EL MISTERIO DE LAS PIRÁMIDES DE EGIPTO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL MISTERIO DE LAS PIRÁMIDES DE EGIPTO"

Transcripción

1 EL MISTERIO DE LAS PIRÁMIDES DE EGIPTO UN ENIGMA VIGENTE Se le preguntó a un grupo de alumnos de segundo año de la EESN 2 como creían que se habían construido las pirámides de Egipto. Las respuestas fueron las siguientes: Fueron los extraterrestres, Eran muy fuertes en esa época y podían transportar las pesadas piedras en grupo, No sé.., Trabajaban mejor que ahora y sin máquinas, Me hubiese gustado ver como lo hacán, Nunca escuché nada Pero muchos historiadores se lo han estado preguntando durante años, sin llegar a revelar ese tan enigmático misterio. En esa época no existían excavadoras, ni grúas y mover dos millones de bloques de piedras de más de dos toneladas de peso cada uno debió ser imposible de realizar sin algún tipo de ingenio que permitiera desplazar las piedras por el desierto.

2 Un equipo de físicos holandeses, liderado por el profesor Daniel Bonn de la Universidad de Ámsterdam, ha descubierto recientemente que los egipcios utilizaban un truco simple para facilitar el paso de los pesados trineos de madera cargado de piedras. El mismo era humedecer la arena por la que se deslizaban. Este truco ha estado años delante de los investigadores sin que nadie lo haya notado. En la pintura de una de las paredes de la tumba de Djehutihotep, jefe de una de las regiones del alto Egipto, se observa como una persona situada delante del trineo, arroja agua sobre la arena. Los egiptólogos creían que era un acto puramente ceremonial. Para comprobarlo, los físicos construyeron en el laboratorio un trineo en miniatura y experimentaron con éste. En presencia de la correcta cantidad de agua, la arena húmeda del desierto es dos veces más firme que la arena seca y esto hace que la fuerza necesaria para mover el trineo se reduzca a la mitad, sólo porque la arena no se acumula delante del vehículo y la fricción es menor. Cuando se agrega agua a la arena, surgen los llamado puentes capilares, pequeñas gotitas de agua, que unen a los granos entre sí. La arena se debe humedecer en una

3 proporción correcta, ya que si se humedece demasiado, mover el trineo es aún más difícil y si se utiliza arena seca no funciona. Este descubrimiento, se cree será un aporte importante para la ingeniería actual. Permitirá el desarrollo de formas más eficaces de transportar los materiales. A pesar de este gran descubrimiento, cómo consiguieron armar el inmenso entramado de bloques de piedra que componen el edificio, que ocupa una superficie de 5,3 hectáreas, sigue siendo el gran interrogante. Los arquitectos que las construyeron deberían tener amplios conocimientos científicos, fundamentalmente matemáticos y de astronomía, ya que las medidas y las proporciones de las pirámides, muestran una asombrosa exactitud. Sus cuatro caras están orientadas hacia los cuatro puntos cardinales, con un error inferior a una décima de grado. Las longitudes de las caras más larga y la de la más corta difieren en menos de 20 cm. El pavimento que rodea la gran pirámide está perfectamente nivelado. Pero no se sabe el modo en que se consiguió construirla. Se cree que la construcción de la gran pirámide ha llevado unos 20 o 30 años. En algunos casos se pensaba que éstas eran obra de Dios. Los primeros cristianos y musulmanes creían que las pirámides eran refugios construidos para sobrevivir al Diluvio Universal. EL NÚMERO PI Y LAS PIRÁMIDES Muchos creen que las misteriosas conexiones numéricas encontradas en el interior de las pirámides forman parte de un gran plan. La más famosa de estas conexiones numéricas es la presencia del misterioso número Pi en el monumento más grande jamás construido por el hombre en piedra, la pirámide de Keops. Qué es Pi, y cómo puede encontrarse en la Gran Pirámide? Pi, no es ninguna invención mágica o misteriosa. Se trata simplemente del valor por el que tenemos que multiplicar el diámetro de un círculo para obtener su circunferencia. El valor aproximado de Pi (3, ) se puede obtener a partir de experimentos simples.

4 Por ejemplo si hacemos girar una rueda de un metro de diámetro, hasta que toda su superficie haya tocado el suelo, el recorrido que habrá hecho la rueda estará alrededor de los 3,14 metros. O igual de sencillo, podemos rodear la superficie de la rueda con una cuerda, y medir su longitud. Nos dará 3,14 metros igualmente. Pi es un número irracional con infinitos decimales, y puede ser calculado hasta un mínimo de dos decimales, si tenemos el suficiente conocimiento teórico de geometría cosa que los antiguos egipcios nunca tuvieron Es imposible conseguir con el experimento de la rueda un resultado más preciso de Pi que /- 0.05, así que si encontramos un valor mucho más preciso en las dimensiones de un edificio nos encontramos con una irrefutable prueba de un conocimiento matemático muy avanzado. Los antiguos egipcios simplemente usaban 3 como multiplicador, y esta medida les era suficiente para la mayoría de las aplicaciones cotidianas. Mucho más adelante, centenares de años después de la construcción de las grandes pirámides, fue cuando comenzaron a usar la medida 3 + 1/7.

5 La Gran Pirámide de Keops tiene una base de 230,38m de longitud y una altura de 146,6m. Si tomamos dos veces la longitud de la base, y la dividimos por su altura, obtenemos el valor de Es una gran aproximación al valor de Pi, mejor que el valor que los antiguos egipcios pudieron haber estimado con su medida de 3, por lo que estamos ante el signo evidente de un diseño por parte de una entidad superior? La respuesta de los científicos es un claro No. Algunos dicen que este valor de Pi en la pirámide es simple coincidencia bastante coincidencia, igualar el valor de Pi al cuarto decimal. Además, hay otras muchas pirámides dimensionadas con el valor de Pi, incluso con mayor precisión.

6 No parece, así que otros científicos han encontrado una teoría que explicaría la misteriosa presencia de Pi en las pirámides. Sugieren que la presencia de Pi en Keops se debe a los métodos de medida usados en tiempos antiguos. Los egipcios median distancias en codos reales, que equivalían a 0,523 metros. La base de la pirámide de Keops es exactamente de 440 codos reales de largo, y su altura de 280 codos. Cómo hacían los egipcios para medir distancias tan grandes? Los científicos sugieren que el uso de cuerdas sería impracticable en estos casos (las cuerdas de estas dimensiones se romperían o cambiarían su longitud debido a la enorme presión ejercida para mantenerlas en tensión). Entonces, lo más probable es que los egipcios utilizaran ruedas del diámetro de un codo real para medir las distancias, haciéndolas rodar y contando las revoluciones (cada giro completo de la rueda). Y, como hemos visto en el ejemplo de la rueda de antes, es aquí donde Pi dejaría su impronta en las medidas finales. Cuando los egipcios querían medir la altura de la pirámide, simplemente tenían que apilar unas ruedas encima de las otras y contarlas. Parece una teoría muy razonable, y puede explicar la relación entre Pi y las medidas de pirámides como las de Keops y Medum, así que la teoría ha tenido gran repercusión y ha pasado a ser la explicación más aceptada sobre el tema. El problema es que no es válida

7 para explicar el resto de pirámides. Para la pirámide de Kefren, este cálculo da un resultado de 3, mientras que para la de Micerinos el valor de Pi resultante es de 3,26. No son valores de Pi aceptables, y finalmente, de las 90 pirámides que hay en Egipto la teoría sólo explica satisfactoriamente las medidas de dos o tres de ellas. Y qué sucede con Pi entonces? Parece más seguro creer que estamos ante 90 pirámides con diferentes aproximaciones al valor de Pi, cuya casualidad es debida al sistema de medidas usado en el Antiguo Egipto, que creer que nos encontramos ante una pirámide construida por los dioses, de valor Pi casi perfecto, y otras 89 pirámides de los mismos periodos históricos cuyos ángulos no se pueden explicar de la misma manera. El estudio acerca de la construcción de las pirámides sigue siendo al día de hoy un gran enigma. ANDREA GABRIELA MANITTO ALUMNA DEL PROFESORADO DE MATEMÁTICA INSTITUTO DE FORMACIÓN DOCENTE N 138

La circunferencia y el círculo

La circunferencia y el círculo 10 La circunferencia y el círculo Objetivos En esta quincena aprenderás a: Identificar los diferentes elementos presentes en la circunferencia y el círculo. Conocer las posiciones relativas de puntos,

Más detalles

ALGO SOBRE LAS PIRÁMIDES. Curiosidades de los Esclavos egipcios

ALGO SOBRE LAS PIRÁMIDES. Curiosidades de los Esclavos egipcios ALGO SOBRE LAS PIRÁMIDES Curiosidades de los Esclavos egipcios Cada vez que vemos un documental o leemos un libro de historia, tomamos dicha información como si fuera un hecho concreto sin cuestionarnos

Más detalles

HISTORIA E HISTORIETAS EN LA CLASE DE MATEMÁTICA 1

HISTORIA E HISTORIETAS EN LA CLASE DE MATEMÁTICA 1 HISTORIA E HISTORIETAS EN LA CLASE DE MATEMÁTICA 1 Cristina Ochoviet Instituto de Profesores Artigas Montevideo. (Uruguay) cristinaochoviet@gmail.com RESUMEN A partir de una historieta que recrea con fantasía

Más detalles

Hombre de Vitruvio en un aula de 5 grado

Hombre de Vitruvio en un aula de 5 grado Hombre de Vitruvio en un aula de 5 grado Ángeles Biedma GPDM 2009 Colegio Woodville San Carlos de Bariloche El hombre de Vitruvio es un famoso dibujo acompañado de notas anatómicas de Leonardo da Vinci,

Más detalles

Curiosidades de los Esclavos egipcios

Curiosidades de los Esclavos egipcios Curiosidades de los Esclavos egipcios Muchas veces (casi siempre) cada vez que vemos un documental o leemos un libro de historia, tomamos dicha información como si fuera un hecho concreto sin cuestionarnos

Más detalles

Círculo. Para ello, necesita elaborar unos aros de cinta de acero como el que representa la figura siguiente:

Círculo. Para ello, necesita elaborar unos aros de cinta de acero como el que representa la figura siguiente: Lección 1 Círculo Macario trabaja en la fábrica de pintura. Tiene que reforzar las tapas de los barriles para que embone perfectamente y las materias primas que almacenan en ellos se conserven adecuadamente.

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

Los niños y niñas de 5 años hemos viajado en el tiempo, para conocer el antiguo Egipto, tierra de faraones y pirámides. Todos juntos hemos

Los niños y niñas de 5 años hemos viajado en el tiempo, para conocer el antiguo Egipto, tierra de faraones y pirámides. Todos juntos hemos EGIPTO Los niños y niñas de 5 años hemos viajado en el tiempo, para conocer el antiguo Egipto, tierra de faraones y pirámides. Todos juntos hemos descubierto grandes tesoros. Nuestro objetivo ha sido aprender

Más detalles

Proyecto de aula: Mi Comunidad

Proyecto de aula: Mi Comunidad Proyecto de aula: Mi Comunidad Claudia Urrea, PhD La primera colección de actividades que diseñe y desarrolle con los estudiantes en Costa Rica, fue acerca de su Comunidad, El Silencio. El objetivo de

Más detalles

LA GEOMETRÍA EN LAS CIVILIZACIONES ANTIGUAS

LA GEOMETRÍA EN LAS CIVILIZACIONES ANTIGUAS LA GEOMETRÍA EN LAS CIVILIZACIONES ANTIGUAS Los orígenes de la geometría se remontan a la época cavernícola, eran principios descubiertos para satisfacer necesidades tales como la construcción, artesanía,

Más detalles

1 La ciencia y su método. Medida de magnitudes

1 La ciencia y su método. Medida de magnitudes EJERCICIOS PROPUESTOS 1.1 Cuál es el objeto de estudio de la ciencia? Cómo se contrastan los enunciados científicos? El objeto de estudio de la ciencia es el mundo natural, es decir, las propiedades físicas

Más detalles

Descripción general del proyecto y las actividades

Descripción general del proyecto y las actividades Descripción general del proyecto y las actividades Nº Proyecto. 44 Título del Proyecto. µαθηµατικά: Lo que hay que aprender 1 Centro educativo solicitante. IES Juan de Mairena Coordinador/a. José María

Más detalles

Guías MATCH: Aprendiendo Matemáticas con Scratch. Recomendado para: 9 ó 10 años Nivel de Scratch: Inicial Trabajo en aula: 2 horas

Guías MATCH: Aprendiendo Matemáticas con Scratch. Recomendado para: 9 ó 10 años Nivel de Scratch: Inicial Trabajo en aula: 2 horas Guías MATCH: Aprendiendo Matemáticas con Scratch Actividad: Recomendado para: 9 ó 10 años Nivel de Scratch: Inicial Trabajo en aula: 2 horas La rueda rueda Autores: Equipo de trabajo del Proyecto MATCH

Más detalles

Quién construyó los monumentos? Conceptuales: Conocimiento de las relaciones laborales en diferentes etapas históricas.

Quién construyó los monumentos? Conceptuales: Conocimiento de las relaciones laborales en diferentes etapas históricas. 1. Título: Quién construyó los monumentos? 2. Objetivos: 3. Contenidos de la propuesta: a) Estudiar las condiciones de trabajo en la construcción de los monumentos a través de la historia. b) Analizar

Más detalles

PARA QUÉ NÚMEROS REALES... 2 SUCESIONES... 3 NÚMEROS COMPLEJOS... 5 CÓNICAS... 6 FUNCIÓN INVERSA... 7 FUNCIONES CUADRÁTICAS... 8

PARA QUÉ NÚMEROS REALES... 2 SUCESIONES... 3 NÚMEROS COMPLEJOS... 5 CÓNICAS... 6 FUNCIÓN INVERSA... 7 FUNCIONES CUADRÁTICAS... 8 PARA QUÉ SIRVE? Índice NÚMEROS REALES.... 2 SUCESIONES.... 3 SUCESIONES ARITMÉTICAS Y GEOMÉTRICAS.... 4 NÚMEROS COMPLEJOS.... 5 CÓNICAS.... 6 FUNCIÓN INVERSA.... 7 FUNCIONES CUADRÁTICAS.... 8 TEOREMA DE

Más detalles

Máquinas Simples. Cuando hablamos de palancas podemos considerar 4 elementos importantes:

Máquinas Simples. Cuando hablamos de palancas podemos considerar 4 elementos importantes: Robótica Educativa WeDo Materiales Didácticos Tecnológicos Multidisciplinarios Palancas Constituyen los primeros ejemplos de herramientas sencillas. Desde el punto de vista técnico es una barra rígida

Más detalles

El derretimiento de los glaciares en la Antártida están dejando ver, pirámides.

El derretimiento de los glaciares en la Antártida están dejando ver, pirámides. LAS FOTOS NO SON TRUCADAS POLO SUR El derretimiento de los glaciares en la Antártida están dejando ver, pirámides. Tres pirámides antiguas han sido descubiertas en la Antártida por un equipo de científicos

Más detalles

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas

Más detalles

El alumnado ha de diseñar una pendiente en línea recta que conecte la calle y el garaje del sótano, como se muestra en la Figura 1.

El alumnado ha de diseñar una pendiente en línea recta que conecte la calle y el garaje del sótano, como se muestra en la Figura 1. DISEÑAR LA ENTRADA DE UN APARCAMIENTO SUBTERRANEO Resumen El objetivo de esta tarea es diseñar una rampa que facilite la entrada a un garaje, situado en un nivel inferior a la altura de la calle. Hay que

Más detalles

Profr. Efraín Soto Apolinar. Límites

Profr. Efraín Soto Apolinar. Límites Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial

Más detalles

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización

PROGRAMACIONES DE AULA 4º MATEMÁTICAS. Unidad 0. Números y operaciones. Contenidos. Objetivos. Temporalización PROGRAMACIONES DE AULA 4º MATEMÁTICAS Unidad 0. Números y operaciones Números de hasta cinco cifras. Comparación de números. Tablas de multiplicar. Multiplicación y sus términos. División y sus términos.

Más detalles

2Soluciones a los ejercicios y problemas PÁGINA 61

2Soluciones a los ejercicios y problemas PÁGINA 61 PÁGINA 61 Pág. 1 P RACTICA Fracciones y decimales 1 Expresa como un número decimal las siguientes fracciones: 9 1 1 5 1 5 9 6 00 990 9 5 5 1 0,6; 1, ;,8 ; 0,085 9 6 0, 185; 0,5 00 ; 1 0,590 990 Clasifica

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

ENGRANAJES. Recordando un poco la teoría de los engranajes y con objeto de repaso a algunos términos que vamos a utilizar, el Casillas dice:

ENGRANAJES. Recordando un poco la teoría de los engranajes y con objeto de repaso a algunos términos que vamos a utilizar, el Casillas dice: ENGRANAJES Voy a tratar de exponer mi experiencia en la construcción de engranajes, basándome en un artículo publicado en Ingles con el nombre de Involute Gear. En dicho artículo trata tanto la construcción

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

Wise Up Kids! Las Siete Maravillas del Mundo Antiguo

Wise Up Kids! Las Siete Maravillas del Mundo Antiguo Las Siete Maravillas del Mundo Antiguo Las Siete Maravillas del Mundo o también llamadas Siete Maravillas del Mundo Antiguo eran un conjunto de obras arquitectónicas que los helenos, especialmente los

Más detalles

ÁNGULOS Y TRIÁNGULOS EN LAS PIRÁMIDES EGIPCIAS

ÁNGULOS Y TRIÁNGULOS EN LAS PIRÁMIDES EGIPCIAS ÁNGULOS Y TRIÁNGULOS EN LAS PIRÁMIDES EGIPCIAS En las pirámides egipcias, todo parece indicar que fueron diseñadas sobre la base de los Triángulos Sagrados egipcios, que son aquellos triángulos rectángulos

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Las leyes del movimiento

Las leyes del movimiento Las leyes del movimiento Prof. Bartolomé Yankovic Nola (2012) 1 En el siglo XVII uno de los hombres de ciencia más grandes de todos los tiempos, el italiano Galileo Galilei, realizó los primeros experimentos

Más detalles

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA FÍSICA Y QUÍMICA Solucionario CINEMÁTICA 1.* Indicad qué tipo o tipos de movimiento corresponden a cada afirmación. a) MRU b) MRUA c) MCU d) Caída libre e) No hay movimiento 1.1. Una piedra lanzada desde

Más detalles

Lectura: LA PIRÁMIDE DE KEOPS. Consideraciones didácticas y soluciones

Lectura: LA PIRÁMIDE DE KEOPS. Consideraciones didácticas y soluciones Lectura: LA PIRÁMIDE DE KEOPS Consideraciones didácticas y soluciones 1 El tema de las pirámides nos parece atractivo y motivador para el alumnado y, por ello, nos sirve como excelente punto de partida

Más detalles

ESTRATEGIAS DE CÁLCULO MENTAL

ESTRATEGIAS DE CÁLCULO MENTAL ESTRATEGIAS DE CÁLCULO MENTAL El cálculo mental consiste en realizar cálculos matemáticos utilizando sólo el cerebro sin ayudas de otros instrumentos como calculadoras o incluso lápiz y papel. Las operaciones

Más detalles

Actividad principal: Kart Notas para el profesor

Actividad principal: Kart Notas para el profesor Objetivos de aprendizaje A lo largo de esta actividad, los estudiantes construirán y pondrán a prueba modelos que incorporan las siguientes estructuras: Eje solidario único Ejes independientes Para poder

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Proyecto Algunas cosas de Egipto y sus antigüedades

Proyecto Algunas cosas de Egipto y sus antigüedades Proyecto Algunas cosas de Egipto y sus antigüedades Elección del tema Segundo trimestre 2008-09 Teníamos pendiente el papiro de Maite Cada uno dijo su tema (Muchos de animales) Descarté las motos y las

Más detalles

Calcular con fracciones para todos

Calcular con fracciones para todos Calcular con fracciones para todos 1 Calcular con fracciones para todos M. Riat riat@pobox.com Versión 1.0 Burriana, 2014 Calcular con fracciones para todos 2 ÍNDICE DE CAPÍTULOS Índice de capítulos...

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Sobre los Tamaños y Distancias del Sol y la Luna.

Sobre los Tamaños y Distancias del Sol y la Luna. El CSIC en la Escuela El lenguaje que normalmente empleamos para comunicarnos no es capaz de describir adecuadamente todos los procesos que tienen lugar en la naturaleza. Afortunadamente las matemáticas

Más detalles

CURSILLO DE ORIENTACIÓN

CURSILLO DE ORIENTACIÓN CURSILLO DE ORIENTACIÓN MAPAS Un mapa es una proyección de una superficie sobre un plano, y reducido a través de una ESCALA. Esta escala nos da el grado de reducción y precisión de la realidad y se representa

Más detalles

Tema 1: Cuerpos geométricos. Aplicaciones

Tema 1: Cuerpos geométricos. Aplicaciones Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS 14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 14.1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. a) b) 6 6 6 5 1 a) El cuerpo es un cubo: A 6a 6 6 6

Más detalles

Operaciones con decimales y las pirámides

Operaciones con decimales y las pirámides 1. Secuencias curriculares correspondientes Área: Matemática SC. 8: Operaciones con números decimales Área: Ciencias Sociales SC. 6: Las primeras civilizaciones del Oriente Medio Temporalización: 4 sesiones

Más detalles

MECANICA DE FLUIDOS PARA BACHILLERATO. Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023. Introducción

MECANICA DE FLUIDOS PARA BACHILLERATO. Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023. Introducción MECANICA DE FLUIDOS PARA BACHILLERATO Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023 Introducción Una tendencia en nuestro país es la de enseñar física en cursos de educación básica.

Más detalles

CUADERNO DE LABORATORIO 5º E. PRIMARIA

CUADERNO DE LABORATORIO 5º E. PRIMARIA C.E.I.P. BLAS INFANTE Fuente Carreteros CUADERNO DE LABORATORIO 5º E. PRIMARIA UN VIAJE AL DESCONOCIDO MUNDO DE LO INVISIBLE NOMBRE Y APELLIDOS: UN VIAJE AL MUNDO DESCONOCIDO DE LO INVISIBLE Mundos en

Más detalles

FUERZA CENTRÍPETA Y FUERZA CENTRÍFUGA

FUERZA CENTRÍPETA Y FUERZA CENTRÍFUGA FUERZA CENTRÍPETA Y FUERZA CENTRÍFUGA RODRIGO BRAVO Como sabemos, los conceptos de fuerza centrípeta y fuerza centrífuga son fundamentales en Mecánica al estudiar la dinámica del movimiento curvilíneo.

Más detalles

EL SISTEMA SOLAR A ESCALA

EL SISTEMA SOLAR A ESCALA Cómo motivar a los estudiantes mediante actividades científicas atractivas EL SISTEMA SOLAR A ESCALA Introducción: Mª Teresa de la Calle García COLEGIO PÍO XII Valencia En la mayoría de los libros de texto

Más detalles

El milagro de la piedra de Rosetta. Lee atentamente el siguiente texto y después contesta a las preguntas.

El milagro de la piedra de Rosetta. Lee atentamente el siguiente texto y después contesta a las preguntas. LECTURA Título El milagro de la piedra de Rosetta Dir. General de Ordenación Académica Comité de Redacción Lee atentamente el siguiente texto y después contesta a las preguntas. En 1799, cuando los soldados

Más detalles

Las máquinas. Lee y comprende el problema. Construyendo a lo grande

Las máquinas. Lee y comprende el problema. Construyendo a lo grande 9 Las máquinas Construyendo a lo grande Los faraones eran los gobernantes de Egipto hace miles de años. lgunos ordenaron levantar pirámides para ser enterrados tras su muerte. Tenían que ser muy grandes

Más detalles

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes

MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad

Más detalles

LA GRAN PIRAMIDE DE GIZEH (Pirámide de Keops) Y EL NUMERO PI.

LA GRAN PIRAMIDE DE GIZEH (Pirámide de Keops) Y EL NUMERO PI. LA GRAN PIRAMIDE DE GIZEH (Pirámide de Keops) Y EL NUMERO PI. INTRODUCCIÓN Lo que en este texto se tratará no son más que un par de consideraciones acerca de el diseño de la Gran Pirámide de Gizeh y el

Más detalles

Informaciones generales para la construcción de un reloj de sol

Informaciones generales para la construcción de un reloj de sol Informaciones generales para la construcción de un reloj de sol Arq. Octavio Uribe Toro Ing. Luis Gonzalo Mejía Cañas Revisión 2: Febrero 2014 En memoria del maestro de los relojes de sol, Arq. Octavio

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

NUESTRO PLANETA TIERRA

NUESTRO PLANETA TIERRA NUESTRO PLANETA TIERRA Todos nosotros sabemos responder cuando alguien nos pregunta cosas acerca de nuestro entorno: Dónde vives? Cómo se llama tu país? Y tu ciudad? Y tu calle?... Pero y si nos preguntan

Más detalles

Egipto tiene más de cien pirámides de distintas dimensiones y hay casi cincuenta más en el vecino Sudán. Sin

Egipto tiene más de cien pirámides de distintas dimensiones y hay casi cincuenta más en el vecino Sudán. Sin GRAN PIRÁMIDE DE KEOPS. Introducción Egipto tiene más de cien pirámides de distintas dimensiones y hay casi cincuenta más en el vecino Sudán. Sin embargo, las tres Grandes Pirámides de Giza han ganado

Más detalles

Prueba de acceso a Ciclos Formativos de Artes Plásticas y Diseño General Grado Medio

Prueba de acceso a Ciclos Formativos de Artes Plásticas y Diseño General Grado Medio General Grado Medio [ ] Artesanía en Cuero [ ] Talla en Madera Factor muy significativo en la construcción de las pirámides fue la carencia de toda maquinaria que nosotros consideramos esencial para mover

Más detalles

Alberto Rodríguez Novo 4º E.S.O. C

Alberto Rodríguez Novo 4º E.S.O. C Alberto Rodríguez Novo IES BAHÍA DE BABEL Curso 200-2004 Alberto Rodríguez Novo 4º E.S.O. C GULLIVER Y SUS VIAJES Las páginas más interesantes de los "Viajes de Gulliver a algunos países remotos" son,

Más detalles

TE IMAGINAS LOS INFINITOS PROBLEMAS DE UN HOTEL CON UN NÚMERO INFINITO DE HABITACIONES, QUE SUELE LLENARSE CON UN NÚMERO INFINITO DE HUÉSPEDES?

TE IMAGINAS LOS INFINITOS PROBLEMAS DE UN HOTEL CON UN NÚMERO INFINITO DE HABITACIONES, QUE SUELE LLENARSE CON UN NÚMERO INFINITO DE HUÉSPEDES? El Gran Hotel CANTOR Un hotel infinito Juan Manuel Ruisánchez Serra TE IMAGINAS LOS INFINITOS PROBLEMAS DE UN HOTEL CON UN NÚMERO INFINITO DE HABITACIONES, QUE SUELE LLENARSE CON UN NÚMERO INFINITO DE

Más detalles

El callejón de potencia en aplicaciones de refuerzo de sonido.

El callejón de potencia en aplicaciones de refuerzo de sonido. El callejón de potencia en aplicaciones de refuerzo de sonido. José Brusi, DAS Audio, Departamento de Ingeniería A menudo recibimos consultas sobre los cajones de sub-bajos en aplicaciones de directo,

Más detalles

TEORÍA DE MECANISMOS NOMENCLATURA Y TALLADO DE DIENTES DE ENGRANAJES

TEORÍA DE MECANISMOS NOMENCLATURA Y TALLADO DE DIENTES DE ENGRANAJES Hoja: 1/12 GP NOMENCLATURA Y TALLADO DE DIENTES DE ENGRANAJES INTRODUCCIÓN El desarrollo de esta práctica consistirá en la simulación del procedimiento de talla de una rueda dentada mediante la generación

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

Master Gyrotourbillon 1. Introducción. Precisión, hermeticidad y revisión. Modo de empleo

Master Gyrotourbillon 1. Introducción. Precisión, hermeticidad y revisión. Modo de empleo Master Gyrotourbillon 1 Introducción 54-57 El tourbillon esférico 8 días de reserva de marcha Calendario perpetuo con agujas retrógradas La indicación del tiempo solar : los minutos de la ecuación activa

Más detalles

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012 ORIENTACIÓN.1ºESO Carreras de Orientación Una Carrera de Orientación consiste en recorrer en el menor tiempo posible una ruta situada en un terreno desconocido pasando por unos puntos obligados en un orden

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

NÚMEROS REALES MÓDULO I

NÚMEROS REALES MÓDULO I MÓDULO I NÚMEROS REALES NUEVE planetas principales constituyen el sistema solar. Si los ordenamos de acuerdo a su distancia al Sol Mercurio es el que está más cerca (58 millones de Km ) Plutón el más lejano

Más detalles

ARTÍCULO 2: LA ADORACIÓN: INTIMIDAD CON DIOS

ARTÍCULO 2: LA ADORACIÓN: INTIMIDAD CON DIOS ARTÍCULO 2: LA ADORACIÓN: INTIMIDAD CON DIOS John Wimber Pastor fundador de la Viña Internacional, fallecido en 1998 Mucha gente que visita las Comunidades Cristianas de La Viña alrededor del país comentan

Más detalles

3. Teorema de Pitágoras

3. Teorema de Pitágoras 3. Teorema de Pitágoras Taller de Matemáticas 3º ESO 1. Propiedades de los triángulos rectángulos. Rompecabezas sobre el teorema de Pitágoras 3. Aplicaciones del teorema de Pitágoras: cálculo de distancias

Más detalles

INGENIERÍA INGLESA A FINALES DEL SIGLO XIX: EL TOWER BRIDGE LONDINENSE INTEGRANTES DEL GRUPO: Álvaro Simón Pascual.

INGENIERÍA INGLESA A FINALES DEL SIGLO XIX: EL TOWER BRIDGE LONDINENSE INTEGRANTES DEL GRUPO: Álvaro Simón Pascual. INGENIERÍA INGLESA A FINALES DEL SIGLO XIX: EL TOWER BRIDGE LONDINENSE INTEGRANTES DEL GRUPO: Álvaro Simón Pascual Alan Ramos Espejo Guillermo Hernández Durán INTRODUCCIÓN Desarrollo industrial El ímpetu

Más detalles

LA CAJA PARLANCHINA LUIS ANGEL NSE CHICAMPO

LA CAJA PARLANCHINA LUIS ANGEL NSE CHICAMPO LA CAJA PARLANCHINA LUIS ANGEL NSE CHICAMPO PERSONAJES: BRAIS MINIMOY: Protagonista del cuento. Es algo curioso y siente pánico cuando no hay adultos con el. MISORA: Habitante del misterioso lugar al que

Más detalles

Cálculos mecánicos para líneas eléctricas

Cálculos mecánicos para líneas eléctricas Rincón Técnico Cálculos mecánicos para líneas eléctricas Autores: El contenido de este artículo es un extracto tomado del portal http://patricioconcha.ubb.cl/ Elaboración técnica: Esta publicación ha sido

Más detalles

Unidad III. Perímetro, diámetro y área

Unidad III. Perímetro, diámetro y área Perímetro, diámetro y área Unidad III En esta unidad usted aprenderá a: Calcular la longitud del contorno de una figura, lo que se llama perímetro. Medir terrenos y planos. Calcular la cantidad de material

Más detalles

NOMBRE:. AREA: FISICA. GRADO:10 FECHA:

NOMBRE:. AREA: FISICA. GRADO:10 FECHA: NOMBRE:. AREA: FISICA. GRADO:10 FECHA: A.SELECCIONA LA RESPUESTA CORRECTA: 1. las unidades básicas del Sistema Internacional son: a. metro, kilogramo, minutos. b. centímetro, gramo, segundo. c. metro,

Más detalles

TEMA II.3. Tensión superficial. Dr. Juan Pablo Torres-Papaqui

TEMA II.3. Tensión superficial. Dr. Juan Pablo Torres-Papaqui TEMA II.3 Tensión superficial Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

TANIA PLANA LÓPEZ (4º ESO C)

TANIA PLANA LÓPEZ (4º ESO C) TANIA PLANA LÓPEZ (4º ESO C) EQUINOCCIO. INCLINACIÓN DE LOS RAYOS SOLARES INTRODUCCIÓN BLOQUE I A la hora de estudiar la Tierra te enseñamos este apartado para explicarte sus tipos de movimiento, la práctica

Más detalles

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I).

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). Al final deberás haber aprendido... El examen tratará sobre... Describir los cuerpos geométricos del espacio e identificar sus elementos. Deducir las fórmulas para

Más detalles

EL BIENESTAR EN LA ESCUELA LO QUE DIGO YO TAMBIÉN ES IMPORTANTE

EL BIENESTAR EN LA ESCUELA LO QUE DIGO YO TAMBIÉN ES IMPORTANTE EL BIENESTAR EN LA ESCUELA LO QUE DIGO YO TAMBIÉN ES IMPORTANTE Una realidad que los docentes observamos en nuestras aulas es que existen niños que muestran una buena disposición hacia el aprendizaje:

Más detalles

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. o ponga su nombre en ninguna de las hojas, escriba

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

RESULTADOS. al término del mismo, por lo tanto una vez que se tiene el diseño de los componentes, es

RESULTADOS. al término del mismo, por lo tanto una vez que se tiene el diseño de los componentes, es CAPITULO 6 RESULTADOS Introducción Este trabajo desde un principio se definió con el objetivo de obtener un prototipo al término del mismo, por lo tanto una vez que se tiene el diseño de los componentes,

Más detalles

QUÉ SIGNIFICA CREER?

QUÉ SIGNIFICA CREER? 1 QUÉ SIGNIFICA CREER? L La persona es un ser abierto al futuro, es una realidad a hacer. Por lo tanto no es un ser determinado. En Primero medio descubrimos que la persona humana tiene como tarea primera

Más detalles

SOBRE LA CONSTRUCCIÓN DE RELOJES DE SOL

SOBRE LA CONSTRUCCIÓN DE RELOJES DE SOL SOBRE LA CONSTRUCCION DE RELOJES DE SOL 1. Construyamos un Reloj de Sol. 2. El reloj de Cuadrante Ecuatorial. 3. El reloj de Cuadrante Horizontal. 4. El reloj de Cuadrante Vertical. 5. Otros tipos de relojes

Más detalles

La auto rotación en un helicóptero

La auto rotación en un helicóptero La auto rotación en un helicóptero Qué pasa si en pleno vuelo se para el motor de un helicóptero? Si el rotor principal se queda sin la propulsión que le hace girar, se pierde la sustentación y debería

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10.2 Completa la siguiente tabla. Caras (C ) Vértices (V ) Aristas (A) C V A 2 Tetraedro 4

Más detalles

APLICACIONES DE LOS ESPEJOS PLANOS:

APLICACIONES DE LOS ESPEJOS PLANOS: ESPEJOS ANGULARES. Cuando entre dos espejos planos que forman un ángulo y entre ellos se coloca un objeto, se tiene cierto número de imágenes, cuyo número depende del ángulo que forman los espejos. Se

Más detalles

GEOMETRÍA SAGRADA. Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García

GEOMETRÍA SAGRADA. Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García GEOMETRÍA SAGRADA Ejemplos y dibujos vectoriales JUNIO de 2009 - Roberto García Génesis 1:1 En el principio creó Dios los cielos y la tierra. Espacio tridimensional definido Espacio tridimensional creado

Más detalles

Aire acondicionado y refrigeración

Aire acondicionado y refrigeración Aire acondicionado y refrigeración CONCEPTO: El acondicionamiento del aire es el proceso que enfría, limpia y circula el aire, controlando, además, su contenido de humedad. En condiciones ideales logra

Más detalles

HECHOS FASCINADORES. Gran complejo de la pirámide en Giza

HECHOS FASCINADORES. Gran complejo de la pirámide en Giza Usted sabía? Pyramid, Rev. ed.. James Putnam. Eyewitness New York: DK Publishing, 2011. p64-65. Topic overview COPYRIGHT 2011 Dorling Kindersley Limited Página 64 HECHOS FASCINADORES PREGUNTAS Y RESPUESTAS

Más detalles

SUSTITUCION RODAMIENTO DELANTERO A3

SUSTITUCION RODAMIENTO DELANTERO A3 SUSTITUCION RODAMIENTO DELANTERO A3 El problema que se me planteó fue el corregir la holgura que detecte en un rodamiento de rueda delantera de un A3 TDI del 97. Moviendo la rueda con la misma en el aire

Más detalles

Entrevista de Eduard Punset con Avram Hershko, biólogo y premio Nobel de Química el 2004. Valencia, 8 de junio del 2010.

Entrevista de Eduard Punset con Avram Hershko, biólogo y premio Nobel de Química el 2004. Valencia, 8 de junio del 2010. Entrevista de Eduard Punset con Avram Hershko, biólogo y premio Nobel de Química el 2004. Valencia, 8 de junio del 2010. Vídeo del programa: http://www.redesparalaciencia.com/3708/1/redes-66-como-recicla-el-organismo

Más detalles

Arquímedes de Siracusa. La deslumbrante sabiduría y la cautivadora humanidad de un genio.

Arquímedes de Siracusa. La deslumbrante sabiduría y la cautivadora humanidad de un genio. Arquímedes de Siracusa. La deslumbrante sabiduría y la cautivadora humanidad de un genio. FICHA TÉCNICA Título: El contador de arena Autora: Gilliam Bradshaw ISBN: -93-032- Publicaciones y Ediciones Salamandra,

Más detalles

Cómo funciona un control proporcional derivativo (PD)?

Cómo funciona un control proporcional derivativo (PD)? Cómo funciona un control proporcional derivativo (PD)? Adaptación del artículo: http://iesseveroochoa.edu.gva.es/severobot/2011/01/29/como-funciona-un-controlador-pd/ para el El tren de tracción diferencial

Más detalles

Ejercicios resueltos: fracciones y decimales

Ejercicios resueltos: fracciones y decimales Ejercicios resueltos: fracciones y decimales 1) Un camionero destina 3/8 del día para trabajar, 1/6 para descanso y alimentación, y 7 horas para dormir. Cuántas horas de tiempo libre para practicar un

Más detalles

FE Y RAZÓN IGUALDAD, OPOSICIÓN O COMPLEMENTARIEDAD?

FE Y RAZÓN IGUALDAD, OPOSICIÓN O COMPLEMENTARIEDAD? 2 FE Y RAZÓN IGUALDAD, OPOSICIÓN O COMPLEMENTARIEDAD? 2 FE Y RAZÓN IGUALDAD, OPOSICIÓN O COMPLEMENTARIEDAD? 1. En busca de Dios: Homo religiosus 2. Qué es la fe? Definamos los términos 3. Fe y razón. Religión

Más detalles

En los 460 y 461, la tracción es solo a las ruedas traseras siendo conectable el eje delantero.

En los 460 y 461, la tracción es solo a las ruedas traseras siendo conectable el eje delantero. UNAS LINEAS SOBRE TRANSMISIONES Y BLOQUEOS Como todos sabéis ya, existen hoy día dos tipos de trasmisiones en los G según se trate de caja 460 o 461 y 463, la primera se fabricó hasta el año 89/90 y las

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

La Gestión Monetaria es la disciplina que se encarga de decidir cuántos contratos de futuros/acciones/warrants negociamos en la siguiente operación.

La Gestión Monetaria es la disciplina que se encarga de decidir cuántos contratos de futuros/acciones/warrants negociamos en la siguiente operación. GESTIÓN MONETARIA En el experimento de Ralph Vince comentado anteriormente, la gente perdió dinero, obviamente, por el tamaño de la posición. En otras palabras, por la cantidad de dinero arriesgado. Esta

Más detalles