Tema: Razonamiento con Incertidumbre.

Documentos relacionados
Razonamiento bajo incertidumbre

Teoría de probabilidades

Métodos de Inteligencia Artificial

Incertidumbre y conocimiento

Por ello, son necesarios los sistemas expertos que traten situaciones de incertidumbre.

Sistemas Expertos basados en probabilidad (2011/2012)

Determinar la incertidumbre al momento de desarrollar aplicativos en inteligencia artificial, haciendo uso de estructuras probabilísticas..

Inteligencia Artificial II Razonamiento Bayesiano

Razonamiento, Actuación y Aprendizaje bajo Incertidumbre

Indique la respuesta correcta (d=ninguna de las anteriores, e=todas las anteriores)

Razonamiento probabilístico y Redes Bayesianas

Tema: Arboles en C#. Objetivos Específicos. Materiales y Equipo. Introducción Teórica. Definición de Árbol Binario. Programación IV. Guía No.

Tema: Programación Dinámica.

Tema: Algoritmos para la ruta más corta en un Grafo.

Incertidumbre. Dr. Jesús Antonio González Bernal

Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA

Tema: Programación Dinámica.

MÓDULO I. TEORÍA DE LA PROBABILIDAD

4.3. COMPETENCIA MATEMÁTICA

APRENDIZAJE PROBABILÍSTICO NAIVE BAYES

Representación del conocimiento. Lógica y representación del conocimiento.

Probabilidad y Estadística

Desarrollo e impacto de la Estadística Bayesiana

Sesión 2: Teoría de Probabilidad

Sistemas Expertos basados en probabilidad (2010/2011)

Introducción a la Lógica

CIENCIAS FORMALES CIENCIAS FÁCTICAS

Tema: Programación Dinámica.

Universidad Nacional de Educación a Distancia Ingeniería Técnica en Informática de Sistemas Introducción a la Inteligencia Artificial (2º curso)

Desde hace algún tiempo los problemas más recurrentes con los que se enfrenta la industria

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS

Universidad Nacional de Educación a Distancia Ingeniería Técnica en Informática de Sistemas Introducción a la Inteligencia Artificial (2º curso)

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes

Bases Formales de la Computación: Redes de Bayes (segunda parte)

Solución al parcial 14

Asignaturas antecedentes y subsecuentes

Sesión 2: Teoría de Probabilidad

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

MATEMÁTICAS APLICADAS A LAS CCSS II. 1. Resolver sistemas de ecuaciones lineales mediante el método de Gauss.

Capítulo 4. Lógica matemática. Continuar

Tema 2: Teoría de la Demostración

Probabilidad y Estadística

LOGICA DIFUSA. Dámaso López Aragón

Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional

Tema 9: Contraste de hipótesis.

Inferencia estadística: Prueba de Hipótesis. Jhon Jairo Padilla A., PhD.

COMPETENCIA MATEMÁTICA 2º CURSO DE EDUCACIÓN SECUNDARIA OBLIGATORIA

M.C. Francisco Alberto Hernandez de la Rosa Fecha de elaboración: Agosto de 2004 Fecha de última actualización: Julio de 2010

Tema 4. Probabilidad Condicionada

Matemáticas Discretas TC1003

LÓGICA Y CONJUNTOS DIFUSOS

Experimento Aleatorio o ensayo

DEFINICIONES BÁSICAS

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción

Representación de Conocimientos

INDICE. Prólogo a la Segunda Edición

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO

Evaluación Nacional Revisión del intento 1

Formalismos de Representación de Conocimientos

CÁLCULO DE PROBABILIDADES

Capítulo 2. disponibles las habilidades de los expertos a los no expertos. Estos programas tratan de

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre

Fecha de elaboración: 2003 Fecha de última actualización: F1232 Probabilidad y Estadística 1/9

Métodos de Inteligencia Artificial

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL DEPARTAMENTO DE INGENIERÍA HIDROMETEOROLÓGICA LABORATORIO:

Enunciados Abiertos y Enunciados Cerrados

Universidad Tecnológica Nacional Facultad Regional San Francisco. Licenciatura en Administración Rural. Estadística

4.12 Ciertos teoremas fundamentales del cálculo de probabilidades

Criterios de evaluación 3º de ESO. Matemáticas Orientadas a las Enseñanzas Aplicadas

Calendario Lenguaje Matemática Inglés Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 28 de Junio 30 de Junio 4 de Julio

Lógicas para la Informática y la Inteligencia Artificial Memoria de la práctica DiagVenn 1.0

TALLER DE MATEMÁTICAS 1º E.S.O.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Criterios de evaluación Matemáticas I.

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas

INSTITUCIÓN EDUCATIVA EL NACIONAL MALLA CURRICULAR GRADO 11

2. Conceptos Básicos de Probabilidad. ESTADÍSTICA Esp. Paola G. Herrera S.

DESARROLLO DE LAS UNIDADES DIDÁCTICAS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Nombre de la asignatura: Probabilidad y Estadística. Créditos: Aportación al perfil

Matemáticas Aplicadas a las Ciencias Sociales II. Comisión Permanente

MATEMÁTICAS APLICADAS A LAS CCSS II (2º BACHILLERATO)

Lógica Proposicional. Cátedra de Matemática

PROBABILIDAD Y ESTADÍSTICA

Introducción a los Sistemas Basados en el Conocimiento (2011/2012)

INFERENCIA PARÁMETRICA: RELACIÓN ENTRE DOS VARIABLES CUALITATIVAS

Carrera: Ingeniería Civil CIM 0531

Tema 1: Sintaxis y Semántica de la Lógica Proposicional

1. DATOS DE LA ASIGNATURA. Nombre de la Asignatura: Carrera: Clave de la Asignatura: SACTA: PRESENTACION. Caracterización de la asignatura.

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012

Inteligencia Artificial

TEMA 1.- PROBABILIDAD.- CURSO

Matemáticas Discretas Lógica

Probabilidad y Estadística

11/1/2017. Temario. Sistema Basado en Conocimiento

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO

Unidad 1: Probabilidad

Tema 3: Cálculo de Probabilidades Unidad 1: Introducción y Concepto

LECTURA 10: NOCIONES DE PROBABILIDAD (PARTE I) DEFINICIONES BÁSICAS DE PROBABILIDAD. PROBABILIDAD Y ENFOQUES DE PROBABILIDAD

1. La Distribución Normal

Transcripción:

Sistemas Expertos e Inteligencia Artificial. Guía No. 7 1 Tema: Razonamiento con Incertidumbre. Facultad: Ingeniería Escuela: Computación Asignatura: Sistemas Expertos e Inteligencia Artificial Objetivos Específicos Comprender la importancia de la lógica clásica y la incertidumbre en la aplicación de la Inteligencia Artificial. Comprender el método de razonamiento e incertidumbre, que es un punto en el cual no sabemos qué puede pasar, por lo que usando métodos probabilísticos tratamos de predecirlo. Materiales y Equipo Guía Número 7. Computadora con programa Microsoft Visual C#. Introducción Teórica Todos los mecanismos de representación de conocimiento vistos están basados en la lógica bajo estos supuestos: Todo hecho sobre el que razonemos debe poder ser evaluado como cierto o falso. Para poder razonar necesitamos tener todos los hechos a nuestra disposición. Pero en la práctica nos encontramos con estos problemas: Representar el conocimiento para cubrir todos los hechos que son relevantes para un problema es difícil. Existen dominios en los que se desconocen todos los hechos y reglas necesarias para resolver el problema. Existen problemas en los que aun teniendo las reglas para resolverlos no disponemos de toda la información necesaria o no tenemos confianza absoluta en ellas. En otros problemas las reglas no se aplican siempre o su confianza cambia con la confianza que tenemos en los hechos.

2 Sistemas Expertos e Inteligencia Artificial. Guía No. 7 En la guía anterior se describieron técnicas de representación del conocimiento y razonamiento para un modelo del mundo completo, consistente e inalterable. Sin embargo, en muchos dominios de interés no es posible crear tales modelos debido a la presencia de incertidumbre: Falta de conocimiento seguro y claro de algo. (Diccionario RAE). Razonamiento. El razonamiento es una operación lógica mediante la cual, partiendo de uno o más juicios, se deriva la validez, la posibilidad o la falsedad de otro juicio distinto. Por lo general, los juicios en que se basa un razonamiento expresan conocimientos ya adquiridos o, por lo menos, postulados como hipótesis. Los razonamientos pueden ser válidos (correctos) o no válidos (incorrectos). En general, se considera válido un razonamiento cuando sus premisas ofrecen soporte suficiente a su conclusión. Un razonamiento lógico, en definitiva, es un proceso mental que implica la aplicación de la lógica. A partir de esta clase de razonamiento, se puede partir de una o de varias premisas para arribar a una conclusión que puede determinarse como verdadera, falsa o posible. Razonamiento No Lógico. No sólo se basa en premisas con una única alternativa correcta (razonamiento lógico-formal, el descrito anteriormente), sino que es más amplio en cuanto a soluciones, basándose en la experiencia y en el contexto. Los niveles educativos más altos suelen usar el razonamiento lógico, aunque no es excluyente. Ejemplo: clasificación de alimentos, el de tipo lógico-formal los ordenará por verduras, carnes, pescados, fruta, etc. en cambio el tipo informal lo hará según lo ordene en el refrigerador, según lo vaya cogiendo de la tienda, etc. Hasta ahora se ha manejado conocimiento categórico: conocimiento siempre era verdadero o falso. Razonamiento exacto (reglas, hechos y conclusiones no ambiguos). En el mundo real, el conocimiento es dudoso y/o incompleto; el sistema inteligente puede no tener acceso a toda la información necesaria; el razonamiento es inexacto (hechos y/o reglas inciertas). Incertidumbre. Falta de información adecuada para tomar una decisión o realizar un razonamiento. Puede impedir llegar a una conclusión correcta.

Sistemas Expertos e Inteligencia Artificial. Guía No. 7 3 Principio de incompatibilidad de Zadeh: A medida que aumenta la complejidad de un sistema, nuestra capacidad para hacer afirmaciones sobre su comportamiento que sean precisas y, al mismo tiempo, significativas, va disminuyendo, hasta alcanzar un umbral por debajo del cual precisión y significación (o pertinencia) llegan a ser características casi mutuamente excluyentes. Proposición incierta: su valor de verdad o falsedad no se conoce o no se puede determinar. Proposición imprecisa: aquella referida a una variable cuyo valor no puede determinarse con exactitud Por lo tanto, una proposición incierta puede ser precisa; una proposición imprecisa puede no ser incierta. Ejemplo: x tienefiebre (x) tienegripe (x) No es necesariamente cierto en todos los casos. Una persona con fiebre puede tener catarro, bronquitis, etc. Una forma más correcta (pero poco útil) seria: x tienefiebre (x) tienegripe (x) tienecatarro (x) tienebronquitis (x)... Otro ejemplo: x fiebrealta (x) dolormuscula r(x) tienegripe (x) x fiebrealta (x) dolormuscular (x) tieneebola (x) A cuál de las dos reglas habría que hacer más caso? Ejemplo de imprecisión: Cuándo es verdadero o falso el antecedente? x frentemuycaliente (x) fiebrealta (x) Por ello, también podemos hacer las siguientes definiciones: Grado de creencia: En la incertidumbre, la proposición es verdadera o es falsa, sólo que no se sabe. Grado de verdad: En la imprecisión sabemos que la variable tiene un valor, pero no lo conocemos (subjetivo). El grado de creencia es otra forma de expresar el conocimiento. Por ejemplo: creemos, basándonos en nuestras percepciones, que un paciente que tenga dolor de muelas, tiene caries con una probabilidad del 80 %.

4 Sistemas Expertos e Inteligencia Artificial. Guía No. 7 En teoría de la probabilidad, se expresa como P (Caries = true Dolor = true) = 0,8 La probabilidad expresa el grado de creencia, no el grado de verdad. Por tanto, la probabilidad puede cambiar a medida que se conocen nuevas evidencias. La teoría de la probabilidad servirá como medio de representación del conocimiento incierto. Fuentes de incertidumbre. Con respecto a los hechos: Ignorancia Puede que en un determinado campo el conocimiento sea incompleto. Por ejemplo en el campo de las Ciencias Médicas. Aunque se pudiera completar el conocimiento, puede ser necesario tomar decisiones con información incompleta. Ejemplo: un paciente llega con gravedad a urgencias y es necesario proponer un tratamiento sin que sea posible realizar todos los tests necesarios para saber con total exactitud su enfermedad. En otros campos la ignorancia es irreducible Presente en modelos físicos, ejemplo: Cuál será el resultado del lanzamiento de una moneda? Presente en la vida real, ejemplo: Es la otra persona sincera? Vaguedad e Imprecisión Algunos conceptos son vagos o imprecisos, ejemplo: las personas altas, guapas, felices etc. Con respecto a las reglas: Las reglas son generalmente heurísticas que utilizan los expertos en determinadas situaciones. En el mundo real utilizamos habitualmente reglas que son: Inexactas o incompletas Si es un ave entonces vuela, y los pingüinos? Si te duele la cabeza tienes gripe y si te diste un golpe? Imprecisas Si el agua está caliente añada un poco de sal Inconsistentes Al que madruga Dios le ayuda

Sistemas Expertos e Inteligencia Artificial. Guía No. 7 5 No por mucho madrugar amanece más temprano Razonamiento con incertidumbre. Objetivo: Ser capaz de razonar sin tener todo el conocimiento relevante en un campo determinado utilizando lo mejor posible el conocimiento que se tiene. Asociar a los elementos del formalismo de representación, información adicional (normalmente valores numéricos) que indique su grado de certeza y manejar esa información en las inferencias. Implementación: Es difícil cumplir estos requerimientos utilizando la lógica de primer orden Deben de introducirse modelos para manejar información vaga, incierta, incompleta y contradictoria. Crucial para que un sistema funcione en el mundo real. El propósito último de un sistema inteligente es actuar de forma óptima utilizando el conocimiento del sistema y un conjunto de percepciones. Para actuar se necesita decidir qué hacer. Cuál es la forma correcta de decidir? La decisión racional: cuando se tienen distintas opciones un sistema debe decidirse por aquella acción que le proporcione el mejor resultado. Cuando hay incertidumbre para poder decidir racionalmente se requiere: La importancia de los distintos resultados de una acción. La certidumbre de alcanzar esos resultados cuando se realiza la acción. Cuestiones a resolver por las aproximaciones a la Incertidumbre: Cómo evaluar la aplicabilidad de las condiciones de las reglas? Si X es mayor necesita gafas. Se puede aplicar la regla si X tiene 40 años? Cómo combinar hechos imprecisos? X es alto, X es rubio. Con que certidumbre puedo afirmar que X es alto y rubio? Dado un hecho impreciso y una regla imprecisa: qué confianza se puede tener en las conclusiones? X estudia mucho. Si X estudia mucho aprobará Con que certidumbre puedo afirmar que X aprobará?

6 Sistemas Expertos e Inteligencia Artificial. Guía No. 7 Dada la misma conclusión incierta de varias reglas: qué confianza se puede tener en la conclusión? Juan llega tarde, Luis llega tarde. Si Juan llega tarde la carretera está cortada. Si Luis llega tarde la carretera está cortada. Cuál es la certidumbre de que la carretera esté cortada? Inicialmente la mayoría de los investigadores en IA enfatizaban la importancia del razonamiento simbólico y evitaban la utilización de números. Los sistemas expertos no deben usar números puesto que los expertos humanos no lo hacen. Los expertos no pueden suministrar los números requeridos. Sin embargo los ingenieros que desarrollaban las aplicaciones se dieron cuenta pronto de la necesidad de representar la incertidumbre. El sistema experto MYCIN (años 70) para el tratamiento de infecciones bacterianas fue el primer éxito en este campo. Los métodos numéricos (especialmente los basados en probabilidad) son actualmente una herramienta aceptada en IA debido a los éxitos prácticos y a la complejidad de las teorías alternativas. Manejo de la Incertidumbre. Se han desarrollado diversas técnicas para manejo de incertidumbre en sistemas inteligentes, que podemos dividir en dos grandes grupos: Técnicas simbólicas (no numéricas). Técnicas numéricas. Entre las técnicas simbólicas tenemos: Lógicas no monotónicas. Como la LPO (Lógica de Primer Orden) asume que el conocimiento es completo y consistente, una vez que un hecho se asume/es cierto permanece así (Monotonía). Por ejemplo: si de una Base de Conocimiento (BC) se deduce una expresión s, y se tiene otra Base de conocimiento BC de forma que BC BC, entonces de BC también se deduce s. Por tanto el añadir nuevo conocimiento siempre incrementa el tamaño de la Base de Conocimiento. La presencia de conocimiento incompleto nos lleva a modelos no monótonos: El conocimiento de nuevos hechos puede hacer que nos retractemos de algunas de nuestras creencias. Ejemplo: Generalmente voy a la Universidad en bus. Veo en el periódico que hay huelga. Tengo que retractar que voy a la Universidad en bus.

Sistemas Expertos e Inteligencia Artificial. Guía No. 7 7 Lógicas por defecto. Propuesta por Reiter para solucionar el problema del conocimiento incompleto (1980). Para ello se introducen una serie de reglas por defecto. Intuitivamente: Las reglas por defecto expresan características comunes a un conjunto de elementos que se asumen ciertas salvo que se indique lo contrario. Lógicas basadas en modelos mínimos. Asunción del mundo cerrado: Sirve para manejar conocimiento incompleto. Intuitivamente: Lo que no se puede probar a partir de mi Base de Conocimiento es falso. Es utilizado en las bases de datos y Prolog. Inconvenientes: Teorías complejas y a veces inconsistentes. Entre las técnicas numéricas tenemos: Modelos estadísticos-probabilísticos. Modelo aproximado. Modelo de lógica difusa. Modelos estadísticos-probabilísticos. Los modelos probabilistas se basan en la teoría de la probabilidad. Las probabilidades se utilizan para modelizar nuestra creencia sobre los posibles valores que pueden tomar los hechos. Cada hecho tendrá una distribución de probabilidad asociada que nos permitirá tomar decisiones. La probabilidad de un hecho podrá ser modificada por nuestra creencia en otros hechos que estén relacionados. La probabilidad resume en un número la incertidumbre respecto a un hecho. Son modelos teóricos sólidos y bien conocidos para manejar incertidumbre. Ofrece un lenguaje formal para representar conocimiento incierto y mecanismos para razonar con él. Pero tiene los siguientes problemas: o En ocasiones poco intuitivo. En algunos dominios puede no ser natural pensar en términos de probabilidades o Restrictivo. Para su aplicación práctica necesita asumir ciertas propiedades (independencia entre variables aleatorias) que no siempre se ajustan a la realidad. La teoría de la probabilidad es un área de las Matemáticas que ha sido aplicada a problemas de razonamiento con incertidumbre. Es una teoría elegante, bien entendida y con mucha historia

8 Sistemas Expertos e Inteligencia Artificial. Guía No. 7 (formalizaciones a partir de mediados del siglo XVII). Asigna valores numéricos (llamados probabilidades) a las proposiciones. Nos dice, dadas las probabilidades de ciertas proposiciones, y algunas relaciones entre ellas como asignar probabilidades a las proposiciones relacionadas. Relación con la LPO: En la LPO las proposiciones son ciertas o falsas. Con la teoría de la probabilidad, las proposiciones son también ciertas o falsas pero se tiene un grado de creencia en la certeza o falsedad. La técnica más antigua y mejor definida para manejar la incertidumbre es la Regla de Bayes, la misma que está basada en la teoría clásica de la probabilidad Las hipótesis son más o menos probables dependiendo de las posibilidades de los hechos o evidencias que las sostiene. Las probabilidades se calculan en base a la fórmula general de la probabilidad condicionada de Bayes o algunas transformaciones de la misma. Fue propuesta en 1763 por el matemático y reverendo británico Thomas.Bayes. Para poder comprender la técnica, recordaremos algunos conceptos estadísticos y de probabilidad. El elemento básico de teoría de probabilidades es la variable aleatoria. Una variable aleatoria tiene un dominio de valores, podemos tener variables aleatorias booleanas, discretas o continuas. Definiremos una proposición lógica como cualquier fórmula en lógica de enunciados o predicados. Una proposición lógica tendrá asociada una variable aleatoria que indicará nuestro grado de creencia en ella. Una variable aleatoria tendrá asociada una distribución de probabilidad (la probabilidad para cada valor que pueda tomar). Consiste en listar los valores de probabilidad para cada valor de la variable. La forma de expresar esta distribución de probabilidad dependerá del tipo de variable aleatoria (Discretas: Binomial, Multinomial,, Continuas: Normal, 2,...). Ejemplo: Distribución de probabilidad de la variable Llueve : La unión de variables aleatorias se puede describir mediante una distribución de probabilidad conjunta. Ejemplo: distribución conjunta de las variables Sabe_Concepto y Resuelve_Ejercicio, P(Sabe_Concepto, Resuelve_Ejercicio)

Sistemas Expertos e Inteligencia Artificial. Guía No. 7 9 Observemos que nos recuera a la tabla de verdad lógica, excepto que: o Describe las probabilidades para cada combinación de valores de las variables. o Generalmente dichos valores no se pueden calcular a partir de sus componentes. Denotaremos como P (a) la probabilidad de que la proposición (variable aleatoria) A tenga el valor a. Por ejemplo, la proposición Fumar puede tener los valores {fumar, fumar}, P ( fumar) es la probabilidad de la proposición Fumar = fumar Denotaremos como P (A) al vector de probabilidades de todos los posibles valores de la proposición A Definiremos como probabilidad a priori (P (a)) asociada a una proposición como el grado de creencia en ella a falta de otra información. Definiremos como probabilidad a posteriori o condicional (P (a b)) como el grado de creencia en una proposición tras la observación de proposiciones asociadas a ella. La podemos interpretar como mi grado de creencia en a cuando todo lo que sé es b. O de otra forma alternativa, de los casos en los que se da b, en qué proporción se da a? La probabilidad a posteriori se puede definir a partir de probabilidades a priori como: Esta fórmula se puede transformar en lo que denominaremos la regla del producto: P (a b) = P (a b) P (b) = P (b a) P (a)

10 Sistemas Expertos e Inteligencia Artificial. Guía No. 7 Los axiomas de la probabilidad serán el marco que restringirá las cosas que podremos creer y deducir. Toda probabilidad está en el intervalo [0, 1] La proposición cierto tiene probabilidad 1 y la proposición falso tiene probabilidad 0. P (cierto) = 1 P (falso) = 0 La probabilidad de la disyunción se obtiene mediante la fórmula: Nos permite conocer la probabilidad de que se tomen unos determinados valores por un conjunto de variables aleatorias cuando se saben los valores que han tomado otras. Ejemplo: P (Resuelve_Ejercicio Sabe_Concepto) Las leyes de la probabilidad permiten establecer diferentes métodos de inferencia: Marginalización: Probabilidad de una proposición atómica con independencia de los valores del resto de proposiciones Probabilidades condicionadas: Probabilidad de una proposición dados unos valores para algunas proposiciones e independiente del resto de proposiciones (a partir de la regla del producto) El valor es un factor de normalización que corresponde a factores comunes que hacen que las probabilidades sumen 1. Ejemplo: Consideremos un problema en el que intervengan las proposiciones:

Sistemas Expertos e Inteligencia Artificial. Guía No. 7 11 Fumador = {fumador, fumador}, Sexo = {varón, mujer}, Enfisema = {enfisema, enfisema} Y la siguiente tabla de probabilidades: Entonces, pueden encontrarse los siguientes cálculos: P (enfisema varón) = 0,2 + 0,02 P (fumador mujer) = 0,2 + 0,1 + 0,05 + 0,05 + 0,02 + 0,33 P (Fumador enfisema) = (P (fumador, enfisema, varón) + P (fumador, enfisema, mujer), P ( fumador, enfisema, varón) + P ( fumador, enfisema, mujer)) = (0,3, 0,04) = (0,88, 0,12) Hacer estos procesos de inferencia requiere almacenar y recorrer la distribución de probabilidad conjunta de todas las proposiciones. Suponiendo proposiciones binarias el coste en espacio y tiempo es O (2 n ) siendo n el número de proposiciones. Para cualquier problema real estas condiciones son impracticables. Necesitamos mecanismos que nos simplifiquen el coste del razonamiento. Por lo general no todas las proposiciones que aparecen en un problema están relacionadas entre sí. Muestran la propiedad que denominaremos independencia probabilística. Esto quiere decir que unas proposiciones no influyen en las otras y por lo tanto podemos reescribir sus probabilidades como: P (X Y) = P (X); P (Y X) = P (Y); P(X, Y) = P (X) P (Y) Dadas estas propiedades podremos reescribir las probabilidades conjuntas de manera más compacta reduciendo la complejidad. Regla de Bayes. Hemos enunciado la regla del producto como: P (X, Y) = P (X Y) P (Y) = P (Y X) P (X)

12 Sistemas Expertos e Inteligencia Artificial. Guía No. 7 Esto nos lleva a lo que denominaremos la regla de Bayes: De forma intuitiva, la probabilidad de una hipótesis X dada una evidencia Y : P (X Y) es proporcional a la probabilidad de la hipótesis P (X) multiplicada por el grado en que la hipótesis predice los datos P (Y X). Esta regla es útil para calcular la probabilidad de un diagnóstico a partir de una probabilidad causal: P (Causa Efecto) = P (Efecto Causa) P (Causa) P (Efecto) Esta regla y la propiedad de independencia serán el fundamento del razonamiento probabilístico y nos permitirá relacionar las probabilidades de unas evidencias con otras. Suponiendo que podemos estimar exhaustivamente todas las probabilidades que involucran todos los valores de la variable Y podemos reescribir la fórmula de Bayes como: P (Y X) = P (X Y) P (Y) Suponiendo independencia condicional entre dos variables podremos escribir: P (X, Y Z) = P (X Z) P (Y Z) De manera que: P (Z X, Y) = P (X, Y Z) P (Z) = P (X Z) P (Y Z) P (Z) Por ejemplo: En esta regla es que se fundamentan las redes bayesianas.

Sistemas Expertos e Inteligencia Artificial. Guía No. 7 13 Forma general de la Regla de Bayes. Si se tiene un conjunto de proposiciones {A 1, A 2,, A m} completas y mutuamente excluyentes se tiene: O lo que es lo mismo, si tiene una variable aleatoria A con valores a 1, a 2,, a m Esto da origen a la inferencia Bayesiana (Teorema de Bayes): Este teorema modela la probabilidade de que un suceso Ei sea debido a una causa (hipótesis) Hj. Las causas Hj tienen que ser mutuamente excluyentes. La ecuación se modifica para combinar evidencias (E 2 se produce despúes de E 1). Las redes bayesianas se forman combinando una serie de pasos de inferencia bayesiana, a modo de una red de causas red causal. Procedimiento Ejemplo 1. En este ejemplo mostraremos el uso de la regla de Bayes. Se pretende determinar si un alumno conoce un concepto en base a la resolución de un ejercicio. En este caso: Hipótesis (SC): Sabe_Concepto (variable aleatoria con dos valores verdadero y falso) Evidencia (RE): Resuelve_Ejercicio (variable aleatoria con dos valores positivo y negativo) Los datos son:

14 Sistemas Expertos e Inteligencia Artificial. Guía No. 7 Aplicando la Regla de Bayes: P (sc re) = P (re sc) P (sc) / (P (re sc) P (sc) + P (re sc) P ( sc)) = [(0.76) * (0.80)] / [(0.76) * (0.80) + (0.18) * (0.20)] = 0.95 Entonces: P ( sc re) = 0.05 Al elegir la hipótesis más probable debemos concluir que si resuelve el ejercicio sabe el concepto. La red asociada es: Y si hay varios ejercicios E 1,..., E m? Supondremos que cada ejercicio RE 1, RE 2,..., RE m es una variable aleatoria que indica si se resuelve con dos valores: verdadero y falso. Entonces si queremos calcular la probabilidad de que el alumno sepa el concepto necesitamos calcular: P (SC E 1, RE 2,..., RE m) = P (RE 1,,..., RE m SC) P (SC) / P (RE 1,RE 2,...,RE m) Si al alumno se le hace un conjunto de 7 ejercicios: Entonces para almacenar la tabla de probabilidad conjunta P (RE 1, RE 2,..., RE m SC) se necesitan guardar unos 2 7 números reales (aproximadamente un DVD por alumno). De donde sacamos los números? Cómo hacemos los cálculos computacionalmente eficientes? Una solución sería utilizar la independencia probabilística explicada anteriormente.

Análisis de resultados Sistemas Expertos e Inteligencia Artificial. Guía No. 7 15 Tomando como referencia la información presentada en la guía y en el ejemplo No.1, implementar un simulador (en entorno de Windows Forms) para el agente basado en el razonamiento con incertidumbre que resuelva el problema planteado a continuación. Un centro médico tiene una base de datos consistente en las historias clínicas de N = 1,000 pacientes. Estas historias clínicas se resumen gráficamente en la figura siguiente: Hay 700 pacientes (la región sombreada) que tienen la enfermedad adenocarcinoma gástrico (G), y 300 que no la tienen (se considera estar sano como otro valor posible de la enfermedad). Tres síntomas, dolor (D), pérdida de peso (P) y vómitos (V), se considera que están ligados a esta enfermedad. Por tanto, cuando un paciente nuevo llega al centro médico, hay una probabilidad 700/1000 = 70% de que el paciente tenga adenocarcinoma gástrico. Esta es la probabilidad inicial, o a priori, puesto que se calcula con la información inicial, es decir, antes de conocer información alguna sobre el paciente. Por simplicidad de notación, se utiliza g para indicar que la enfermedad está presente y g para indicar que la enfermedad está ausente. Notaciones similares se utilizan para los síntomas. Por tanto, pueden hacerse las afirmaciones siguientes: Probabilidad a priori : 440 de 1,000 pacientes vomitan. Por ello, p (v) = card (v) / N = 440 / 1000 = 0.44, donde card (v) denota el número de pacientes de la base de datos que vomitan. Esto significa que el 44 % de los pacientes vomitan. Verosimilitud: El 50 % de los pacientes que tienen la enfermedad vomitan, puesto que p (v g) = card (v, g) / card (g) = 350 / 700 = 0.5, mientras que sólo 30 % de los pacientes que no tienen la enfermedad vomitan, puesto que p (v g) = card (v, g) / card( g) = 90

16 Sistemas Expertos e Inteligencia Artificial. Guía No. 7 / 300 = 0.3. Verosimilitud: El 45 % de los pacientes que tienen la enfermedad vomitan y pierden peso, P (v, p g) = card (v, p, g) / card (g) = 315 / 700 = 0.45, mientras que sólo el 12 % de los que no tienen la enfermedad vomitan y pierden peso, p (v, p g) = card (v, p, g) / card ( g) = 35 / 300 0.12. Puesto que la probabilidad inicial de que el paciente tenga adenocarcinoma gástrico, p (g) = 0.7, no es suficientemente alta para hacer un diagnóstico (observe que tomar una decisión ahora implica una probabilidad 0.3 de equivocarse), el doctor decide examinar al paciente para obtener más información. Supóngase que los resultados del examen muestran que el paciente tiene los síntomas vómitos (V = v) y pérdida de peso (P = p). Ahora, dada la evidencia (el paciente tiene esos síntomas), cuál es la probabilidad de que el paciente tenga la enfermedad? Esta probabilidad a posteriori puede ser obtenida de la probabilidad a priori y de las verosimilitudes, aplicando el teorema de Bayes. Debe elaborarse el simulador, implementando el razonamiento con incertidumbre utilizando el teorema de Bayes. El simulador debe ser capaz de dar un diagnóstico en base a los síntomas que se le indiquen a través de los datos introducidos por el usuario. Considerar todas las validaciones necesarias. Investigación Complementaria Para la siguiente semana: Investigar sobre las enfermedades transmitidas por el zancudo, específicamente las que están afectando actualmente a nivel mundial: Chikungunya, Dengue y Zika. Ampliar la funcionalidad del agente basado en el razonamiento con incertidumbre elaborado durante la práctica, de tal manera que sea capaz de dar un diagnóstico a un paciente en base a los síntomas presentados (introducidos al sistema por el usuario). La solución debe implementarse aplicando el razonamiento con incertidumbre utilizando el teorema de Bayes. Considerar todas las validaciones necesarias.

Sistemas Expertos e Inteligencia Artificial. Guía No. 7 17 Guía 7: Razonamiento con Incertidumbre. Hoja de cotejo: 7 Alumno: Máquina No: Docente: GL: Fecha: EVALUACIÓN % 1-4 5-7 8-10 Nota CONOCIMIENTO Del 20 al 30% Conocimiento deficiente de los fundamentos teóricos Conocimiento y explicación incompleta de los fundamentos teóricos Conocimiento completo y explicación clara de los fundamentos teóricos APLICACIÓN DEL CONOCIMIENTO Del 40% al 60% ACTITUD Del 15% al 30% No tiene actitud proactiva. Actitud propositiva y con propuestas no aplicables al contenido de la guía. Tiene actitud proactiva y sus propuestas son concretas. TOTAL 100%