Interpolación. Javier Segura. February 12, 2012

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Interpolación. Javier Segura. February 12, 2012"

Transcripción

1 February 12, 2012

2 polinómica Para cualquier conjunto de n + 1 (n 0) números distintos x 0, x 1,..., x n y cualquier conjunto de números arbitrarios y 0, y 1,..., y n, existe un único polinomio P n (x) de grado menor o igual que n tal que P n (x k ) = y k para i = 0, 1, 2,..., n. Al polinomio P n (x) mencionado se le llamará polinomio de interpolación, que interpola n + 1 puntos (x i, y i ), i = 0, 1, 2,..., n. Nuestro problema será encontrar tal polinomio, para lo cual estudiaremos dos métodos: Fórmula de Lagrange y diferencias divididas de Newton.

3 Forma de Lagrange Forma de Lagrange Dados n + 1 puntos (x i, y i ), i = 0, 1,..., n (x i x j i j), el único polinomio P n (x) de grado menor o igual n que pasa por estos n + 1 puntos, es decir, tal que P n (x i ) = y i, i = 0, 1, 2,..., n. es donde P n (x) = y 0 L 0 (x) + y 1 L 1 (x) y n L n (x), L i (x) = n j=0,j i n j=0,j i (x x j ) (x i x j ) (x x 0)...(x x i 1 )(x x i+1 )...(x x n ) (x i x 0 )...(x i x i 1 )(x i x i+1 )...(x i x n )

4 Teorema del resto Sea f (x) una función continua en [a, b] y derivable n + 1 veces en (a, b). Si P n (x) es el polinomio de grado menor o igual que n que interpola f (x) entre los n + 1 nodos distintos x 0...x n [a, b] entonces x [a, b] ζ x (a, b), dependiente de x, tal que f (x) = P n (x) + f (n+1) (ζ x ) (n + 1)! n (x x j ) P n (x) + R n (x) j=0 donde se dice que R n (x) es el resto y denotamos n (x x j ) = (x x 0 )...(x x n ). j=0

5 Forma de Newton Forma de Newton Si x 0, x 1,..., x n son puntos distintos y f (x) está definida en [a, b], x i [a, b] i = 0, 1,..., n, entonces el polinomio interpolador de f (x) entre estos puntos se puede escribir como P n (x) = f (x 0 ) + (x x 0 )f [x 0, x 1 ] + (x x 0 )(x x 1 )f [x 0, x 1, x 2 ] (x x 0 )(x x 1 )...(x x n 1 )f [x 0, x 1,..., x n ] = n i 1 = f [x 0...x i ] (x x j ) i=0 j=0

6 Forma de Newton La interpolación con las diferencias divididas de Newton es, en general, más fácil de computar que la utilización de la fórmula de Lagrange, y puede ser evaluada de forma recursiva. Por ejemplo, en el caso de interpolar una función f (x) en tres puntos distintos x 0,..., x 2,, se puede plantear la siguiente tabla de diferencias divididas: x i f [] f [, ] f [,, ] x 0 f [x 0 ] = f (x 0 ) f [x 0, x 1 ] = f [x 1] f [x 0 ] x 1 x 0 x 1 f [x 1 ] = f (x 1 ) f [x 0, x 1, x 2 ] = f [x 1, x 2 ] f [x 0, x 1 ] x 2 x 0 f [x 1, x 2 ] = f [x 2] f [x 1 ] x 2 x 1 x 2 f [x 2 ] = f (x 2 ) Observemos que cada diferencia dividida se forma tomando la diferencia de las diferencias divididas vecinas (a la derecha) y dividiendo por la diferencia de abscisas; los valores de las abscisas se encuentran trazando las diagonales desde la posición que se está evaluando hasta la columna de las diferencias divididas de orden 0.

7 Forma de Newton Datos igualmente espaciados: forma de Newton donde P(x 0 + sh) = f (x 0 ) + s f (x 0 ) + s(s 1) 2 f (x 0 ) ! +s(s 1)...(s n + 1) n f (x 0 ). n! 0 f i = f i, f i = f i+1 f i, n f i = n 1 f i = n 1 f i = n 1 f i+1 n 1 f i y utilizamos la notación f i = f (x i ) = f (x 0 + ih).

8 de Hermite El problema de interpolación P n (x 0 ) = f (x 0 ),... P (n 0) n (x 0 ) = f (n0) (x 0 )... P n (x k ) = f (x k ),... P (n k ) n (x k ) = f (n k ) (x k ) mediante un polinomio de grado n = n n k + k, siendo f (x) n + 1 veces derivable en [a, b], tiene solución única, que se puede construir mediante el esquema de diferencias divididas. Denotando ( x 0 x 1... x n ) = ([x 0 ] n 0+1,..., [x k ] n k +1 ), tenemos: P n (x) = n i=0 i 1 f [ x 0... x i ] (x x j ). j=0 Además f (x) P n (x) = f (n+1) (ζ x ) (n + 1)! n (x x j ) para algún ζ x (a, b). j=0

9 Comportamiento del error Volvamos a la interpolación de Lagrange (todos los nodos distintos). Definamos S(x) n (x x j ) j=0 y, por comodidad, consideraremos x 0 < x 1 <... < x n 1 < x n. Para x i igualmente espaciados, los mayores valores de S(x) se encuentran para los mayores o menores valores de x en el intervalo [x 0, x n ] (sin coincidir con los x i ) mientras que S(x) alcanza menores valores para valores intermedios de x.

10 Comportamiento del error Ejemplo: interpolación de una función para los valores de x i = i 4, i = S(x) = x(x 2 1)(x 2 4)(x 2 9)(x 2 16): S(X) X

11 Comportamiento del error Ejemplo: comparación la interpolación en 9 puntos x i = 4 i, i = 0,.., 8 de la función f (x) = x 2 / x (línea continua) con la propia función (línea discontinua) X

12 de Chebyshev Dada una función f (x) definida en un intervalo [a, b], la mejor aproximación polinómica de grado n será aquella que minimice E[q(x)] max f (x) q(x), x [a,b] Si un determinado polinomio Q n (X) hace que E[Q n (x)] sea el de valor mínimo entre todos los polinomios de grado n entonces se dice Q n (x) es la aproximación minimax de grado n de la función f (x) en [a, b].

13 Chebyshev Polinomios de Chebyshev: definición El polinomio de Chebyshev de orden n-ésimo se define como [ ] T n (x) = cos n cos 1 (x), x [ 1, 1], n = 0, 1, 2, 3,...

14 Polinomios de Chebyshev: propiedades 1 Relación de recurrencia de tres términos para los polinomios de Chebyshev: T n+1 (x) = 2xT n (x) T n 1 (x), n = 1, 2, 3,... siendo los valores iniciales de la recurrencia T 0 (x) = 1, T 1 (x) = x. 2 El coeficiente del término x n en T n (x) es 2 n 1 y se cumple que T n ( x) = ( 1) n T n (x). 3 Los n ceros de T n (x) están en el intervalo [ 1, 1] y están dados por [ ] 2k + 1 x k = cos 2n π, k = 0, 1,..., n 1. T n (x) tiene n + 1 extremos en el intervalo [ 1, 1] que vienen dados por x k = cos kπ n, k = 0,..., n, donde los polinomios valen: T (x k) = ( 1) k

15 de Chebyshev Teorema Para cualquier n 1, entre todos los polinomios mónicos (es decir, con coeficiente 1 en el término de mayor grado) el polinomio de Chebyshev modificado T n (x) 1 2 n 1 T n(x) es el de mínimo máximo valor absoluto en [-1,1], siendo este valor 1/2 n 1. Es decir, que 1 = max n 1 2 T n (x) max P n(x) x [ 1,1] x [ 1,1] para cualquier polinomio P n (x) de tipo mónico: P n (x) = x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0,

16 de Chebyshev Teorema Sea f (x) n + 1 veces diferenciable con continuidad en [a, b] Sea P n (x) el polinomio de interpolación de Lagrange grado n basado en los n + 1 nodos (de Chebyshev) x k = b + a 2 + b a 2 cos entonces el error viene acotado por: max f (x) P n(x) a x b ( b a 2 ( ) 2k + 1 2n + 2 π, k = 0,..., n donde hemos considerado el cambio de variable x(t) = b + a 2 ) n+1 1 (n + 1)!2 n max a x b f (n+1) (x) + b a 2 t que transforma el intervalo [ 1, 1] en [a, b].

17 de Chebyshev Ejemplo: f (x) = x 2 / x Se representa f (x) P(x) con P(x) el polinomio de interpolación que interpola en 9 nodos distintos. La línea continua corresponde a los nodos equiespaciados y la línea discontinua corresponde a la aproximación cuasi-minimax para 9 nodos en el intervalo [ 4, 4] X

18 de Chebyshev Propiedad de ortogonalidad discreta n ( ) n + 1 T i (x k )T j (x k ) = 2 (1 + δ i0) δ ij, siendo δ ij = k=0 { 1, i = j 0, i j delta de Kronecker. Las x k son los n + 1 ceros del polinomio T n+1 (x). la

19 de Chebyshev Evaluación de la interpolación Chebyshev El polinomio interpolador de grado n basado en los nodos de Chebyshev (ceros de T n+1 (x)), que interpola f (x) en estos n + 1 puntos de [ 1, 1], se puede escribir como: P n (x) = n c j T j (x) j=0 donde c j = 2 δ j0 n + 1 ( ) y x k = cos 2k + 1 2n + 2 π, k = 0,..., n. n f (x k )T j (x k ) k=0

20 Construcción de splines Sean n + 1 puntos (x i, y i ), i = 0, 1,..., n verificando a = x 0 < x 1 < x 2 <... < x n = b, una spline cúbica de estos puntos es una función s(x) en [a, b] que satisface: 1 Polinomio de tercer grado. s(x) es un polinomio, P i (x), de grado tres sobre cada intervalo [x i 1, x i ] para i = 1, 2,..., n. 2 Condiciones de interpolación. s(x i ) = y i para i = 0, 1,..., n. 3 Suavidad. s (x) es continua en [a, b] ( [x 0, x n ]), luego también lo son s(x) y s (x).

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

Práctica 6 INTERPOLACIÓN

Práctica 6 INTERPOLACIÓN Práctica 6 INTERPOLACIÓN 6.1. Interpolación Polinómica Datos de interpolación: 8Hx k, f k L< k=0,1,...,n Conocemos los valores de una función, f k = f Hx k L, en n + 1 puntos distintos, x k, de un intervalo

Más detalles

TEMA 6: DERIVACION NUMERICA

TEMA 6: DERIVACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 6: DERIVACION NUMERICA 1 INTRODUCCION En este tema nos ocupamos de aproximar las derivadas de orden arbitrario ν en un punto cualquier α de una función

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Integración numérica

Integración numérica Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Métodos Numéricos (SC 854) Integración

Métodos Numéricos (SC 854) Integración c M. Valenzuela 007 008 (1 de abril de 008) 1. Definición del problema Dada una función f() se desea calcular la integral definida f para valores dados de 0 y f.. Rectángulos 0 f() d (1) Todos los métodos

Más detalles

Ejemplo 1. Ejemplo 2. Ejemplo 3. Rendimiento de un proceso productivo en función de la temperatura

Ejemplo 1. Ejemplo 2. Ejemplo 3. Rendimiento de un proceso productivo en función de la temperatura Ejemplo 1 Rendimiento de un proceso productivo en función de la temperatura En una planta química se sintetiza un producto que es utilizado posteriormente como conservante de productos enlatados. El rendimiento

Más detalles

Los números complejos

Los números complejos Universidad Autónoma de Madrid Actualización en Análisis Matemático, abril de 2012 Cardano (1501 1576) Dividir un segmento de longitud 10 en dos trozos tales que el rectángulo cuyos lados tienen la longitud

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

2 Deniciones y soluciones

2 Deniciones y soluciones Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última

Más detalles

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc. Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Aproximación funcional por mínimos cuadrados

Aproximación funcional por mínimos cuadrados Aproximación funcional por mínimos cuadrados Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Introducción

Más detalles

Prueba del LEMA 2: Si n = 0, p(x) = a 0. Si n > 0, usamos la idea clave de este Tema: la división con resto del polinomio p(x) por (x x 0 ) :

Prueba del LEMA 2: Si n = 0, p(x) = a 0. Si n > 0, usamos la idea clave de este Tema: la división con resto del polinomio p(x) por (x x 0 ) : 1 Tema 3. Interpolación. Polinomios interpoladores; diferencias divididas y operadores de diferencias sucesivas. Aproximación de derivadas con diferencias. Interpolar a trozos y otras formas de aproximar

Más detalles

Limites: Definición: lim

Limites: Definición: lim Limites: Definición: El concepto de límite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Por ejemplo: Consideremos la función yy

Más detalles

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II Métodos Numéricos Grado en Ingeniería Informática Tema 7 Interpolación de funciones II Luis Alvarez León Univ. de Las Palmas de G.C. Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador Métodos Numéricos: Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Version

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Funciones Racionales y Asíntotas

Funciones Racionales y Asíntotas y Asíntotas Carlos A. Rivera-Morales Precálculo 2 y Asíntotas Tabla de Contenido 1 Asíntotas de :Asíntotas Asíntotas Verticales y Asíntotas Horizontales y Asíntotas Asíntotas de :Asíntotas Definición:

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

Métodos Interpolación con MatLab. El comando interp1 El comando interp1 se emplea para interpolar una serie de datos. El formato de este comando es:

Métodos Interpolación con MatLab. El comando interp1 El comando interp1 se emplea para interpolar una serie de datos. El formato de este comando es: Universidad Mayor de San Andrés Ciencias Puras y Naturales Informática Nombre: Rodrigo Diego Quispe Laura Materia: Análisis Numérico Métodos Interpolación con MatLab En matlab encontramos las siguientes

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Definición de la integral de Riemann (Esto forma parte del Tema 1)

Definición de la integral de Riemann (Esto forma parte del Tema 1) de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

Unidad 5. La derivada. 5.2 La derivada de una función

Unidad 5. La derivada. 5.2 La derivada de una función Unidad 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

Separar en intervalos de la forma [m, m + 1], con m Z, las raíces de la ecuación: F (x) = x 3 + 3x 2 1 = 0

Separar en intervalos de la forma [m, m + 1], con m Z, las raíces de la ecuación: F (x) = x 3 + 3x 2 1 = 0 METODOS NUMERICOS. E.T.S.I. Minas. Boletín de problemas propuestos. 1. Localizar las raíces de la ecuación F (x) = : (a) F (x) = x tg(x). (b) F (x) = sen(x) x +. (c) F (x) = x + e x. (d) F (x) =.5 x +.

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

1. Teorema Fundamental del Cálculo

1. Teorema Fundamental del Cálculo 1. Teorema Fundamental del Cálculo Vamos a considerar dos clases de funciones, definidas como es de otras funciones Funciones es. F (t) = t a f(x)dx donde f : R R, y F (t) = f(x, t)dx A donde f : R n R

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

Cálculo: Polinomio de Taylor

Cálculo: Polinomio de Taylor Cálculo: Polinomio de Taylor Antonio Garvín Curso 04/05 El polinomio de Taylor Nos detendremos especialmente en el teorema de Taylor, justificando la introducción del polinomio de Taylor como la mejor

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

Universidad de Antioquia

Universidad de Antioquia Polinomios Facultad de Ciencias Eactas Naturales Instituto de Matemáticas Grupo de Semilleros de Matemáticas (Semática) Matemáticas Operativas Taller 8 202 Los polinomios forman una clase mu importante

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

MÉTODOS MATEMÁTICOS (Curso 2008-2009) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla

MÉTODOS MATEMÁTICOS (Curso 2008-2009) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla MÉTODOS MATEMÁTICOS (Curso 8-9) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II Universidad de Sevilla Lección 4: Interpolación Polinómica Introducción Son muchas y muy distintas

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida. Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,

Más detalles

Límites y continuidad

Límites y continuidad 9 Matemáticas I : Cálculo diferencial en IR Tema 9 Límites y continuidad 9. Límite y continuidad de una función en un punto Definición 9.- Un punto IR se dice punto de acumulación de un conjunto A si,

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Métodos Numéricos. DOMINIO DEL PERFIL DE EGRESO RELACIONADO CON LA ASIGNATURA: Modelamiento de Procesos Decisionales

Métodos Numéricos. DOMINIO DEL PERFIL DE EGRESO RELACIONADO CON LA ASIGNATURA: Modelamiento de Procesos Decisionales Nombre del (la) Docente Responsable: Ing. Elton F. Morales Blancas, M.Sc. Nombre del (la) Docente Colaborador:---------------------------------------- Métodos Numéricos Carrera / Programa Ingeniería Civil

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2 CÁLCULO DIFERENCIAL Equipo 2 Máximos y Mínimos Estos son los ejercicios que deberá el equipo explicar dentro de la clase, este equipo tendrá un máximo de 5 integrantes, y deberá valerse de materiales o

Más detalles

12.1. Definición de las derivadas sucesivas

12.1. Definición de las derivadas sucesivas Tema 12 Derivadas sucesivas El proceso de derivación de funciones reales de variable real puede obviamente iterarse, obteniendo la segunda y sucesivas derivadas de una función. Como es lógico, para n N,

Más detalles

Convergencia y existencia de la serie de Fourier

Convergencia y existencia de la serie de Fourier A Convergencia y existencia de la serie de Fourier A.1. Convergencia de la serie de Fourier* Posiblemente una de las mayores controversias respecto al desarrollo de Fourier fue su afirmación que cualquier

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.7 Polinomio interpolador

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.7 Polinomio interpolador Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.7 Polinomio interpolador Francisco Palacios Escuela Politécnica Superior de Ingeniería Manresa Universidad Politécnica

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente:

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente: Tasa de variación media DERIVADAS La tasa de variación media TVM de una unción ( en un intervalo (x, x se deine como: TVM (a, b ( x ( x x x Si consideramos x x + h, podemos expresar la TVM como: Interpretación

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

Teorema del valor medio

Teorema del valor medio Práctica 6 - Parte 1 Teorema del valor medio El teorema del valor medio para derivadas (o teorema de Lagrange) es un resultado central en la teoría de funciones reales. Este teorema relaciona valores de

Más detalles

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos.

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos. Capítulo 6 Derivadas 61 Introducción En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos Definición 61 Sea I R, I, f :

Más detalles

Análisis Matemático I: La integral de Riemann

Análisis Matemático I: La integral de Riemann Contents : La integral de Riemann Universidad de Murcia Curso 2006-2007 Contents 1 Definición de la integral y propiedades Objetivos Definición de la integral y propiedades Objetivos 1 Definir y entender

Más detalles

1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner.

1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner. Interpolación. Hallar el número de operaciones en la evaluación de un polinomio p n () = a + a + + a n n por el método estándar y el de Horner.. Hallar el polinomio de interpolación de Lagrange y de Newton

Más detalles

Laboratorio 2 MA-33A : Interpolación y Aproximación de Funciones

Laboratorio 2 MA-33A : Interpolación y Aproximación de Funciones Laboratorio 2 MA-33A 2007-1: Interpolación y Aproximación de Funciones Gonzalo Hernández - Gonzalo Rios UChile - Departamento de Ingeniería Matemática 1 Manejo de Polinomios (30 min) En esta sesión aprenderemos

Más detalles

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS Para encontrar la solución de la Ecuacion diferencial de orden n definida por Donde los son constantes y f(x) es un función

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

MAT web:

MAT web: Clase No. 7: MAT 251 Matrices definidas positivas Matrices simétricas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa

Más detalles

13,20 13,25 13,30 13,35 13,40 13,45 13,50 13,55 14,00 14,05 14,10

13,20 13,25 13,30 13,35 13,40 13,45 13,50 13,55 14,00 14,05 14,10 05 Trabajo Práctico N : LÍMITE DE FUNCIONES Ejercicio : Un dispositivo registra los valores de la frecuencia cardiaca de un paciente internado. El gráfico muestra la frecuencia cardíaca epresada en pulsaciones

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice la cadena Tabla de Dada una función f : D R R,

Más detalles

Propiedades de les desigualdades.

Propiedades de les desigualdades. Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles