entonces l función no es continu en.

Teorem Un función r es continu en el punto r(t) = (r 1, r 2,..., r n ) si y solo si cd r n : R R es continu en. Algebr de 15 Función

Definición Se r un función cuyo dominio se un intervlo I. L derivd de r en t I es el vector r r(t + t) r(t) (t) = lim t 0 t siempre que el límite exist, en cuyo cso se dice que r es diferencible en t. Algebr de Función 16

Teorem Se r(t) = (f (t), g(t), h(t)), donde f, g y h son funciones diferencibles, entonces r (t) = (f (t), g (t), h (t)) Algebr de Función 17

Definición (Vector Velocidd) El vector no nulo r (t) se le llm vector velocidd de l curv C en el punto r(t). Si un función r : I R R 3 describe el movimiento de un prticul durnte un intervlo de tiempo I = [, b], entonces r (t) es l velocidd y r (t) es l rpidez de l prtícul en el instnte t. Algebr de Función 18

Teorem Supongmos que u y v son funciones es diferenciles, c es un esclr y f es un función rel. Entonces: d 1. dt [u(t) + v(t)] = u (t) + v (t) d 2. dt [cu(t)] = cu (t) d 3. dt [f (t)u(t)] = f (t)u(t) + f (t)u (t) d 4. dt [u(t).v(t)] = u (t).v(t) + u(t).v (t) d 5. dt [u(t) v(t)] = u (t) v(t) + u(t) v (t) d 6. dt [u(f (t))] = u (f (t))f (t) d 7. dt [ u(t) ] = u(t).u (t), u(t) 0 u(t) Algebr de Función 19

Ejercicio Utilizndo sus motores un nve espcil describe el movimiento: r(t) = (3 + t, 2 + ln t, 4 t 2 + 1 ) Se dese que llegue l estción ubicd en P=(6,4,9), en usenci de fuerzs grvitcionles. Cuándo hy que pgr los motores?. Cuál es el vlor de?. Algebr de Función 20

Curvs Definición Se dice que un curv C R n es un curv prmetrizd, si existe un función α : [, b] R n tl que α([, b]) = C. A α(t) = (α 1 (t), α 2 (t),..., α n (t)) se le llm prmetrizción de l curv C. Algebr de Función 21

Se C un curv tl que α([, b]) = C, α : [, b] R n Definición Un curv α es un con puntos dobles si α no es inyectiv en [, b], o equivlentemente, si existen t 1, t 2 [, b], t 1 t 2 tles que α(t 1 ) = α(t 2 ). Algebr de Función 22

Ejemplos 1. Un curv C prmetrizd por α(t) = (t 2, t 3 t), t R 2. Un curv C prmetrizd por cos 3t sin 3t α(t) = (cos t, sin t ), t [ π, π] 2 2 Algebr de Función 23

Definiciones Definición Se dice que C es un curv simple sino posee puntos dobles. Definición Se dice que C es un curv cerrd si α() = α(b). Definición Se dice que C es un curv suve o regulr si posee prmetrizción α tl que α (t) 0 pr todo t [, b] Algebr de Función 24

Ejemplos Ejemplo Se α : [0, 3π] R 2 definid por no es un curv regulr. α(t) = (t sin(t), 1 cos t) Algebr de Función 25

Definición Se l función diferencil r = (r 1, r 2,..., r n ) continu en [, b], entonces b donde r(t)dt = ( b b ) b r 1 (t)dt, r 2 (t)dt,..., r n (t)dt r(t)dt = g(t) + c Algebr de Función 26 Si g (t) = r(t)

Primer Teorem Fundmentl del Cálculo Definición Se r : [, b] R n un función continu en [, b], entonces l función F definid por F(t) = t r(t)dt es derivble y F (t) = r(t) t [, b] t b Algebr de Función 27

Segundo Teorem Fundmentl de Cálculo Definición Se r : [, b] R n uns función con derivds integrbles entonces b r (t)dt = r(b) r() Algebr de Función 28

Propieddes Sen r, u : [, b] R n funciones es integrbles y c = (c 1, c 2,..., c n ) un vector constnte 1. 2. 3. 4. b b b b αr(t)dt = α b (r(t) ± u(t))dt = b (c.r(t))dt = c c r(t)dt = c r(t)dt b r(t)dt b α R b r(t)dt ± u(t)dt r(t)dt solo en R 3 5. Si r(t)(t) es integrble en [, b], tenemos que b b r(t)dt r(t) dt Algebr de Función 29

Diferencil de un Función Se r : [, b] R R n tl que r(t) = (r 1 (t), r 2 (t),..., r n (t)), definiremos el incremento de r en el punto t 0 r(t 0 ) = r(t 0 + h) r(t 0 ), Interpretción pr n = 3 t 0, t 0 + h I Algebr de Función 30

Continución... Si definimos r(t 0 + h) r(t 0 ) r φ(t 0 ; h) = (t 0 ), h 0, si h = 0 si h 0 entonces se puede escribir r(t 0 ; h) = r(t 0 + h) r(t 0 ) = hr (t 0 ) +hφ(t 0 ; h) }{{} dr(t 0 ) Algebr de Función 31

Continución... r(t 0 + h) = r(t 0 ) + dr(t 0 ) + hφ(t 0, h) Si lim hφ(t 0, h) = 0 r(t 0 ) dr(t 0 ) h 0 r(t 0 + h) r(t 0 ) + dr(t 0 ) r(t 0 + h) r(t 0 ) + r (t 0 ).h Al vector hr (t 0 ) se denomin el diferencil de r en t 0 hr (t 0 ) = dr(t 0 ) = r (t 0 )dt Algebr de Función 32 Ejemplo Si r(t) = (sin t, t 3 2, e 4t 1), proximr r(0.25)

Longitud de Arco Teorem Si C es un curv suve dd por r(t) = x(t)i + y(t)j + z(t)k, en un intervlo [, b], entonces l longitud de rco de C en el intervlo es s = b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 = r (t) dt Algebr de Función Ejemplo Hllr l longitud de rco de l hélice circulr r(t) = (cos t, sin t, t) desde el punto (1, 0, 0) l punto (1, 0, 2π) 33

Prmetro Longitud de Arco Pr estudir ls propieddes geométrics de un curv, el prámetro decudo es menudo l longitud de rco S. Definición Se C un curv suve dd por r(t) definid en [, b], l función longitud de rco está ddo por s(t) = t r (t) dt t [, b] Algebr de Función A l longitud de rco s se llm prmetro longitud de rco. Notción: 34 ds dt = s (t) = r (t)

Ejemplo Se C un curv descrit por l función r(t) = (3 3t, 4t), 0 t 1, describir l curv C en términos de l longitud de rco. Not: Si t es culquier prmetro tl que r (t) = 1, entonces t es prámetro longitud de rco. Algebr de Función 35

Ejercicio Un tryectori está dd por l función ( ) 2 g(s) = s rctn(s), 2 ln(s2 + 1), rctn(s) Determinr si el prmetro s es l longitud de rco. Algebr de Función