Splines cúbicos. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Splines cúbicos. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias"

Transcripción

1 Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias

2 Contenido 1 2 3

3 Construcción de naturales Introducción En los temas anteriores estudiamos la aproximación de una función arbitraria en un intervalo cerrado por medio de un polinomio. Sin embargo, los polinomios de alto grado oscilan en forma errática; es decir, una fluctuación menor en una parte pequeña de un intervalo puede ocasionar importantes fluctuaciones en todo el rango. Un procedimiento alternativo consiste en dividir el intervalo en una serie de subintervalos y en cada uno construir un polinomio de aproximación (generalmente) diferente. A esta forma de aproximar se le conoce como aproximación polinomial fragmentaria.

4 Construcción de naturales Splines lineales La interpolación lineal fragmentaria consiste en unir una serie de puntos [(x 0, y 0 ), (x 1, y 1 ),..., (x n, y n )] Usando la forma de Lagrange, la ecuación de la recta que conecta a los primeros dos puntos es f 1 (x) = (x x 1) (x 0 x 1 ) y 0 + (x x 0) (x 1 x 0 ) y 1 Para n puntos son n 1 intervalos. Así, tenemos que para f i (x) f i (x) = (x x i+1) (x i x i+1 ) y i + (x x i) (x i+1 x i ) y i+1 para i = 0, 1,..., n 1 y x i x x i+1.

5 Construcción de naturales La aproximación por funciones lineales muestra una desventaja; no se tiene la seguridad de que haya derivabilidad en los extremos de los subintervalos, lo cual dentro de un contexto geométrico significa que la función de interpolación o interpolante no es suave en dichos puntos. A menudo las condiciones físicas indican claramente que se requiere la suavidad y que la función aproximante debe ser continuamente derivable.

6 Construcción de naturales Splines cuadráticos El tipo más simple de función polinomial fragmentaria derivable en un intervalo completo [x 0, x n ] es la función obtenida al ajustar un polinomio cuadrático entre cada par consecutivo de nodos. f i (x) = a i x 2 + b i x + c i para i = 0, 1,..., n 1, cada equación tiene 3 coeficiente, o sea un total de 3(n 1) = 3n 3 coeficientes a ser determinados (encontrados). Únicamente se requieren dos condiciones para ajustar los datos en los extremos de cada intervalo, por ello, existe flexibilidad que permite seleccionar la cuadrática de modo que la interpolante tenga una derivada continua en [x 0, x n ]. El problema se presenta cuando hay que especificar condiciones respecto a la derivada de la interpolante en los puntos extremos x 0 y x n. No existe un número suficiente de constantes para asegurar que se satisfagan las condiciones.

7 Construcción de naturales La aproximación polinómica fragmentaria más común utiliza polinomios cúbicos entre cada par consecutivo de nodos y recibe el nombre de interpolación de splines cúbicos. Un polinomio cúbico general contiene cuatro constantes; así, el procedimiento del spline cúbico ofrece suficiente flexibilidad para garantizar que la interpolante no sólo sea continuamente derivable en el intervalo, sino que además tenga una segunda derivada continua en el intervalo. Sin embargo, en la construcción del spline cúbico no se supone que las derivadas de la interpolante concuerden con las de la función que se está aproximando, ni siquiera en los nodos.

8 Construcción de naturales Definición Dada una función f definida en [a, b] y un conjunto de nodos a = x 0 < x 1 < < x n = b, una interpolante de spline cúbico S para f es una función que cumple con lo siguiente: (a) S(x) es un polinomio cúbico, denotado S i (x), en el subintervalo [x i, x i+1 ] para cada j = 0, 1,..., n 1; (b) S i (x i ) = f (x i ) y S i (x i+1 ) = f (x i+1 ) para cada i = 0, 1,..., n 1; (c) S i+1 (x i+1 ) = S i (x i+1 ) para cada i = 0, 1,..., n 2; (d) S i+1 (x i+1) = S i (x i+1) para cada i = 0, 1,..., n 2; (e) S i+1 (x i+1) = S i (x i+1 ) para cada i = 0, 1,..., n 2; (f) Una de las siguientes condiciones de frontera se satisface: (i) S (x 0 ) = S (x n ) = 0 (frontera natural o libre); (ii) S (x 0 ) = f (x 0 ) y S (x n ) = f (x n ) (frontera sujeta).

9 Construcción de naturales Construcción de naturales Sean z i = S i (x i ), para 0 i n sobre [x i, x i+1 ], tenemos que S i (x) es una interpolación lineal y S i (x i ) = z i, S i (x i+1 ) = z i+1. Podemos escribir S i (x) = x x i+1 z i + x x i z i+1. x i x i+1 x i+1 x i Integrando S i (x) dos veces, obtenemos S i (x) = (x i+1 x) 3 z i 6h i + (x x i ) 3 z i+1 6h i + cx + d (1) donde h i = x i+1 x i y c, d son las constantes de integración. Ahora, utilizamos el inciso (b) de la definición de Splines. Obtenemos las ecuaciones siguientes

10 Construcción de naturales { h 3 i z i h 3 i 6h i + cx i + d = y i z i 6h i + cx i+1 + d = y i+1 de donde c = y i+1 y i h i (z i+1 z i ) 6 h i y d = y i x i+1 y i+1 x i h i + x i z i+1 x i+1 z i 6 h i. Reemplazando en la ecuación (1) nos queda. S i (x) = (x i+1 x) 3 z i + (x x i) 3 z i+1 + 6h i 6h ( i (yi+1 y i ) y i x i+1 y i+1 x i h i (z ) i+1 z i ) h i x+ (2) h i 6 + x iz i+1 x i+1 z i h i. 6 Para encontrar z i y z i+1 utilizamos el inciso (d) de la definición.

11 Construcción de naturales Ahora derivando (2) y reemplazando obtenemos y S i (x i ) = 1 3 h iz i 1 6 h iz i+1 + d i S i 1(x i ) = 1 6 h i 1z i h i 1z i + d i 1 siendo d i = y i+1 y i h i d i 1 = y i y i 1 h i 1. Sabiendo que S i 1 (x i) = S i (x i) nos queda h i 1 z i 1 + 2(h i 1 + h i )z i + h i z i+1 = 6(d i d i 1 ), i = 1,..., n 1. Para encontrar z i, (1 i n 1), considerando que z 0 = z n = 0, se tiene un sistema de ecuaciones, simétrico, tridiagonal, diagonal dominante, de la forma siguiente

12 Construcción de naturales u 1 h h 1 u 2 h h 2 u 3 h h n 3 u n 2 h n h n 2 u n 1 z 1 z 2. z n 2 z n 1 = v 1 v 2. v n 2 v n 1 Donde h i = t i+1 t i u i = 2(h i + h i 1 ) d i = 6 (x i+1 x i ), h i v i = d i d i 1 S j (t j ) = x j

13 Construcción de naturales Sea el siguiente conjunto de cinco puntos dado x y (a) Determine el spline cúbico natural que ajusta los datos. (b) Determine el valor interpolado de y para x = Solución: (a) Tenemos que n = 5, y son 4 splines (i = 1,..., 4). La ecuación cúbica en el i-ésimo spline es S i (x) = z i (x i+1 x) 3 + z i+1 (x x i ) 3 + 6h i 6h [ i yi z ] [ ih i yi+1 (x i+1 x) + h i 6 h i z i+1h i 6 ] (x x i )

14 Construcción de naturales para x i x x i+1, con i = 1,..., n 1 donde h i = x i+1 x i que es la longitud del i-ésimo intervalo. Para encontrar los coeficientes intermedios usamos la siguiente fórmula [ yi+2 y i+1 h i z i + 2(h i + h i+1 )z i+1 + h i+1 z i+2 = 6 y ] i+1 y i h i+1 para i = 1,..., n 2. Así, tenemos que z 1 = z 5 = 0. Los valores de h i son h 1 = x 2 x 1 = 11 8 = 3, h 2 = x 3 x 2 = = 4 h 3 = x 4 x 3 = = 3, h 4 = x 5 x 4 = = 4 Sustituyendo estos valores en (3) para i = 1, 2, 3 obtenemos el siguiente sistema de 3 ecuaciones con 3 incognitas. h i (3)

15 Construcción de naturales 14z 2 + 4z 3 = 6.5 4z z 3 + 3z 4 = 5.5 3z z 4 = 2.5. Resolviendo este sistema de ecuaciones encontramos los valores de los coeficientes z 2 = z 3 = z 4 = Con los coeficientes encontrados sustituimos en S 2 (x) que es el intervalo que nos interesa S 2 (x) =( )(15 x) 3 + ( )(x 11) (15 x) (x 11). para 11 x 15. (b) Sustituimos x = 12.7 en f 2 (x) y obtenemos f 2 (x) = = y.

16 ENTRADA n; x 0, x 1,..., x n ; a 0 = f (x 0 ), a 1 = f (x 1 ),..., a n = f (x n ) SALIDA a j, b j, c j, d j para j = 0, 1,..., n 1. S(x) = S j (x) = a j +b j (x x j )+c j (x x j ) 2 +d j (x x j ) 3 para x j x x j+1 Paso 1 Para i = 0, 1,, n 1 tome h i = x i+1 x i. Paso 2 Para i = 1, 2,..., n 1 tome α i = 3 h i (a i+1 a i ) 3 h i 1 (a i a i 1 ). Paso 3 Tome l 0 = 1; (A partir de este paso se resuelve el sistema tridiagonal) µ 0 = 0; z 0 = 0. Paso 4 Para i = 1, 2,..., n 1 tome l i = 2(x i+1 x i 1 ) h i 1 µ i 1 ; µ i = h i /l i ; z i = (α i h i 1 z i 1 )/l i.

17 Paso 5 Tome l n = 1; z n = 0; c n = 0. Paso 6 Para j = n 1, n 2,..., 0 tome c j = z j µ j c j+1 ; b j = (a j+1 a j )/h j h j (c j+1 + 2c j )/3; d j = (c j+1 c j )/(3h j ). Paso 7 SALIDA: (a j, b j, c j, d j para j = 0, 1,..., n 1); Parar.

18 Burden, R; Faires, D. Análisis numérico. Cengage Learning. Novena edición Mathews, J.H; Fink, K.D. Métodos numéricos con MATLAB. Prentice Hall. Tercera edición Quarteroni, A; Sacco, R; Saleri, F. Numerical mathematics. Springer. 2007

Splines. Spline Cúbicos. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria

Splines. Spline Cúbicos. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Splines Introducción Un spline es una función polinomial definida por casos donde cada caso es un polinomio

Más detalles

Interpolación seccional: SPLINES

Interpolación seccional: SPLINES Interpolación seccional: SPLINES Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es Motivación: problemas en

Más detalles

El objetivo de esta sección es aproximar la integral definida de una función ƒ(x) en un intervalo [a, b] es

El objetivo de esta sección es aproximar la integral definida de una función ƒ(x) en un intervalo [a, b] es INTEGRACIÓN NUMÉRICA El objetivo de esta sección es aproximar la integral definida de una función ƒ(x) en un intervalo [a, b] es decir Los métodos de integración numérica se usan cuando ƒ(x) es difícil

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

Interpolación seccional: SPLINES

Interpolación seccional: SPLINES Motivación: problemas en aproximación funcional. Interpolación polinómica oscilaciones para número elevado de datos Interpolación seccional: SPLINES.5 8 6 4 Laboratori de Càlcul Numèric (LaCàN) Departament

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 12

Análisis Numérico para Ingeniería. Clase Nro. 12 Análisis Numérico para Ingeniería Clase Nro. 12 Aproximación de Funciones Temas a tratar: Interpolación por Splines Cúbicos. Aproximación por ínimos Cuadrados. Criterios de elección: Tipo de Aproximación

Más detalles

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial 1/12 Aproximación funcional e Interpolación Representación mediante funciones analíticas sencillas de: Información discreta. (Resultante de muestreos). Funciones complicadas. Siendo y k = f(x k ) una cierta

Más detalles

Una Propuesta de Uso de Tecnología en la Enseñanza del Tema: Interpolación por Splines Blanca Evelia Flores Soto Resumen INTRODUCCIÓN

Una Propuesta de Uso de Tecnología en la Enseñanza del Tema: Interpolación por Splines Blanca Evelia Flores Soto Resumen INTRODUCCIÓN Una Propuesta de Uso de Tecnología en la Enseñanza del Tema: Interpolación por Splines Blanca Evelia Flores Soto bflores@gauss.mat.uson.mx Departamento de Matemáticas, Universidad de Sonora Nivel Superior

Más detalles

Interpolación. Esta función se denomina función interpolante. con. Dado un conjunto de datos. Queremos determinar una función.

Interpolación. Esta función se denomina función interpolante. con. Dado un conjunto de datos. Queremos determinar una función. Interpolación Dado un conjunto de datos con Queremos determinar una función tal que Esta función se denomina función interpolante Interpolación Usos de la Interpolación Graficar una curva suave a través

Más detalles

( ) + + β i ( x x i ) +

( ) + + β i ( x x i ) + 4.. Spline Cúbico clase 1 Una función como la de (4.9) se dice que es un spline cúbico clase 1 si cada s i = s i (x) es un polinomio de grado y la función es continua y derivable en todo el intervalo;

Más detalles

Splines Cúbicos. t 0 < t 1 < < t n (1)

Splines Cúbicos. t 0 < t 1 < < t n (1) Splines Cúbicos Roberto J León Vásquez rleon@alumnosinfutfsmcl Jorge Constanzo jconstan@alumnosinfutfsmcl Valparaíso, 24 de octubre de 2006 1 Interpolación con Splines Una función spline está formada por

Más detalles

4.6. Interpolación mediante splines (polinomios a trozos) Figura 4.1: Datos de interpolación

4.6. Interpolación mediante splines (polinomios a trozos) Figura 4.1: Datos de interpolación Capítulo 4 INTERPOLACIÓN 46 Interpolación mediante splines polinomios a trozos En las figuras siguientes se puede observar alguno de los problemas que la interpolación clásica con polinomios puede plantear

Más detalles

Splines (funciones polinomiales por trozos)

Splines (funciones polinomiales por trozos) Splines (funciones polinomiales por trozos) Problemas para examen Interpolación lineal y cúbica 1. Fórmulas para la interpolación lineal. Dados t 1,..., t n, x 1,..., x n R tales que t 1

Más detalles

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 12

Análisis Numérico para Ingeniería. Clase Nro. 12 Análisis Numérico para Ingeniería Clase Nro. 12 Aproximación de Funciones Temas a tratar: Interpolación por Splines Cúbicos. Aproximación por ínimos Cuadrados. Criterios de elección: Tipo de Aproximación

Más detalles

Capítulo 3. Polinomios

Capítulo 3. Polinomios Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

Interpolación. Javier Segura. February 12, 2012

Interpolación. Javier Segura. February 12, 2012 February 12, 2012 polinómica Para cualquier conjunto de n + 1 (n 0) números distintos x 0, x 1,..., x n y cualquier conjunto de números arbitrarios y 0, y 1,..., y n, existe un único polinomio P n (x)

Más detalles

1. Interpolación e Integración Numérica

1. Interpolación e Integración Numérica 1. Interpolación e Integración Numérica 1.1. Interpolación Dados n + 1 puntos en el plano: (x 0, y 0 ), (x 1, y 1 ),... (x n+1, y n+1 ) con x i x j si i j; existe un único polinomio de grado n, p n (x)

Más detalles

Cuadratura gaussiana. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias

Cuadratura gaussiana. Análisis Numérico Universidad Nacional Autónoma de México Facultad de Ciencias Análisis Numérico 2018 2 Universidad Nacional Autónoma de México Facultad de Ciencias Contenido 1 2 Introducción Las fórmulas de Newton-Cotes se dedujeron integrando los polinomios de interpolación. El

Más detalles

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Interpolación Javier Segura Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Contenidos: 1 Interpolación de Lagrange Forma de Lagrange Teorema del resto Diferencias

Más detalles

Interpolación de la función módulo mediante polinomios de Lagrange

Interpolación de la función módulo mediante polinomios de Lagrange Interpolación de la función módulo mediante polinomios de Lagrange Pauline Morrison Fell 02 de mayo de 2006. Introducción Interpolación es el método mediante el cual se puede llegar a estimar un valor

Más detalles

SESIÓN 2 Splines e integración numérica

SESIÓN 2 Splines e integración numérica SESIÓN Splines e integración numérica ) Sea f x = x 4 para x [,] y sea s: [,] R el spline cúbico que aproxima a f definido a partir de los puntos de abscisas, y. Razona cual de las siguientes expresiones

Más detalles

ANÁLISIS NUMÉRICO. 4 horas a la semana 8 créditos Cuarto semestre

ANÁLISIS NUMÉRICO. 4 horas a la semana 8 créditos Cuarto semestre ANÁLISIS NUMÉRICO 4 horas a la semana 8 créditos Cuarto semestre Objetivo del curso: El estudiante deducirá y utilizará métodos numéricos para obtener soluciones aproximadas de modelos matemáticos que

Más detalles

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones

Más detalles

Interpolación. Dan Casas

Interpolación. Dan Casas Interpolación Dan Casas 1 Motivación 2 Motivación 3 Motivación 4 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. Qué necesitamos?

Más detalles

ANÁLISIS NUMÉRICO. 4 horas a la semana 6 créditos Cuarto semestre

ANÁLISIS NUMÉRICO. 4 horas a la semana 6 créditos Cuarto semestre ANÁLISIS NUMÉRICO 4 horas a la semana 6 créditos Cuarto semestre Objetivo del curso: El estudiante deducirá y utilizará métodos numéricos para obtener soluciones aproximadas de modelos matemáticos que

Más detalles

METODOS NUMERICOS. Curso

METODOS NUMERICOS. Curso Boletín 1 de prácticas. 1. Localizar las raíces de la ecuación F (x) = 0, para los siguientes casos: (a) F (x) = x + e x. (b) F (x) = 0.5 x + 0.2 sen(x). (c) F (x) = x tg(x). (d) F (x) = x 5 3. (e) F (x)

Más detalles

Regresión. Edgar Moyotl-Hernández. Análisis y Métodos Numéricos Físico Matemáticas, BUAP Otoño Regresión Introducción Regresión Lineal

Regresión. Edgar Moyotl-Hernández. Análisis y Métodos Numéricos Físico Matemáticas, BUAP Otoño Regresión Introducción Regresión Lineal Edgar Moyotl-Hernández Análisis y Métodos Numéricos Físico Matemáticas, BUAP Otoño 2018 Regresión E. Moyotl-Hernández 1 / 31 Contenido Introducción Regresión Lineal E. Moyotl-Hernández 2 / 31 Definición

Más detalles

Interpolacion y extrapolacion numerica y Ajuste de datos

Interpolacion y extrapolacion numerica y Ajuste de datos Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Interpolacion y extrapolacion numerica y Ajuste de datos Prof: J. Solano 2012-I Introducción La interpolación y extrapolación

Más detalles

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Interpolación Spline

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Interpolación Spline Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica Interpolación Spline Asignatura: Análisis Numérico Docente: M.C. Julio César Gallo Sanchez Alumno: José Armando Lara Ramos Equipo: 9 4 o

Más detalles

Capítulo 7. Subterráneo

Capítulo 7. Subterráneo Capítulo 7 Solución n Numérica de la Ecuación n de Flujo Subterráneo Teoría a de Flujo Subterráneo Semestre 2008-1 Alberto Rosas Medina 1 Índice Polinomios de Lagrange Diferencias Finitas en una Dimensión

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

J. Armando Lara R. Invierno

J. Armando Lara R. Invierno Interpolación Spline J. R. Ingeniería Electrónica Instituto Tecnológico de Lázaro Cárdenas Invierno 2011-2012 Outline Interpolación Spline 1 Interpolación Spline Introducción 2 3 4 Outline Interpolación

Más detalles

Métodos Numéricos: Interpolación

Métodos Numéricos: Interpolación Métodos Numéricos: Interpolación Eduardo P. Serrano Versión previa abr 2012 1. Interpolación. Dado un conjunto finito de datos (x k,y k ), k =0, 1,...,n una función interpolante odeinterpolación, es una

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5 Temas: Interpolación polinomial simple. Interpolación de Lagrange. Polinomio interpolador de Newton. Interpolación polinomial segmentada (Spline). Ajuste de curvas. Regresión por mínimos cuadrados. 1.

Más detalles

Relación de ejercicios 6

Relación de ejercicios 6 Relación de ejercicios 6 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 6.1. 1. Construye, usando la base canónica del espacio

Más detalles

Integración Numérica

Integración Numérica Integración Numérica Contenido Integración Numérica Método de Coeficientes Indeterminado Método de Curvatura de Newton-Cotes Método de Romberg Integración Numérica Los métodos numéricos utilizados para

Más detalles

Interpolación. Dan Casas

Interpolación. Dan Casas Interpolación Dan Casas 1 Motivación 2 Motivación 2 Motivación 2 Motivación 3 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. 4

Más detalles

Curso Hoja 1. Análisis de errores

Curso Hoja 1. Análisis de errores Hoja 1. Análisis de errores 1 Teniendo en cuenta que MATLAB trabaja en doble precisión, calcular el número máquina inmediatamente anterior a 1 y comprobar que dista 2 53 de 1. 2 Calcular 1 2 52, 1 2 53,

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre

Más detalles

Interpolación y aproximación polinomial

Interpolación y aproximación polinomial Análisis Numérico Interpolación y aproximación polinomial CNM-425 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft «2010 Reproducción permitida bajo

Más detalles

Interpolación y aproximaciones polinómicas

Interpolación y aproximaciones polinómicas This is page i Printer: Opaque this Interpolación y aproximaciones polinómicas Oldemar Rodríguez Rojas Octubre 008 ii This is page iii Printer: Opaque this Contents 1 Interpolación y aproximaciones polinómicas

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

Interpolación Numérica

Interpolación Numérica Interpolación Numérica Contenido Interpolación Numérica Polinomio Único de Interpolación Polinomio de Interpolación de Lagrange (Método de Ordenadas) Método de Newton (Interpolación Polinomial forma de

Más detalles

Integración Numérica. Hermes Pantoja Carhuavilca. Métodos Computacionales. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integración Numérica. Hermes Pantoja Carhuavilca. Métodos Computacionales. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integración Numérica Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Hermes Pantoja Carhuavilca 1 de 64 CONTENIDO Introducción

Más detalles

Interpolación polinómica

Interpolación polinómica Interpolación polinómica Contenidos Polinomio interpolante Interpolación mediante los polinomios fundamentales de Lagrange Interpolación mediante diferencias divididas Interpolación con órdenes Matlab

Más detalles

3.1 Definición y construcción de splines cúbicos

3.1 Definición y construcción de splines cúbicos Lección Splines. Definición y construcción de splines cúbicos El espacio M ( ) es claramente un subespacio del M 0 ( ), donde a los segmentos cúbicos sólo se les exige coincidir en los nodos. Dar n segmentos

Más detalles

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación Tema 8 Ceros de funciones Versión: 23 de abril de 2009 8.1 Introducción Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación f(x) = 0. (8.1) La

Más detalles

Integración numérica

Integración numérica Integración numérica Javier Segura Cálculo Numérico I. Tema 4. Javier Segura (Universidad de Cantabria) Integración numérica CNI 1 / 21 Introducción y definiciones Estructura de la presentación: 1 Introducción

Más detalles

Aproximación funcional por mínimos cuadrados

Aproximación funcional por mínimos cuadrados Aproximación funcional por mínimos cuadrados Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Introducción

Más detalles

Interpolación Polinomial

Interpolación Polinomial Pantoja Carhuavilca Métodos Computacionales Agenda y Interpolacion de y Interpolacion de Dado un conjunto de datos conocidos (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ) buscamos una función f : R R que satisfaga

Más detalles

n A 1 = max( j i=1 Ejercicio Deducir del problema anterior que, si A es una matriz de orden n real, Ax 2 2 µ 2 x T x, donde µ = ρ(a T A) 1/2.

n A 1 = max( j i=1 Ejercicio Deducir del problema anterior que, si A es una matriz de orden n real, Ax 2 2 µ 2 x T x, donde µ = ρ(a T A) 1/2. Normas matriciales Cálculo Numérico Normas matriciales 2 Ejercicio..- Sea Hallar: A, A 2 y A. 2 0 0 A = 0 2 2 0 Ejercicio.2.- Probar que en IR n las normas, 2 y son equivalentes. Ejercicio.3.- Probar que.

Más detalles

Universidad Técnica Federico Santa María Departamento de Matemática Preinforme 2 Laboratorio Mat 270 Análisis Numérico Entrega 4 al 8 junio de 2018

Universidad Técnica Federico Santa María Departamento de Matemática Preinforme 2 Laboratorio Mat 270 Análisis Numérico Entrega 4 al 8 junio de 2018 Universidad Técnica Federico Santa María Departamento de Matemática Preinforme 2 Laboratorio Mat 270 Análisis Numérico Entrega 4 al 8 junio de 2018 Utilice el instructivo para presentar preinformes publicado

Más detalles

Interpolación MÉTODO DE LAGRANGE. Numérico II MOYOTL-HERNÁNDEZ E.,

Interpolación MÉTODO DE LAGRANGE. Numérico II MOYOTL-HERNÁNDEZ E., Interpolación MÉTODO DE LAGRANGE Numérico II MOYOTL-HERNÁNDEZ E., 2017 1 INTERPOLACIÓN El problema matemático de la interpolación es el siguiente: Dada una lista de puntos (x 0, y 0 ),, (x n, y n ) se

Más detalles

Nombre de la Asignatura METODOS NUMERICOS PARA INGENIEROS INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos

Nombre de la Asignatura METODOS NUMERICOS PARA INGENIEROS INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos Código 0083813 Horas Semanales 04 Horas Teóricas 04 UNIVERSIDAD DE ORIENTE INFORMACIÓN GENERAL Escuela Departamento Unidad de Estudios Básicos Ciencias Pre-requisitos Introducción a la Programación y Matemáticas

Más detalles

POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN

POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN Interpolación POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN Presentación del problema: Para una función dada f(x) se desea determinar un polinomio P(x) de grado m, lo más bajo posible, el cual en los puntos

Más detalles

Problemas. Hoja 1. Escriba el algoritmo para N = 4 y calcule el número de operaciones que realiza.

Problemas. Hoja 1. Escriba el algoritmo para N = 4 y calcule el número de operaciones que realiza. Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 12/13 Problemas. Hoja 1 Problema 1. El método o algoritmo de Horner para evaluar en x 0 el polinomio P (x) = a 0 + a 1 x + + a N x N consiste formalmente en

Más detalles

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única.

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única. I. Resolución numérica de Problemas de Contorno en E.D.O.: Métodos en diferencias finitas 1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: y (x) + 4 sen x y (x) 4

Más detalles

Interpolación Polinomial

Interpolación Polinomial Tema 3 Interpolación Polinomial RESUMEN TEÓRICO El problema general de la interpolación es el siguiente: dados n + puntos distintos a x < x 2 < < x n+ b de un intervalo [a, b], llamados nodos de la interpolación,

Más detalles

Carrera: GCM Participantes. Representantes de las Academias de Ingeniería en Geociencias. Academia de Ingeniería en Geociencias

Carrera: GCM Participantes. Representantes de las Academias de Ingeniería en Geociencias. Academia de Ingeniería en Geociencias 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Análisis Numérico y Programación Ingeniería en Geociencias GCM-0502 3-2-8 2.- HISTORIA

Más detalles

4.3 Aproximación por mínimos cuadrados.

4.3 Aproximación por mínimos cuadrados. 4.3 Aproximación por mínimos cuadrados. Como ya hemos dicho anteriormente la búsqueda de un modelo matemático que represente lo mejor posible a unos datos experimentales puede abordarse, entre otras, de

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS Contenido 1 Preliminares Definiciones 2 Definiciones Contenido 1 Preliminares Definiciones 2 Definiciones Definiciones En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos

Más detalles

Carrera: ECC

Carrera: ECC 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Análisis Numérico Ingeniería Electrónica ECC-00 --.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Tema 5. Interpolación

Tema 5. Interpolación E.T.S. de Ingenieros de Telecomunicación Universidad de Vigo Plan Introducción Introducción Motivación Formulación 2 3 Interpolación spline Motivación Formulación Introducción Motivación Formulación 2

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Aproximación de funciones Interpolación Int. Segm. Complementos de Matemáticas, ITT Telemática Tema 2. Departamento de Matemáticas, Universidad de Alcalá Aproximación de funciones Interpolación Int. Segm.

Más detalles

Cálculo Numérico III Curso 2010/11

Cálculo Numérico III Curso 2010/11 Cálculo Numérico III Curso 2010/11 Problemas del Tema 1 1. Sean {x 0, x 1,..., x n } IR con x i x j si i j. Hoja de problemas - Parte I a) Hallar el polinomio de grado n que interpola a la función en los

Más detalles

dada una función f encontrar un valor para x tal que f (x) = 0.

dada una función f encontrar un valor para x tal que f (x) = 0. Chapter 1 Raíces En este capítulo, varías técnicas serán desarrolladas para encontrar soluciones aproximadas al problema matemático general dada una función f encontrar un valor para x tal que f (x) =

Más detalles

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA Ajuste de Curvas El ajuste de curvas es un proceso mediante el cual, dado un conjunto de N pares de puntos {xi, yi} (siendo x la variable independiente e y la dependiente), se determina una función matemática

Más detalles

División Académica de Ciencias Biológicas

División Académica de Ciencias Biológicas Nombre de la asignatura MÉTODOS NUMÉRICOS Clave de la asignatura Área de formación Docencia frente a grupo según SATCA Trabajo de Campo Supervisado según SATCA Carácter de la asignatura HCS HPS TH C HTCS

Más detalles

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA DERIVADA Aproximación Definición MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA INTEGRAL

Más detalles

Asignaturas antecedentes y subsecuentes Análisis Numérico II

Asignaturas antecedentes y subsecuentes Análisis Numérico II PROGRAMA DE ESTUDIOS Análisis Numérico I Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0033 Asignaturas antecedentes y subsecuentes Análisis

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos Ampliación de Matemáticas y Métodos Numéricos Relación de ejercicios. Introducción a los Métodos Numéricos Ej. El problema del cálculo del punto de corte de dos rectas con pendiente similar es un problema

Más detalles

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES Jacobi El método de Jacobi es un proceso simple de iteraciones de punto fijo en la solución de raíces de una ecuación. La iteración de punto fijo tiene dos problemas fundamentales : Algunas veces no converge

Más detalles

Planteamiento del problema: Dada una función f : [a, b] R, cuyo valor se conoce en n + 1 puntos: x 0, x 1,..., x n del intervalo [a, b]:

Planteamiento del problema: Dada una función f : [a, b] R, cuyo valor se conoce en n + 1 puntos: x 0, x 1,..., x n del intervalo [a, b]: Tema 2 Interpolación 2.1 Introducción En este tema abordaremos el problema de la aproximación de funciones por medio de la interpolación, en particular nos centraremos en interpolación polinómica estándar.

Más detalles

Interpolación. 12 Interpolación polinómica

Interpolación. 12 Interpolación polinómica El objeto de este capítulo es el estudio de técnicas que permitan manejar una función dada por medio de otra sencilla y bien determinada que la aproxime en algún sentido. El lector ya conoce la aproximación

Más detalles

Apuntes y Ejemplos Unidad No. 5

Apuntes y Ejemplos Unidad No. 5 Método de Spline 1. Planteo del problema a partir de las condiciones El trazador cúbico o spline es un conjunto de polinomios de tercer grado que se genera a partir de un conjunto de puntos y, para calcularlo,

Más detalles

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal.

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal. Tema 8 Interpolación 8.1 Introducción En este tema abordaremos el problema de la aproximación de funciones por medio de la interpolación, en particular nos centraremos en interpolación polinómica estándar.

Más detalles

Asignaturas antecedentes y subsecuentes Cálculo Diferencial, Cálculo Integral, Álgebra Lineal I, Cómputo Científico y Programación

Asignaturas antecedentes y subsecuentes Cálculo Diferencial, Cálculo Integral, Álgebra Lineal I, Cómputo Científico y Programación PROGRAMA DE ESTUDIOS ANÁLISIS NUMÉRICO I Área a la que pertenece: Área de Formación Integral Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0033 Asignaturas antecedentes y subsecuentes

Más detalles

MA4301 ANÁLISIS NUMÉRICO Nombre en Inglés NUMERICAL ANALYSIS

MA4301 ANÁLISIS NUMÉRICO Nombre en Inglés NUMERICAL ANALYSIS PROGRAMA DE CURSO Código Nombre MA4301 ANÁLISIS NUMÉRICO Nombre en Inglés NUMERICAL ANALYSIS SCT es Docentes Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3 5 Requisitos Carácter

Más detalles

Auxiliar 6: Interpolación Mediante Spline Cúbicos

Auxiliar 6: Interpolación Mediante Spline Cúbicos Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre Otoño 27 Cálculo Numérico MAA-2 Profesor: Gonzalo Hernández Auxiliar: Gonzalo Ríos Fecha:

Más detalles

Centro. Asignatura. Convocatoria Junio (Curso )

Centro. Asignatura. Convocatoria Junio (Curso ) UNIVERSIDAD DE OVIEDO Fecha Lunes, 6/5/ Página de 9 Centro DEPARTAMENTO DE MATEMÁTICAS Asignatura Análisis Numérico Convocatoria Junio (Curso 9-) Ejercicio.- Dado el problema de valor inicial y y t aty

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 13

Análisis Numérico para Ingeniería. Clase Nro. 13 Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de

Más detalles

TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB

TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE AGRONOMIA Y AGROINDUSTRIAS DEPARTAMENTO FISICO- MATEMATICO CATEDRA DE CALCULO NUMERICO TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA PROGRAMA DE LA ASIGNATURA DE: Métodos Numéricos IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x) Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del

Más detalles

Métodos Numéricos. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Métodos Numéricos. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Métodos Numéricos Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Integración numérica Integración numérica Objetivo: aproximar el valor de la integral I = f (x)dx Limitaciones de la integración analítica

Más detalles

Introducción a la interpolación polinomial

Introducción a la interpolación polinomial Introducción a la interpolación polinomial Egor Maximenko http://www.egormaximenko.com Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, México, D.F. 3 de enero de 2015 Ejemplo

Más detalles

FORMULARIO PARA LA PRESENTACIÓN DE LOS PROGRAMAS DE ASIGNATURAS UNIVERSIDAD NACIONAL DE RÍO CUARTO

FORMULARIO PARA LA PRESENTACIÓN DE LOS PROGRAMAS DE ASIGNATURAS UNIVERSIDAD NACIONAL DE RÍO CUARTO FORMULARIO PARA LA PRESENTACIÓN DE LOS PROGRAMAS DE ASIGNATURAS UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA CARRERA: Licenciatura

Más detalles

Métodos de Interpolación

Métodos de Interpolación Capítulo 5 Métodos de Interpolación 5 Interpolación Lineal Dados dos puntos (x k,y k )y(x k+,y k+ ), si se desea encontrar un valor de y para una x dada dentro de un intervalo, se utiliza la siguiente

Más detalles

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán 1. Comprobar que: a) ( i) i(1 i) = i b) 1+i 3 4i + i 5i = 5 c) 5 (1 i)( i)(3 i) = i d) (1 i) 4 = 4. Resuelve las siguientes ecuaciones: a) (1 + i)z

Más detalles

Análisis Numérico: Soluciones de ecuaciones en una variable

Análisis Numérico: Soluciones de ecuaciones en una variable Análisis Numérico: Soluciones de ecuaciones en una variable MA2008 Contexto Uno de los problemas básicos en el área de Ingeniería es el de la búsqueda de raíces: Dada una función o expresión matemática

Más detalles

Benemérita Universidad Autónoma de Puebla Vicerrectoría de Docencia Dirección General de Educación Superior Facultad de Ciencias Físico Matemáticas

Benemérita Universidad Autónoma de Puebla Vicerrectoría de Docencia Dirección General de Educación Superior Facultad de Ciencias Físico Matemáticas PLAN DE ESTUDIOS (PE): Licenciatura en Matemáticas Aplicadas ÁREA: Análisis y Métodos Numéricos ASIGNATURA: CÓDIGO: CRÉDITOS: 6 FECHA: Junio 2017 1 1. DATOS GENERALES Nivel Educativo: Licenciatura Nombre

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante

Más detalles

Práctica 5: Interpolación y ajuste.

Práctica 5: Interpolación y ajuste. Práctica 5: Interpolación y ajuste. 1 Tablas de diferencias. La interpolación se usa para obtener datos intermedios a partir de una tabla de valores, construyendo un polinomio que pasa por el conjunto

Más detalles