TEMA 3.- LA HERENCIA. GENÉTICA MOLECULAR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 3.- LA HERENCIA. GENÉTICA MOLECULAR"

Transcripción

1 TEMA 3.- LA HERENCIA. GENÉTICA MOLECULAR 1. CONCEPTOS FUNDAMENTALES Las células de todos los organismos, desde las bacterias hasta el ser humano, contienen una o más copias de una dotación básica de ADN que es característica de la especie. Esta dotación fundamental de ADN se denomina genoma. GEN Desde el punto de vista de la Genética Molecular se define gen como un fragmento de ADN (excepto los virus con ARN) que lleva la información para la síntesis de una proteína, es decir, para que unos determinados aminoácidos se unan de un modo concreto y formen una proteína. Los genes son los responsables de los caracteres hereditarios, son las unidades estructurales y funcionales de la herencia transmitida de padres a hijos a través de los gametos y regulan la manifestación de los caracteres heredables. Los miembros de un par de cromosomas homólogos llevan el mismo rosario de genes dispuestos en fila. LOCUS (loci en plural) Es el lugar que los genes ocupan en los cromosomas. MUTACIÓN Con este nombre reconocemos cualquier tipo de cambio brusco en el material genético. Si este cambio afecta a las células germinales, será heredado por los descendientes. Si afecta a las células somáticas, solo será heredable cuando se trate de una especie con reproducción asexual. ALELOS O ALELOMORFOS Son las distintas expresiones que puede tener el gen responsable de un carácter. Un gen puede modificarse por mutaciones dando lugar a la aparición de dos o más variantes alternativas, a cada una de esas alternativas la denominamos alelo o alelomorfo. El alelo más abundante en una población se dice que es el alelo normal o salvaje, el resto se consideran alelos mutados. Ten en cuenta que esto no tuvo por que ser así, es posible que el más abundante no sea el gen primitivo, simplemente es el más exitoso en el medio donde vive la especie. GENOTIPO Combinación de alelos (AA, Aa, aa) que presenta un individuo para un determinado carácter. Por extensión se define el genotipo como el conjunto de genes que tiene un organismo, heredados de sus progenitores. Permanece constante a lo largo de la existencia del individuo. BIOLOGÍA_Tema 3_UNIVERSIDAD 1

2 FENOTIPO Es el nombre que recibe la manifestación externa del genotipo y representa lo que nosotros podemos observar: morfología, fisiología, etc. En el caso de las vainas del guisante, el fenotipo correspondería al color manifestado: amarillo o verde. Puede cambiar a lo largo de la existencia de un individuo, ya que el ambiente puede influir sobre el fenotipo modificándolo. Fenotipo = Genotipo + Acción ambiental El ambiente de un gen lo constituyen los otros genes, el citoplasma celular y el medio externo donde se desarrolla un individuo. Hay que tener en cuenta que se hereda el genotipo (los genes), pero esto no significa la manifestación automática de los caracteres regulados por dichos genes; para ello es precisa su expresión, es decir, que se transcriban y se traduzcan, y aquí es donde interviene la capacidad moduladora del ambiente. Por ejemplo, todas las células humanas poseen genes que regulan la pigmentación de los ojos, pero solo se expresan en las células del iris. HOMOCIGÓTICO Y HETEROCIGÓTICO Los organismos diploides poseen dos alelos para cada gen: uno que provienen del progenitor femenino y otro del masculino. Si los dos alelos son iguales el individuo se llama homocigótico o raza pura (AA) dominante o recesivo (aa). Cuando los dos alelos son diferentes (Aa), se le denomina heterocigótico o híbrido. DOMINANCIA RECESIVIDAD Se dice que un carácter tiene herencia dominante cuando se expresa uno de sus alelos, alelo dominante; el otro alelo, alelo recesivo, para poder manifestarse debe encontrarse en homocigosis. Los alelos dominantes se representan con letras mayúsculas y los recesivos con minúsculas. En el ejemplo del color de las vainas del guisante El alelo dominante seria A para el color amarillo y el alelo recesivo para el color verde a. CODOMINANCIA Cuando los dos alelos que definen un carácter se manifiestan conjuntamente en heterocigosis. La razón está en que ambos alelos dan lugar a productos activos que se manifiestan en el fenotipo del individuo (caso de los alelos l A y l B en los grupos sanguíneos humanos). HERENCIA INTERMEDIA En algunas ocasiones no es fácil diferenciarla de la codominancia. En este caso el fenotipo del individuo heterocigótico es intermedio entre los fenotipos de los dos homocigóticos posibles. El resultado es como si los dos alelos se expresaran (dieran lugar a productos activos) pero lo cierto es que un alelo no se expresa y el otro, aunque se expresa con normalidad, no puede producir la cantidad de sustancia activa suficiente para paliar la deficiencia del primer alelo. BIOLOGÍA_Tema 3_UNIVERSIDAD 2

3 EXPRESIVIDAD Grado en que un gen concreto se expresa fenotípicamente. Es decir, el grado de influencia del ambiente sobre un gen concreto. 2. HERENCIA MENDELIANA Frente a todas las teorías que se habían postulado anteriormente, Mendel tuvo el gran acierto de utilizar un adecuado planteamiento experimental en el desarrollo de sus trabajos llevados a cabo en el monasterio de Brünn (República Checa). Mendel quería saber como se heredaban los caracteres individuales y utilizó para ello la planta del guisante (Pisum sativum) por ser económica, producir gran número de descendientes, y como era hermafrodita permite su autofecundación y la fecundación cruzada artificial. Al acierto de elección de la planta, Mendel añadió la del método científico empleado, consiguiendo demostrar que la herencia se producía de manera predecible. Sus trabajos fueron publicados en 1866, aunque sus experiencias pasaron inadvertidas, hasta que 35 años después fueron reconocidas y renombradas como leyes de Mendel. En 1900, tres botánicos confirmaron, de forma independiente, las conclusiones de Mendel, dando a conocer sus tres leyes. La primera y segunda ley se refieren a la herencia de un solo carácter (monohíbridos), y la tercera estudia la transmisión simultánea de dos caracteres (dihibridismo) HERENCIA DE UN SOLO CARÁCTER Los caracteres se heredan de forma predecible. Primera ley. Ley de la uniformidad de los híbridos de la primera generación filial. Cuando se cruzan dos individuos razas puras (homocigóticos) de una misma especie que difieren entre sí en un carácter, todos los individuos de la F 1 (primera generación) son idénticos entre sí genotípica y fenotípicamente (fenotipo idéntico al mostrado por uno de los progenitores). Mendel inicio sus experimentos cruzando dos individuos homocigóticos para un determinado carácter. Así, en el siguiente cruzamiento entre guisantes, para el carácter color de la vaina, representamos por A el alelo dominante (amarillo) y por a el alelo recesivo (verde), la generación parenteral estará formada por: Plantas homocigóticas de vainas amarillas (AA) Plantas homocigóticas de vainas verdes (aa) Los gametos producidos por las plantas AA llevan un solo alelo A, mientras que los de las aa llevan solo el a. Los dos tipos de gametos se unen en la fecundación y todas las vainas formadas en la F1 serán heterocigóticas (Aa). BIOLOGÍA_Tema 3_UNIVERSIDAD 3

4 Segunda ley. Ley de la segregación de los caracteres en la F2 Segregación de los genes que forman la pareja de alelos de la F 1 para formar los gametos que luego vuelven a unirse al azar en la F 2. Al cruzar entre sí individuos pertenecientes a la F 1, los factores o genes que controlan un determinado carácter, y que se encontraban juntos en los híbridos, se separan y se transmiten separadamente uno del otro, de tal manera que en la F 2 reaparecen los fenotipos propios de la generación parental. Para obtener la F 2, Mendel dejo que las plantas de genotipo Aa de la F 1 se autofecundaran. Cuando los heterocigóticos (Aa) forman los gametos, los dos alelos se separan. Así se forman con la misma probabilidad, los gametos con el alelo A y con el a. La unión al azar de los distintos tipos de gametos origina las siguientes combinaciones de los genotipos de la F 2 : AA, Aa y aa. Los individuos de genotipo AA y Aa, de los que se obtiene un 75%, presentan el fenotipo dominante (amarillo), y los de genotipo aa, un 25 %, el fenotipo recesivo (verde). BIOLOGÍA_Tema 3_UNIVERSIDAD 4

5 Si el alelo dominante A determina el fenotipo amarillo y el alelo recesivo a el verde, se obtendrán 3/4 Amarillos y 1/4 Verdes, por lo tanto la segregación será 3:1. Retrocruzamiento o cruzamiento de prueba Los genes no se ven se ven y los fenotipos son el reflejo de los genes. Por eso, en los casos de herencia dominante en los cuales obtenemos individuos heterocigóticos (Aa) y homocigóticos (AA) con el fenotipo dominante amarillo, para conocer cuál es el genotipo, se cruzan con otro individuo de genotipo homocigótico recesivo (aa), lo que se denomina retrocruzamiento. Por ejemplo al cruzar vainas de guisantes amarillas que pueden ser AA o Aa, con, vainas de guisantes verdes, aa, son posibles dos resultados. Resultado 1.- Aparecen plantas con guisantes verdes: el individuo problema es Aa. Resultado 2.- No aparecen plantas con guisantes verdes: el individuo del problema puede ser AA HERENCIA DE DOS CARACTERES SIMULTÁNEAMENTE Comportamiento o transmisión independiente de los caracteres. Estudia la transmisión simultánea de dos caracteres. Tercera ley. Ley de la independencia de los caracteres GENES INDEPENDIENTES Cuando los genes que regulan ambos caracteres se localizan en pares de cromosomas homólogos distintos. Cuando se forman los gametos, los alelos de un gen se transmiten independientemente de los alelos del otro gen. En la transmisión de dos o más BIOLOGÍA_Tema 3_UNIVERSIDAD 5

6 caracteres, cada par de alelos que controla un carácter se transmite a la F2 independientemente de cualquier otro par de alelos que controle otro carácter y no esté en el mismo cromosoma. Durante la anafase I se separan los cromosomas homólogos de cada par y en la anafase II se separan las cromátidas de cada cromosoma; después de la autoduplicación del ADN se forman cuatro clases de gametos, cada uno de los cuales posee dos cromosomas. Puesto que su distribución se realiza totalmente al azar, existen cuatro posibilidades para que los cromosomas con sus genes se agrupen en cada gameto: (A-B), (A-b), (a- B) y (a- b). Esta conclusión, a la que llego Mendel contabilizando los descendientes de los cruzamientos, en la actualidad se entiende porque sabemos que los cromosomas emigran aleatoriamente a los polos. Si el alelo dominante A determina el fenotipo amarillo, el alelo recesivo a el verde, el alelo dominante B el fenotipo liso y el alelo recesivo b el fenotipo rugoso, se obtendrán 9/16 Amarillos y Lisos y 3/16 Amarillos y Rugosos, 3/16 Verdes y Lisos y 1/16 Verdes y Rugosos; por lo tanto la segregación será 9:3:3:1 Si comparamos la 3ª ley con la 2ª ley, la 3ª podemos considerarla como un caso particular de la 2ª, pues si consideramos un solo carácter, por ejemplo, el color, por cada 12 amarillos, salen 4 verdes; es decir 12 a 4 3 a 1, exactamente igual que en la 2ª ley. BIOLOGÍA_Tema 3_UNIVERSIDAD 6

7 Si consideramos el tipo de piel, por cada 12 lisos salen 4 rugosos, es decir 3 es a 1, exactamente igual que en la segunda ley. Por lo tanto la 3ª ley podemos considerarla como un caso particular de la 2ª. GENES LIGADOS. GRUPOS DE LIGAMIENTO Cuando los genes que regulan caracteres diferentes tienen sus loci en la misma pareja de homólogos no podrá cumplirse la 3ª ley de Mendel porque no se heredarán independientemente. Decimos que esos genes forman un grupo de ligamiento y se heredarán más o menos en bloque: Si sus loci están muy próximos en el cromosoma, se heredarán siempre juntos y decimos que se trata de un ligamiento absoluto. Si sus loci están a cierta distancia, podrá realizarse algún crossing-over y aparecerán recombinaciones entre ellos. Podrán heredarse por separado, pero las frecuencias observadas en los descendientes no se ajustan a las previstas por la 3ª ley de Mendel (9:3:3:1). 3. GENÉTICA HUMANA Dada la naturaleza del ser humano, no es posible emplear para su estudio genético los mismos métodos empleados con otros organismos por eso la genética humana tiene que recurrir a la confección de árboles genealógicos o pedigríes, en los que se estudia la transmisión de un determinado carácter a través de varias generaciones CONFECCIÓN DE UN ÁRBOL GENEALÓGICO Cada individuo se representa mediante un símbolo: Los círculos representan a las mujeres y los cuadrados a los hombres. Los círculos y cuadrados oscuros indican personas con el carácter estudiado, mientras que los blancos representan personas normales. Cada fila horizontal de círculos y cuadrados representa una generación, de tal manera que las situadas en la parte inferior del árbol genealógico son las más recientes. Para distinguir una generación de otra se utilizan los números romanos: el I es la primera, el II la segunda, el III la tercera, el IV la cuarta y así sucesivamente. Para distinguir a las personas que pertenecen a una misma generación se numeran de izquierda a derecha, 1, 2, 3, 4, etc. Los matrimonios se indican mediante una línea uniendo a las dos personas. Los hijos de una misma pareja se unen con una línea horizontal, que estará unida por una línea vertical a la que liga a los padres. Los hijos se disponen de izquierda a derecha según su orden de nacimiento. BIOLOGÍA_Tema 3_UNIVERSIDAD 7

8 3.2. HERENCIA DE LOS GRUPOS SANGUÍNEOS DEL SISTEMA ABO Se trata de un caso de herencia polialélica, que fue descubierta por el médico austriaco Kart Landsteiner. Según el sistema ABO, las personas se clasifican en cuatro grupos (fenotipos) distintos en función de que se produzca o no la aglutinación sanguínea al mezclar una suspensión de eritrocitos de un grupo con suero sanguíneo de otro. Los cuatros fenotipos A, B, AB y O, están controlados por una serie alélica integrada por tres alelos: I A, I B e i. La pertenencia a uno u otro grupo sanguíneo viene determinada por la presencia en la membrana de los glóbulos rojos de un polisacárido o antígeno específico y por anticuerpos específicos en el plasma sanguíneo. Los alelos I A e I B determinan la producción de los antígenos A y B, respectivamente, y son codominantes, mientras que el alelo i no produce antígeno y es recesivo frente a los otros dos. Con estos tres alelos son posibles cuatro fenotipo y seis genotipos distintos, recogidos en el cuadro siguiente: BIOLOGÍA_Tema 3_UNIVERSIDAD 8

9 Landsteiner descubrió que en los hematíes de la sangre además de los antígenos (sustancia extraña producida por un gen que no es propio) correspondientes a los grupos sanguíneos existen aglutininas o anticuerpos α y β. La aglutinina α reacciona frente al antígeno o aglutinógeno B. La aglutinina β reacciona frente al antígeno o aglutinógeno A. Esto significa que un individuo con grupo B no puede tener aglutinina α y uno con el grupo A no puede tener aglutinina β. Los del grupo AB no podrán tener ningún tipo de aglutinina y los del grupo O, podrán tener ambos tipos. FACTOR Rh: Viene determinado por una pareja de alelos; uno dominante (R) y otro recesivo (r). El Rh+ es dominante, por lo tanto se manifiesta en heterocigosis y en homocigosis (RR y Rr). El Rh- es recesivo, sólo se manifiesta en homocigosis (rr). El Rh tiene importancia en transfusiones y también en la descendencia si la madre es Rh- y concibe un hijo Rh+. Durante el embarazo o en el parto puede existir comunicación entre la sangre fetal y la de la madre. La madre reacciona frente al factor Rh (proteína antigénica para la madre Rh-) y fabrica anticuerpos. Para el primer hijo no existe riesgo, pero en un segundo hijo, si es Rh+, los anticuerpos fabricados por la madre pueden reaccionar y provocarle una reacción hemolítica o destrucción de glóbulos rojos. La transmisión del factor Rh sigue las leyes de Mendel. 4. GENÉTICA MOLECULAR 4.1. DUPLICACIÓN (REPLICACIÓN) DEL ADN El modelo de Watson y Crick apuntaba la posibilidad (por la complementariedad de las bases) de que las moléculas de ADN pudieran duplicarse para formar dos moléculas hijas idénticas. La replicación es el proceso que garantiza que cuando una célula se divide cada una de las células hijas reciba una copia exacta e íntegra de la información hereditaria de la célula madre. BIOLOGÍA_Tema 3_UNIVERSIDAD 9

10 Meselson y Stahl cultivaron Escherichia coli en un medio en el que el nitrógeno presente era nitrógeno pesado (15N). Purificaron el ADN de varias generaciones de las bacterias cultivadas y lo centrifugaron en un gradiente de densidad. Los experimentos de Meselson y Stahl llevaron a la conclusión de que la replicación del ADN es un proceso semiconservativo en el que cada una de las moléculas hija contiene una hebra de la molécula original y otra neoformada. Características de la replicación del ADN: La replicación es semiconservativa (cada molécula hija conserva una hebra de la molécula madre y una nueva). La replicación del ADN se basa en la complementariedad de las bases. La replicación es bidireccional: en una cadena la replicación es continua (hebra conductora), pero en la otra es discontinua (hebra retardada). Etapas de la replicación: 1ª etapa: iniciación: La helicasa rompe los puentes de H entre las dos cadenas provocando la aparición de una burbuja de replicación. Las girasas y topoisomerasas eliminan las tensiones generadas por la separación de las cadenas y evitan que éstas vuelvan a enrollarse. Puesto que el proceso es bidireccional, en cada extremo de la cadena se forma una horquilla de replicación. Las primasas sintetizan oligonucleótidos de ARN (5-30 nucleótidos) que servirán de cebadores a las ADN-polimerasa III. La ADNpolimerasa III añade el primer nucleótido (por complementariedad con la cadena molde) al extremo 3 del cebador. 2ª etapa: elongación: La ADN-polimerasa avanza un nucleótido en la dirección de síntesis, reconoce el siguiente nucleótido de la cadena molde y coloca el nucleótido complementario; ahora cataliza la formación del enlace fosfodiéster con el nuevo nucleótido obteniendo la energía necesaria de la separación de los dos grupos fosfato sobrantes (recuerda que se van uniendo nucleótidos trifosfato). La hebra conductora es de crecimiento continuo puesto que la horquilla se va abriendo en el mismo sentido que la ADN-polimerasa III añade los nucleótidos. Sin embargo en la hebra retardada, a partir del cebador la ADN-polimerasa III sintetiza unos 1000 nucleótidos de ADN, alejándose de la horquilla de replicación, formándose el denominado fragmento de Okazaki. Según se va abriendo la horquilla se sintetizan nuevos fragmentos, por lo que podemos decir que la hebra retardada es de crecimiento discontinuo. BIOLOGÍA_Tema 3_UNIVERSIDAD 10

11 Después, otra ADN-polimerasa (la ADN-pol I) distinta retira los fragmentos de ARN que han hecho de cebador y rellena los huecos con nucleótidos de ADN. La ligasa se encargará de empalmar los fragmentos. 3ª etapa: terminación: La elongación finaliza en las células eucarióticas cuando la horquilla de replicación alcanza a la adyacente y en las células procariotas cuando se encuentran los dos extremos que iban creciendo en sentidos puestos. Finalizada la elongación se eliminan los últimos cebadores y se sustituyen por nucleótidos de ADN de una forma semejante a la mencionada anteriormente. En las células eucarióticas en este proceso de terminación tiene que intervenir un nuevo enzima, la telomerasa, que añaden a los extremos del cromosoma secuencias de ADN repetitivo no codificante (denominadas telómeros) TRANSCRIPCIÓN Síntesis de un ARNm a partir de la información contenida en el ADN nuclear. El ARNm sintetizado tendrá una secuencia de nucleótidos complementaria a la de un (ocasionalmente más de uno) gen. Tiene lugar en el núcleo de la célula durante la interfase y la profase de la mitosis. Proceso de transcripción: Iniciación: Previamente actúan las endonucleasas y girasas. La ARN-polimerasa reconoce y se acopla a la región promotora, situada por delante del gen que se va a transcribir. El primer nucleótido que se une es siempre ATP o GTP. Elongación: La polimerasa se desplaza hacia el siguiente nucleótido de la cadena de ADN que está leyendo y cataliza la formación de un enlace fosfodiéster. Este proceso se repite sucesivamente. La energía necesaria para la unión proviene de la hidrólisis de los dos fosfatos terminales de los nucleótidos activados que se van incorporando. La dirección de transcripción es 5` 3`. Terminación: Al alcanzar una señal de terminación, un factor proteico, denominado factor de liberación, provoca la separación del ARNm recién sintetizado. BIOLOGÍA_Tema 3_UNIVERSIDAD 11

12 4.3. EL CÓDIGO GENÉTICO: CONCEPTO Y CARACTERÍSTICAS Es la relación entre la secuencia de las bases en el ADN (ARN) y la secuencia de aminoácidos en una proteína. Características del código genético: - Formado por tripletes - No tiene superposiciones. - Es degenerado (redundante) pero no es ambiguo. 61 de los 64 tripletes codifican a un aminoácido particular; esto significa que para algunos aminoácidos debe haber más de un triplete. Esto minimiza los efectos deletéreos de las mutaciones, puesto que la mayoría de los codones que especifican un mismo aminoácido difieren únicamente en la última base del triplete. - Presenta tripletes sin sentido: se denominan tripletes de terminación y son reconocidos por proteínas específicas llamadas factores de liberación. - Es universal: es el mismo para todos los seres vivos TRADUCCIÓN: BIOSÍNTESIS DE PROTEÍNAS Es el proceso mediante el cual la información contenida en el ARNm especifica la síntesis de una proteína. Etapas de la traducción: Etapa previa: activación de los ARN de transferencia: Los aminoácidos se unen a los ARNt, formando los aminoacil-arnt, por medio de una reacción muy específica catalizada por unos enzimas denominados aminoacil-arnt-sintetasas. Estos enzimas poseen dos centros de unión, uno para el aminoácido y otro para el ARNt correspondiente. Ocurre en el citoplasma y requiere la hidrólisis de una molécula de ATP. Es muy rápido, se ha comprobado que en las bacterias puede durar 15 a 20 segundos. Formación del complejo de iniciación: las subunidades del ribosoma están separadas. Primero se une la subunidad al ARNm por su extremo 5`. Intervienen tres factores proteicos de iniciación y se consume una molécula de GTP. El primer codón del ARNm (AUG) codifica la formilmetionina en las células procariotas y la metionina en las eucariotas. BIOLOGÍA_Tema 3_UNIVERSIDAD 12

13 Elongación: Entrada de un aminoacil-arnt al locus A. Intervienen dos factores proteicos de elongación y una molécula de GTP. Formación de un enlace peptídico, catalizada por un enzima presente en la subunidad mayor, la peptidiltransferasa. El enlace se produce entre el grupo amino del nuevo aa-arnt y el carboxilo del anterior. Translocación: interviene un tercer factor proteico de elongación y otra molécula de GTP. Terminación: Cuando se llega a uno de los codones sin sentido (UAA, UAG o UGA) un factor proteico, denominado factor de liberación R, se une al ribosoma. Esto promueve la ruptura de la unión entre el ARNt y la cadena polipeptídica y la separación del ARNm y las subunidades del ribosoma. Frecuentemente varios ribosomas traducen simultáneamente la misma proteína, asociándose a lo largo del mismo filamento de ARNm formando un polisoma. Una vez traducido, el ARNm es hidrolizado quedando libres los ribonucleótidos. 5. ALTERACIONES DE LA INFORMACIÓN GENÉTICA El término mutación fue introducido en 1902 por el botánico holandés Hugo de Vries refiriéndose a los cambios hereditarios bruscos que aparecían en la hierba del asno (Oenothera). Posteriormente se supo que tan solo 2 de los alrededor de 2000 cambios observados por de Vries eran auténticas mutaciones. En general se denomina mutación a cualquier cambio en la cantidad o estructura del material hereditario de un organismo, que tiene como resultado un cambio de las características hereditarias de dicho organismo Bajo este concepto de mutación se agrupan tanto los cambios hereditarios que afectan a un solo gen, denominados mutaciones puntuales, como los que afectan al número o estructura de los cromosomas, llamados cambios cromosómicos. No debe confundirse el concepto de mutación con el de modificación, que se refiere a los cambios fenotípicos debidos al medio o al uso. Las mutaciones pueden clasificarse atendiendo a criterios muy diversos: por su origen pueden ser espontáneas (si no interviene ningún factor físico o químico externo) BIOLOGÍA_Tema 3_UNIVERSIDAD 13

14 o inducidas; por las células en que se localizan pueden ser gaméticas (si se produce en las células de la línea germinal) o somáticas; por su expresión pueden ser dominantes o recesivas; por su efecto pueden ser neutras, beneficiosas, patológicas (causan enfermedades), teratológicas (causan malformaciones) o letales;... La clasificación que sigue se basa en la naturaleza de la alteración que provoca, según lo cual podemos distinguir mutaciones cromosómicas, numéricas o estructurales, y mutaciones génicas CAMBIOS CROMOSÓMICOS NUMÉRICOS: MUTACIONES GENÓMICAS Cada especie biológica se caracteriza por su cariotipo, en el que el número y la morfología de los cromosomas es constante. En la mayoría de los organismos superiores, las células somáticas son diploides y los gametos (formados por meiosis) son haploides. La mitosis y la meiosis (con la consiguiente fecundación) son los mecanismos biológicos que aseguran la constancia en el número de cromosomas de las células, sin embargo, si se producen anomalías en cualquiera de estos dos procesos se pueden formar células que presentan un número anormal de cromosomas. La euploidía es una alteración del número de cromosomas que afecta a juegos completos. Los organismos que presentan más de dos juegos completos de cromosomas se denominan poliploides. La poliploidía puede deberse a la unión de genomas de una misma especie, en cuyo caso se conoce como autopoliploidía, o a la unión de genomas de especies diferentes, conocido como alopoliploidía. BIOLOGÍA_Tema 3_UNIVERSIDAD 14

15 Existen varios mecanismos de formación de autopoliploides pero los más frecuentes son la fecundación de un óvulo por más de un espermatozoide y la formación de gametos diploides por un error durante la meiosis. En los animales la autopoliploidía es rara, y suele conllevar la muerte del individuo. En los vegetales sin embargo es relativamente frecuente y los individuos poliploides son de mayor tamaño y más vigorosos que los normales diploides. La aneuploidía es una anomalía numérica que afecta a uno o varios cromosomas, pero no a todo el genoma. La aneuploidía se origina por la no disyunción de una o varias parejas de cromosomas homólogos durante la meiosis. Algunos de los gametos resultantes tendrán cromosomas de más y otros, en cambio, los tendrán de menos. Al ser fecundados estos gametos por otros normales originarán cigotos con cromosomas de más o bien con cromosomas de menos. Los organismos aneuploides presentan, generalmente, anomalías fenotípicas características y son poco viables. Los casos más frecuentes de aneuploidia son aquellos en los que aparece un cromosoma sin homólogo (monosomía) y los que presentan un cromosoma extra en una pareja cromosómica (trisomía)(también se conocen casos de individuos tetrasómicos, doble trisómicos y nulisómicos). Algunos ejemplos de aneuploidías en el hombre: BIOLOGÍA_Tema 3_UNIVERSIDAD 15

16 5.2. CAMBIOS CROMOSÓMICOS ESTRUCTURALES: MUTACIONES CROMOSÓMICAS Estas alteraciones se deben a la pérdida, ganancia o reordenación de determinadas regiones de un cromosoma. El origen de estos cambios está en errores que pueden producirse durante la mitosis o la meiosis que consisten en la ruptura de una cromátida que puede ir seguida de la pérdida del fragmento roto o bien de la fusión equivocada de este fragmento. Existen cuatro tipos de cambios estructurales: - Las inversiones son cambios del orden lineal de los genes en un cromosoma. - Las translocaciones son intercambios o transferencias de fragmentos cromosómicos entre cromosomas no homólogos. - Las deficiencias o deleciones son pérdidas de fragmentos de cromosomas. - Las duplicaciones consisten en la repetición de un fragmento en un cromosoma. Si bien la mayoría de estas alteraciones suelen provocar defectos que disminuyen la viabilidad de los individuos que las portan se admite que algunas duplicaciones pueden ser útiles en la evolución, ya que algunos genes repetidos pueden mutar hacia formas nuevas sin que ello suponga una pérdida de adaptabilidad. BIOLOGÍA_Tema 3_UNIVERSIDAD 16

17 5.3. MUTACIONES GÉNICAS O PUNTUALES Las mutaciones génicas son las mutaciones en sentido estricto y las responsables de la aparición de nuevos alelos de un gen. Estas alteraciones son debidas generalmente a errores no corregidos en el proceso de autoduplicación del ADN o a la acción de determinados agentes físicos o químicos que alteran el ADN. La unidad mínima de mutación, denominada mutón, corresponde a un par de nucleótidos de la cadena de ADN. Se ha comprobado en repetidas ocasiones que estos errores en la duplicación del ADN se producen de una manera espontánea con cierta frecuencia. Aunque la célula tenga mecanismos de reparación de los errores que se produzcan en la autoduplicación siempre puede quedar un error que se pase por alto. Experimentalmente se ha podido determinar que uno de cada cien mil a un millón de gametos presenta una mutación en un gen determinado (mutación espontánea). Las células cuentan con diversos mecanismos para reparar las alteraciones ocasionadas en su ADN por la mutación que implican, normalmente, la intervención de diversos grupos de enzimas, como, por ejemplo, los enzimas encargados de corregir los errores que tienen lugar en el proceso replicativo del ADN, ya sea durante la incorporación de los nucleótidos o tras la finalización de la síntesis de una nueva hebra. Otro mecanismo de reparación es el constituido por los enzimas fotorreactivos, que rompen los enlaces creados entre dos timinas consecutivas (dímeros de timina) originados por algunos agentes mutagénicos. Se distinguen varios tipos de mutaciones génicas: - Mutaciones por sustitución de una base por otra distinta. Se dividen en dos tipos: las denominadas transiciones, cuando una base púrica es reemplazada por otra base púrica o una base pirimidínica es sustituida por otra base pirimidínica, y las transversiones, si se produce el cambio de una base púrica por una base pirimidínica, o viceversa. Estas sustituciones son posibles porque algunos de los átomos de hidrógeno de cada una de las cuatro bases pueden cambiar sus posiciones, para originar formas tautoméricas (isómeros que se originan por la emigración intramolecular de un átomo pequeño) distintas a las usuales, en una proporción muy baja (10-4). Estos tautómeros permiten apareamientos atípicos de bases en la doble hélice y provocan, en la replicación, la formación de secuencias nucleotídicas erróneas. Los cambios de bases nitrogenadas pueden ser producidos, así mismo, por agentes mutagénicos que originan su desaminación, la rotura del BIOLOGÍA_Tema 3_UNIVERSIDAD 17

18 enlace entre una base púrica con la desoxirribosa (despurización) o la formación de dímeros de timina. - Mutaciones por pérdida e inserción de bases. Estas mutaciones son más graves que las anteriores, ya que, a partir del punto de deleción o de adición, todos los tripletes de bases estarán cambiados y, por tanto, el mensaje codificado será totalmente distinto. Se producen por un emparejamiento anómalo durante la replicación entre la hebra molde y la que se está sintetizando, o cuando ciertos compuestos, como los colorantes de acridina, se intercalan en las cadenas polinucleotídicas. - Mutaciones por cambios de lugar de algunos segmentos del ADN (transposiciones). El desplazamiento de secuencias de la cadena nucleotídica provoca la aparición de nuevos tripletes, lo que modificará el mensaje genético AGENTES MUTAGÉNICOS Las mutaciones que se producen por la acción de un factor ambiental, físico o químico, se conocen como mutaciones inducidas. Estos factores que provocan la aparición de mutaciones se denominan mutágenos. Entre los mutágenos físicos están las radiaciones, tanto ionizantes (rayos X o rayos gamma) como las no ionizantes (ultravioletas). Las radiaciones ultravioleta tienen un efecto más suave que las ionizantes, por tener un menor poder de penetración. En general las radiaciones provocan roturas y alteraciones en la molécula de ADN. Los mutágenos químicos pueden ser algunas moléculas de estructura parecida a la de las bases nitrogenadas que forman el ADN u otros productos que reaccionan con los componentes de los nucleótidos alterando su estructura. Tanto en un caso como en otro se producen fallos en la complementariedad que originan incorporaciones erróneas cuando el ADN se duplica. Por último, entre los mutágenos biológicos podemos mencionar a ciertos virus, que pueden producir cambios en la expresión de algunos genes (como los retrovirus, los adenovirus o el virus de la hepatitis B humana, entre otros) y los transposones, que son segmentos móviles de ADN que pueden cambiar de posición, trasladándose a otro lugar distinto dentro del mismo cromosoma o incluso a otro cromosoma GENES LETALES Algunas mutaciones pueden ser beneficiosas y, por lo tanto, favorecer la selección natural de los individuos que las portan. Otras no determinan cambios beneficiosos ni perjudiciales en los individuos que las llevan, es decir, son mutaciones neutras. Pero muchas mutaciones afectan negativamente a la viabilidad de un organismo. Se designa como valor biológico de una mutación al incremento, positivo o negativo, que experimenta la viabilidad de los mutantes respecto a la de la raza originaria. El valor biológico más bajo (viabilidad nula) corresponde a las mutaciones que han originado genes letales. BIOLOGÍA_Tema 3_UNIVERSIDAD 18

19 Los factores o genes letales son aquellos cuya manifestación provoca la muerte del individuo antes de que éste alcance la madurez reproductiva. Cuando no producen la muerte, pero tiene efectos negativos en el individuo, disminuyendo su capacidad para sobrevivir o reproducirse, se denominan deletéreos. Los genes letales dominantes desaparecen con la muerte del individuo en el que han aparecido. Sin embargo, los letales recesivos se mantienen en pequeñas proporciones en las poblaciones, manifestándose solamente en los homocigotos. En algunas ocasiones los cigotos que llevan un gen letal en homocigosis no llegan a desarrollarse, por lo que su presencia sólo se detecta por la alteración de las frecuencias fenotípicas en la descendencia. Tal es el caso de la herencia del color del pelaje en los ratones. Como ejemplos de factores letales en la especie humana podemos citar la ictiosis congénita y la hemofilia MUTACIONES Y EVOLUCIÓN Los cambios producidos en el material genético constituyen el motor de la evolución de las especies. La actuación de los mecanismos evolutivos de selección natural requiere la existencia previa de variabilidad entre los individuos que integran una población, considerada actualmente la unidad evolutiva por excelencia en lugar del individuo aislado, ya que son las proporciones en que se encuentran los diversos individuos de una población las que cambian a lo largo del tiempo. Los principales agentes de la variabilidad de las poblaciones son la recombinación genética y las mutaciones. La recombinación genética consiste en una reordenación de los genes ya existentes en la población, que puede traducirse en la aparición de nuevos genotipos pero no de nuevo material hereditario. Las mutaciones, por el contrario, permiten la aparición de genes que antes no existían, por lo cual las posibilidades biológicas se amplían enormemente. No hay que olvidar, sin embargo, que la mayoría de las mutaciones son negativas. Las mutaciones beneficiosas suelen pasar inadvertidas en un primer momento, por lo que las ventajas evolutivas se manifiestan lentamente. No obstante, si el gen mutado proporciona algún beneficio a los individuos que lo llevan, irá sustituyendo paulatinamente al gen original en la población, ya que la proporción de los individuos portadores irá aumentando. Se produce así una evolución molecular que se reflejará en las características biológicas de los individuos. Evolutivamente, las mutaciones más importantes son las que actúan de forma repetida sobre un determinado gen (mutaciones génicas recurrentes) y favorecen cambios rápidos (a escala evolutiva). La importancia de las mutaciones se pone de manifiesto en particular durante la adaptación de una población a un entorno nuevo, ya sea como consecuencia de importantes cambios medioambientales en el lugar donde vive o porque se coloniza una nueva área geográfica. En estos casos, la presión selectiva aumenta extraordinariamente y favorece la supervivencia de aquellos individuos que portan las mutaciones adaptativas más favorables. Las mutaciones cromosómicas poseen también un gran interés en los procesos evolutivos. Por ejemplo, parece demostrado que la duplicación y posterior mutación de fragmentos cromosómicos han hecho posible la aparición BIOLOGÍA_Tema 3_UNIVERSIDAD 19

20 de las diversas cadenas de hemoglobinas, y de la mioglobina humana y de los primates, a partir de una única globina ancestral. Las mutaciones genómicas contribuyen, así mismo, a la evolución, fundamentalmente de las especies vegetales, que las toleran mejor que los animales. Con frecuencia los vegetales poliploides tienen órganos más desarrollados que los diploides, razón por la que muchas de las especies utilizadas por el ser humano son de ese tipo. Como un proceso intermedio entre las mutaciones cromosómicas y las genómicas se puede incluir la unión de cromosomas, que también posee una enorme importancia evolutiva. Así, el cromosoma 2 del ser humano parece que procede de la fusión de dos cromosomas telocéntricos (que aún se encuentran en los primates superiores actuales) de una especie ancestral. Las mutaciones también han desempeñado un importante papel en el desarrollo de la genética, ya que las mutaciones inducidas en algunos organismos (como en Drosophila) han sido un inmejorable material de trabajo para muchos genetistas durante este siglo MUTACIONES Y CÁNCER El cáncer es causado por un proceso de división celular sin control que provoca una multiplicación rápida y desorganizada de las células que conduce a la destrucción del tejido afectado e, incluso, a la invasión de otros órganos (metástasis). Aunque en el desencadenamiento de un proceso cancerígeno intervienen diversos factores, hoy día queda fuera de toda duda la relación que existe entre determinados cambios en el material genético y la aparición de células cancerosas, ya que con frecuencia se observa en ellas la presencia de alteraciones cromosómicas, como deleciones, translocaciones y roturas o uniones cromosómicas. Por otra parte, ciertos agentes mutagénicos también son cancerígenos, como, por ejemplo, las radiaciones ionizantes y no ionizantes, ciertos virus y determinados productos químicos (como las anilinas que aparecen en colorantes comerciales, las nitrosaminas que se encuentran en el humo del tabaco, los benzopirenos que también aparecen en el humo del tabaco o en los alimentos quemados, el asbesto de ciertos materiales aislantes,...). No se conoce totalmente el proceso por el que una célula normal se transforma en cancerosa, pero se han logrado progresos importantes en su investigación. Básicamente se producen defectos en determinados genes que participan en la regulación de la división celular, por lo que ésta se descontrola y se vuelve caótica. En este proceso intervienen dos tipos de genes: - Oncogenes (del griego onkos, «tumor», y genos, «origen»). Provocan un aumento de las señales que estimulan la división celular, sin que estén presentes los estímulos normales para ello. De esta forma, se promueve la proliferación continua de las células. Hasta la fecha se han descubierto más de cincuenta oncogenes en varias especies, entre ellas la humana. Actualmente se cree que los oncogenes proceden de otros genes, denominados protooncogenes, que codifican proteínas implicadas en determinadas etapas de la división celular (factores de transcripción, factores extracelulares estimulantes o receptores de membrana para estos últimos). La alteración de los protooncogenes por agentes mutagénicos originaría los oncogenes activos. BIOLOGÍA_Tema 3_UNIVERSIDAD 20

21 - Genes supresores de tumores. La mutación de estos genes, que codifican proteínas inhibidoras de la división celular, estimula un aumento del ritmo reproductor de las células. Así, los agentes mutagénicos podrían actuar en ambos sentidos y es probable que para que se desarrolle un tumor sean necesarias varias mutaciones en diversos genes. Existen indicios, así mismo, de que en el proceso de transformación cancerosa de una célula intervienen otros agentes que la potenciarían favoreciendo la expresión de los oncogenes. Por otra parte, la mutación de los genes implicados en la corrección de errores del ADN evitaría la reparación de éstos tras la acción del agente mutagénico, en las primeras fases del proceso, y contribuiría notablemente al desarrollo definitivo del tumor. ANEXO: RESOLUCIÓN DE PROBLEMAS DE GENÉTICA BIOLOGÍA_Tema 3_UNIVERSIDAD 21

Características físicas: como color y grosor del pelo, forma y color de los ojos, talla, peso, etc.

Características físicas: como color y grosor del pelo, forma y color de los ojos, talla, peso, etc. Eje temático: Variabilidad y herencia Contenido: Herencia Nivel: Segundo medio Herencia Un individuo pertenece a una especie determinada porque presenta rasgos que son comunes a los de esa especie y puede

Más detalles

Fig. 3: En la F2 encontró machos y hembras con ojos color rojo y solamente machos con ojos color blanco.

Fig. 3: En la F2 encontró machos y hembras con ojos color rojo y solamente machos con ojos color blanco. Padres Escolapios Depto. De Ciencias - Biología. Nivel: 3ero medio Unidad 0 Guía 2 Marzo de 2010 1 Capítulo III: Herencia ligada al Sexo: Existen características determinadas por genes que se encuentran

Más detalles

LA HERENCIA BIOLOGICA

LA HERENCIA BIOLOGICA GENÉTICA LA HERENCIA BIOLOGICA Cada ser vivo transmite a su descendencia las características biológicas típicas de la especie, esto se realiza mediante un proceso de gran fijeza denominado herencia biológica.

Más detalles

GENÉTICA: Herencia, Expresión génica, Replicación, biotecnología Selectividad: herencia

GENÉTICA: Herencia, Expresión génica, Replicación, biotecnología Selectividad: herencia GENÉTICA: Herencia, Expresión génica, Replicación, biotecnología Selectividad: herencia 5 JUN9.- Existen caracteres que no se comportan típicamente como los Mendelianos y sus patrones de herencia muestran

Más detalles

República Bolivariana de Venezuela U. E. Colegio Cruz Vitale. Prof. Francisco Herrera R.

República Bolivariana de Venezuela U. E. Colegio Cruz Vitale. Prof. Francisco Herrera R. República Bolivariana de Venezuela U. E. Colegio Cruz Vitale É Prof. Francisco Herrera R. LA GENÉTICA es la ciencia que estudia los genes, la herencia, la variación de los organismos. El término Genética

Más detalles

Genética de las Neurofibromatosis

Genética de las Neurofibromatosis Genética de las Neurofibromatosis Cuaderno núm. 3 El texto de este cuaderno, ha sido cedido por The Neurofibromatosis Association (UK) y traducido por la Asociación Catalana de las Neurofibromatosis (Barcelona

Más detalles

FUNDACIÓN EDUCATIVA SANTO DOMINGO GENÉTICA

FUNDACIÓN EDUCATIVA SANTO DOMINGO GENÉTICA GENÉTICA Las células de todos los organismos, desde las bacterias hasta el hombre, contienen una o más copias de una dotación básica de ADN que es característica de la especie y que se denomina Genoma.

Más detalles

TRABAJO PRÁCTICO N 4 GENÉTICA

TRABAJO PRÁCTICO N 4 GENÉTICA TRABAJO PRÁCTICO N 4 GENÉTICA Temario: Los principios de la genética. Conceptos. Herencia mendeliana, primera y segunda ley de Mendel. Herencia no mendeliana. Problemas Se requiere conocer una serie de

Más detalles

Genética I: Mendel, la mitosis y la meiosis

Genética I: Mendel, la mitosis y la meiosis Genética I: Mendel, la mitosis y la meiosis Un modo de estudiar la función biológica es tomar un organismo o célula y dividirlo en sus respectivos componentes (ej.: las proteínas) y, a continuación, estudiar

Más detalles

TEMA 5.- LA HERENCIA BIOLÓGICA.

TEMA 5.- LA HERENCIA BIOLÓGICA. TEMA 5.- LA HERENCIA BIOLÓGICA. 1 Hay caracteres que no se transmiten a la descendencia, es decir no son heredables. (ej : el corte de orejas a los perros). Otros caracteres si son heredables, es decir

Más detalles

Genética Mendeliana y mutaciones genéticas. Herencia Leyes de Mendel Compilado

Genética Mendeliana y mutaciones genéticas. Herencia Leyes de Mendel Compilado Genética Mendeliana y mutaciones genéticas Herencia Leyes de Mendel Compilado Introducción Genética es la ciencia que estudia como se transmiten las características de generación a generación. Gregor Mendel

Más detalles

Secundarios - CBC - Universitarios - Informática - Idiomas. Apunte Nro 0742. Mendel. Ejercicios de genética.

Secundarios - CBC - Universitarios - Informática - Idiomas. Apunte Nro 0742. Mendel. Ejercicios de genética. Mendel. Ejercicios de genética. 1) La segunda ley de Mendel no se cumpliría si: a) los genes considerados estuvieran ubicados en distintos cromosomas b) los genes considerados estuvieran ubicados en un

Más detalles

GENÉTICA. Uca Martín Ossorio

GENÉTICA. Uca Martín Ossorio GENÉTICA Ciencia que estudia la herencia biológica, es decir, la transmisión de los caracteres morfológicos y fisiológicos que pasan de un ser vivo a sus descendientes CONCÉPTOS BÁSICOS GENÉTICA.- Es la

Más detalles

Tema 22.- HERENCIA MENDELIANA. Introducción a la Genética Humana: tipos de herencia. Herencia monogénica mendeliana

Tema 22.- HERENCIA MENDELIANA. Introducción a la Genética Humana: tipos de herencia. Herencia monogénica mendeliana BIBLIOGRAFÍA Jorde, Carey, Bamshad. Genética médica. Editorial Elsevier Mosby, 4ª Ed. (2011) Nussbaum, McInnes, Willard. (Thompson&Thompson). Genética en medicina. Editorial Elservier Masson, 5ª/7ª Ed.

Más detalles

. GENÉTICA CLÁSICA. I.- CONCEPTOS IMPORTANTES.

. GENÉTICA CLÁSICA. I.- CONCEPTOS IMPORTANTES. GENÉTICA CLÁSICA 1 TEMA. GENÉTICA CLÁSICA. I.- CONCEPTOS IMPORTANTES. II.- MENDELISMO. 1.- INTNRODUCCIÓN. EXPERIMENTOS DE MENDEL 2.- LAS LEYES DE MENDEL. 3.- MENDELISMO COMPLEJO. A.- CODOMINANCIA B.- HERENCIA

Más detalles

Actividades de clase para realizar con ordenador: http://iessuel.org/ccnn/

Actividades de clase para realizar con ordenador: http://iessuel.org/ccnn/ 4º E.S.O. Biología y Geología - Unidad 5.- La herencia biológica Actividades de clase para realizar con ordenador: http://iessuel.org/ccnn/ Alumno/a... Fecha... 1.- Completa: Todos los seres vivos tienen

Más detalles

GUÍA N 1: MATERIAL GENETICO Y REPLICACIÓN DE ADN

GUÍA N 1: MATERIAL GENETICO Y REPLICACIÓN DE ADN SUBSECTOR PROFESOR NIVEL AÑO UNIDAD SEMESTRE Biología Iris Gaete IVº medio Hum 2016 Información Génica y Proteínas I GUÍA N 1 MATERIAL GENETICO Y REPLICACIÓN DE ADN Nombre Curso I. ESTRUCTURA DEL MATERIAL

Más detalles

I.E.S. Rayuela Departamento de Biología y Geología

I.E.S. Rayuela Departamento de Biología y Geología I.E.S. Rayuela Departamento de Biología y Geología Problemas de genética dificultad. A continuación se proponen una serie de problemas de geenética de diversa 1 Ratones En los ratones se conocen dos alelos

Más detalles

La división celular. .Interfase

La división celular. .Interfase .Interfase La división celular El conjunto de procesos propios de la interfase hacen posible el mantenimiento o el incremento de las estructuras celulares, lo que conlleva, en principio, un incremento

Más detalles

TEMA 40 Herencia Cuantitativa

TEMA 40 Herencia Cuantitativa TEMA 40 Herencia Cuantitativa 40.1.- Introducción. Los caracteres que Mendel estudió eran lo que se conocen como genes cualitativos, que marcan características fenotípicas muy diferentes según el alelo

Más detalles

AUTOR/PRODUCCIÓN: España. Ministerio de Educación y Ciencia

AUTOR/PRODUCCIÓN: España. Ministerio de Educación y Ciencia TÍTULO DEL VIDEO: Dominancia genética AUTOR/PRODUCCIÓN: España. Ministerio de Educación y Ciencia DURACIÓN: 00:00:39 GÉNERO: No Ficción AÑO: DESCRIPCIÓN: Este video explica en qué consiste la dominancia

Más detalles

CÓDIGO GENÉTICO Y SÍNTESIS DE PROTEÍNAS

CÓDIGO GENÉTICO Y SÍNTESIS DE PROTEÍNAS CÓDIGO GENÉTICO Y SÍNTESIS DE PROTEÍNAS Sumario Mitosis y meiosis Código genético y síntesis de proteínas: 1. Concepto de gen 2. Estructura del ADN 3. La replicación del ADN 4. La transcripción 5. La traducción

Más detalles

Células afectadas. Causa. Efectos. genética. Alteración provocada

Células afectadas. Causa. Efectos. genética. Alteración provocada 16 ALTERACIONES DE LA INFORMACIÓN GENÉTICA El término mutación fue introducido en 1902 por el botánico holandés Hugo de Vries refiriéndose a los cambios hereditarios bruscos que aparecían en la hierba

Más detalles

IES Pando Departamento de Biología y Geología 1

IES Pando Departamento de Biología y Geología 1 IES Pando Departamento de Biología y Geología 1 2 Células en diversos estadios del ciclo celular en la raíz de ajo. 3 Diversos aspectos del núcleo durante el ciclo celular Ciclo celular 4 Repartición del

Más detalles

Bloque II : Genética y las leyes de la herencia

Bloque II : Genética y las leyes de la herencia Bloque II : Genética y las leyes de la herencia Introducción y conceptos claves Mutaciones La herencia es el proceso por el cual las características de los individuos se transmiten a su descendencia. Esquema

Más detalles

Técnicas de ADN recombinante: la manipulación genética

Técnicas de ADN recombinante: la manipulación genética Técnicas de ADN recombinante: la manipulación genética A partir de los años 70 se desarrollaron las herramientas de la biología molecular o la ingeniería genética o lo que se ha llamado técnicas del ADN

Más detalles

Tema IX: Genética Mendeliana (Introducción)

Tema IX: Genética Mendeliana (Introducción) República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Santo Tomás de Villanueva Departamento de Ciencias Cátedra: Ciencias Biológicas 3 Año Tema IX: Genética Mendeliana

Más detalles

Capítulo 13 REPLICACIÓN DEL ADN

Capítulo 13 REPLICACIÓN DEL ADN REPLICACIÓN DEL ADN La reproducción necesita la correcta y precisa transmisión de la información genética de padres a hijos, por lo que resulta imprescindible la previa replicación o duplicación del ADN

Más detalles

Genética mendeliana. I. Leyes de Mendel

Genética mendeliana. I. Leyes de Mendel Genética mendeliana Gregor Mendel fue un monje y naturalista austriaco que vivió en el siglo XIX (1822-1884). Se le considera el padre de la herencia genética, debido a que descubrió los llamados factores

Más detalles

Resolución problemas

Resolución problemas Resolución problemas 1. En cierta especie de plantas los colores de las flores pueden ser rojos, blancos o rosas. Se sabe que este carácter está determinado por dos genes alelos, rojo (C R ) y blanco (C

Más detalles

PROBLEMAS DE GENÉTICA

PROBLEMAS DE GENÉTICA Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Nueva del Carmen, 35. 47011 Valladolid. Tel: 983 29 63 91 Fax: 983 21 89 96 e-mail: lainmaculadava@planalfa.es PROBLEMAS DE GENÉTICA 1.- El carácter

Más detalles

Genética Humana. Guía de problemas

Genética Humana. Guía de problemas Genética Humana Guía de problemas 2007 Leyes de Mendel y Extensiones 1- Se sabe que existe una serie de 4 alelos de un determinado gen en el hombre (2n); Cuántos estarían presentes en: a) un cromosoma?

Más detalles

Johann Gregor Mendel

Johann Gregor Mendel Genética mendeliana Johann Gregor Mendel Entre 1856 y 1863 experimentó con líneas puras de Pisum sativum Planta anual, de fácil cultivo, da muchas semillas. Analizó proporciones matemáticas en esos caracteres

Más detalles

BLOQUE 3: LA HERENCIA. GENÉTICA MOLECULAR.

BLOQUE 3: LA HERENCIA. GENÉTICA MOLECULAR. BLOQUE 3: LA HERENCIA. GENÉTICA MOLECULAR. TEMA 7: HERENCIA MENDELIANA. CEA GARCÍA ALIX TRANSMISIÓN DEL MATERIAL HEREDITARIO Tema 7.- Herencia Mendeliana. 1.- Leyes de Mendel (Uniformidad de la primera

Más detalles

CONCEPTOS MÍNIMOS DE GENÉTICA

CONCEPTOS MÍNIMOS DE GENÉTICA GENÉTICA Ciencia que estudia la transmisión de información de unos individuos a otros. El nombre se debe a Bateson que en 1.906 en Londres propuso que la ciencia que antes se consideraba como misterio

Más detalles

CUESTIONES TEMA 4: La revolución genética y la biotecnología.

CUESTIONES TEMA 4: La revolución genética y la biotecnología. CUESTIONES TEMA 4: La revolución genética y la biotecnología. 1. El ADN no puede salir del núcleo: Cómo logra llevar a los ribosomas que están en el citoplasma la información que porta? 2. El individuo

Más detalles

MUTACIONES. Son cambios en la información hereditaria como consecuencia de alteraciones en el material genético: ADN, genes, cromosomas, cariotipo,

MUTACIONES. Son cambios en la información hereditaria como consecuencia de alteraciones en el material genético: ADN, genes, cromosomas, cariotipo, MUTACIONES Son cambios en la información hereditaria como consecuencia de alteraciones en el material genético: ADN, genes, cromosomas, cariotipo, Pueden afectar a secuencias génicas o a secuencias reguladoras,

Más detalles

INGENIERÍA GENÉTICA 5 GAATTC 3 3 CTTAAG 5

INGENIERÍA GENÉTICA 5 GAATTC 3 3 CTTAAG 5 INGENIERÍA GENÉTICA 1. Fundamentos básicos de la ingeniería genética 2. Desnaturalización e hibridación del ADN 3. Reacción en cadena de la polimerasa (PCR) 4. Nuevas disciplinas surgidas de la ingeniería

Más detalles

CONCEPTOS GENERALES EN GENÉTICA

CONCEPTOS GENERALES EN GENÉTICA CONCEPTOS GENERALES EN GENÉTICA 1. Genetica clásica Genética molecular 1.1. La genética clásica o formal parte del estudio del fenotipo (de lo que observamos) y deduce el genotipo (gen o genes que determinan

Más detalles

ADN ARN Proteínas. La información genética es portada por el ADN y se hereda con él.

ADN ARN Proteínas. La información genética es portada por el ADN y se hereda con él. Todos los organismos contienen información que les permite coordinar sus procesos. Esta información, a fin de poder ser transferida a la descendencia, esta asentada en una molécula capaz de replicarse,

Más detalles

TEMA 34 Genética Mendeliana

TEMA 34 Genética Mendeliana TEMA 34 Genética Mendeliana 34.1.- Introducción. Genoma: conjunto de la información genética contenida en las células de una especie. Ej.: genoma humano, genoma de drosophila Genotipo: es la constitución

Más detalles

12. Cómo pueden diferenciarse dos individuos, uno homocigótico de otro heterocigótico, que presentan el mismo fenotipo. Razonar la respuesta

12. Cómo pueden diferenciarse dos individuos, uno homocigótico de otro heterocigótico, que presentan el mismo fenotipo. Razonar la respuesta PROBLEMAS DE GENÉTICA: PRIMERA Y SEGUNDA LEYES DE MENDEL 1. En cierta especie de plantas el color azul de la flor, (A), domina sobre el color blanco (a) Cómo podrán ser los descendientes del cruce de plantas

Más detalles

ÁCIDOS NUCLEICOS. Por: Wilfredo Santiago

ÁCIDOS NUCLEICOS. Por: Wilfredo Santiago ÁCIDOS NUCLEICOS Por: Wilfredo Santiago Ácidos Nucleicos Formados por subunidades llamadas nucleótidos; pueden ser un solo nucleótido o una cadena larga de nucleótidos. Ácidos Nucleicos Nucleótidos individuales:

Más detalles

PREGUNTAS TEST CORRESPONDIENTES A LOS TEMAS 1 AL 5

PREGUNTAS TEST CORRESPONDIENTES A LOS TEMAS 1 AL 5 PREGUNTAS TEST CORRESPONDIENTES A LOS TEMAS 1 AL 5 Las preguntas de test que le adjuntamos corresponden a exámenes de las últimas convocatorias. Una vez que finalicen el estudio de los cinco primeros capítulos,

Más detalles

BIOTECNOLOGÍA. 1.- Ingeniería Genética, ADN recombinante

BIOTECNOLOGÍA. 1.- Ingeniería Genética, ADN recombinante BIOTECNOLOGÍA 1.- Ingeniería Genética, ADN recombinante Técnica del ADN recombinante: es la más usada en ingeniería genética, esta basada en el uso de las enzimas de restricción o endonucleasas de restricción

Más detalles

SIMULACIÓN DE EXPERIMENTOS GENÉTICOS DE HIBRIDACIÓN

SIMULACIÓN DE EXPERIMENTOS GENÉTICOS DE HIBRIDACIÓN SIMULACIÓN DE EXPERIMENTOS GENÉTICOS DE HIBRIDACIÓN Amparo Ramón Genovés I.E.S. MISERICORDIA Nº 26 Valencia Introducción: En este proyecto se propone una experiencia sencilla que permite comprobar el modelo

Más detalles

Revolución genética (tema 4) Raquel Pascual, Paula Pardo y Jaime Parras

Revolución genética (tema 4) Raquel Pascual, Paula Pardo y Jaime Parras Revolución genética (tema 4) Raquel Pascual, Paula Pardo y Jaime Parras Diferencia entre los seres vivos 1. Pedruscos y bichos, Qué los diferencia? Dos tipos de objeto seres vivos (pueden hacer copias

Más detalles

GUÍA DE ESTUDIO #1 (15%) APELLIDOS: NOMBRES: CÉDULA: SECCIÓN: NÚMERO DE LISTA:

GUÍA DE ESTUDIO #1 (15%) APELLIDOS: NOMBRES: CÉDULA: SECCIÓN: NÚMERO DE LISTA: República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Santo Tomás de Villanueva Departamento de Ciencias Cátedra: Ciencias Biológicas Año: 3 A, B y C Prof. Luis

Más detalles

1. Cuáles son las diferencias en los componentes químicos del ADN y ARN?

1. Cuáles son las diferencias en los componentes químicos del ADN y ARN? ACTIVIDADES TEMA 4 - BIOTECNOLOGÍA 1. Cuáles son las diferencias en los componentes químicos del ADN y ARN? Las cadenas de ADN están formadas por fosfato y desoxirribosa y la del ARN por fosfato y ribosa.

Más detalles

V FESTIVAL INTERNACIONAL DE MATEMÁTICA LAS FÓRMULAS NOTABLES EN LA DETERMINACIÓN DE LAS FRECUENCIAS ALÉLICAS DE LOS GRUPOS SANGUÍNEOS

V FESTIVAL INTERNACIONAL DE MATEMÁTICA LAS FÓRMULAS NOTABLES EN LA DETERMINACIÓN DE LAS FRECUENCIAS ALÉLICAS DE LOS GRUPOS SANGUÍNEOS V FESTIVAL INTERNACIONAL DE MATEMÁTICA De costa a costa Matemática como lenguaje para interpretar nuestro entorno 29 al 31 de marzo, 2006 LAS FÓRMULAS NOTABLES EN LA DETERMINACIÓN DE LAS FRECUENCIAS ALÉLICAS

Más detalles

Veamos rápidamente el ciclo celular

Veamos rápidamente el ciclo celular Replicación del adn Veamos rápidamente el ciclo celular Fase G1: Fase de crecimiento celular. Fase G2: la célula ya duplicó su material genético, y se prepara para la mitosis. Fase M: fase de división

Más detalles

Problemas resueltos de genética mendeliana

Problemas resueltos de genética mendeliana Problemas resueltos de genética mendeliana 1) El color de ojos castaño es un alelo dominante respecto a los ojos azules. Una mujer de ojos castaños cuyo padre tenía ojos azules se casa con un hombre de

Más detalles

Tema 3. Variaciones cromosómicas estructurales y numéricas

Tema 3. Variaciones cromosómicas estructurales y numéricas Tema 3. Variaciones cromosómicas estructurales y numéricas Genética CC. Mar 2005-06 Objetivos Entender la naturaleza y consecuencias de la rotura y reunión cromosómica. Entender la naturaleza y consecuencias

Más detalles

BIOLOGÍA-GEOLOGÍA 4º E.S.O. CRITERIOS DE EVALUACIÓN, CALIFICACIÓN Y CONTENIDOS MÍNIMOS

BIOLOGÍA-GEOLOGÍA 4º E.S.O. CRITERIOS DE EVALUACIÓN, CALIFICACIÓN Y CONTENIDOS MÍNIMOS BIOLOGÍA-GEOLOGÍA 4º E.S.O. CRITERIOS DE EVALUACIÓN, CALIFICACIÓN Y CONTENIDOS MÍNIMOS 1. CRITERIOS DE EVALUACIÓN UNIDAD 1: LA CÉLULA UNIDAD DE VIDA 1.1. Conocer los principales hitos en el estudio de

Más detalles

DESCRIPCIÓN DE POBLACIONES MENDELIANAS: EQUILIBRIO DE HARDY-WEINBERG

DESCRIPCIÓN DE POBLACIONES MENDELIANAS: EQUILIBRIO DE HARDY-WEINBERG DESCRIPCIÓN DE POBLACIONES MENDELIANAS: EQUILIBRIO DE HARDY-WEINBERG T. DOBZHANSKY G. H. HARDY CONCEPTO DE POBLACIÓN DESCRIPCIÓN ESTÁTICA DE POBLACIONES DESCRIPCIÓN DINÁMICA: EQUILIBRIO DE HARDY-WEINBERG

Más detalles

Altura de planta en maíz 2.1 (FS) 2.3 (S)

Altura de planta en maíz 2.1 (FS) 2.3 (S) Endocría y heterosis A- Endocría Concepto: la endocría representa el apareamiento de individuos que están estrechamente relacionados, a diferencia de los apareamientos al azar en una población. La forma

Más detalles

Curso: Ingeniería genética Agropecuaria Unidad 1: Conceptos y perspectiva histórica de la tecnología del ADN recombinante.

Curso: Ingeniería genética Agropecuaria Unidad 1: Conceptos y perspectiva histórica de la tecnología del ADN recombinante. Temáticas que se revisarán: Universidad Nacional Abierta y a Distancia Especialización en Mejoramiento Genético Ingeniería genética Agropecuaria Luz Mery Bernal Parra Curso: Ingeniería genética Agropecuaria

Más detalles

cromátidas centrómero cromosoma

cromátidas centrómero cromosoma núcleo en interfase fibra de cromatina cromátidas centrómero cromosoma 2n = 46 cromátidas cromosomas homólogos Los genes están formados por genes alelos segmentos de ADN y se encuentran situados en los

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS CUARTO SEMINARIO DE BIOLOGIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS CUARTO SEMINARIO DE BIOLOGIA UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS CUARTO SEMINARIO DE BIOLOGIA 1.-Completar los gráficos de la Mitosis y describir brevemente lo que ocurre PROFASE METAFASE ANAFASE

Más detalles

La translocación robertsoniana 1/29 en la raza Morucha.

La translocación robertsoniana 1/29 en la raza Morucha. La translocación robertsoniana 1/29 en la raza Morucha. Introducción. En la fecundación de los animales, concretamente en la meiosis, con muy poca frecuencia se producen errores que dan lugar a alteraciones

Más detalles

Genética III: Genética humana

Genética III: Genética humana Genética III: Genética humana 1. Genética humana Los pedigrís se utilizan para mostrar la transmisión hereditaria de enfermedades humanas de base genética. En un pedigrí, se puede trazar el patrón de herencia

Más detalles

Reacción en cadena de la polimerasa (PCR)

Reacción en cadena de la polimerasa (PCR) Dr. Alejandro Leal Reacción en cadena de la polimerasa (PCR) La reacción en cadena de la polimerasa (PCR, por sus siglas en inglés de "polymerase chain reaction") es un método de amplificación in vitro

Más detalles

Problemas de genética mendeliana. Herencia de un carácter

Problemas de genética mendeliana. Herencia de un carácter Problemas de genética mendeliana Herencia de un carácter 1. Razona la veracidad o falsedad de la siguiente afirmación: El color de tipo común del cuerpo de la Drosophila está determinado por el gen dominante

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: BIOLOGÍA

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: BIOLOGÍA UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS DE GRADO Curso 2012-2013 8 MATERIA: BIOLOGÍA INSTRUCCIONES GENERALES Y VALORACIÓN Estructura de la prueba:

Más detalles

7.012 Serie de ejercicios 5

7.012 Serie de ejercicios 5 Nombre Grupo 7.012 Serie de ejercicios 5 Pregunta 1 Al estudiar los problemas de esterilidad, usted intenta aislar un hipotético gen de conejo que explique la prolífica reproducción de estos animales.

Más detalles

GENÉTICA MENDELIANA EL GEN. El gen Mendeliano es una unidad de función, estructura, transmisión, mutación y evolución, que se distribuye ordenada y linealmente en los cromosomas. A nivel genético el gen

Más detalles

8. Dos plantas de dondiego (Mirabilis jalapa) son homocigóticas para el color de las flores.

8. Dos plantas de dondiego (Mirabilis jalapa) son homocigóticas para el color de las flores. 8. Dos plantas de dondiego (Mirabilis jalapa) son homocigóticas para el color de las flores. Una de ellas produce flores de color blanco marfil y la otra, flores rojas. Señale los genotipos y fenotipos

Más detalles

Anomalías Cromosómicas

Anomalías Cromosómicas 12 Teléfono: + 44 (0) 1883 330766 Email: info@rarechromo.org www.rarechromo.org Anomalías Cromosómicas Orphanet Información gratuita sobre enfermedades raras, ensayos clínicos, medicamentos y enlaces a

Más detalles

Anomalías Cromosómicas

Anomalías Cromosómicas 12 Unique Grupo de apoyo para enfermedades cromosómicas raras del Reino Unido Teléfono: + 44 (0) 1883 330766 Email: info@rarechromo.org www.rarechromo.org Anomalías Cromosómicas Orphanet Información gratuita

Más detalles

Materia: Biología 3. Curso: 3 ro. Media. Proyecto Nº 1. Mes: Agosto-Septiembre. Año: 2015-2016. Prof.: Lic. Manuel B. Noboa G.

Materia: Biología 3. Curso: 3 ro. Media. Proyecto Nº 1. Mes: Agosto-Septiembre. Año: 2015-2016. Prof.: Lic. Manuel B. Noboa G. Materia: Biología 3. Curso: 3 ro. Media. Proyecto Nº 1. Mes: Agosto-Septiembre. Año: 2015-2016. Prof.: Lic. Manuel B. Noboa G. Cuál es la relación existente entre el origen del Universo y de la Tierra

Más detalles

Enfermedades asociadas a mutaciones estructurales

Enfermedades asociadas a mutaciones estructurales Enfermedades asociadas a mutaciones estructurales El cariotipo humano A partir de un cultivo de sangre periférica, y posterior tratamiento con Giemsa para obtener un bandeo G, puede obtenerse el cariotipo

Más detalles

TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR

TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR Tema 5 Simetría Molecular 1 TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR La simetría de una molécula determina muchas de sus propiedades e incluso determina cómo se producen algunas reacciones. El estudio

Más detalles

CUESTIONES SELECTIVIDAD: ORGÁNULOS CELULARES

CUESTIONES SELECTIVIDAD: ORGÁNULOS CELULARES CUESTIONES SELECTIVIDAD: ORGÁNULOS CELULARES 1) En relación con la figura adjunta, responda las siguientes cuestiones a) Indique si se trata de una célula animal o vegetal (0.2)Nombre tres criterios en

Más detalles

PROGRAMAS MATERIAS. MAYORES 25 AÑOS Biología

PROGRAMAS MATERIAS. MAYORES 25 AÑOS Biología 1 PROGRAMAS MATERIAS. MAYORES 25 AÑOS Biología Para superar esta prueba, el alumno deberá demostrar tener conocimientos básicos de Biología a nivel de LOGSE. PRESENTACIÓN. La Biología es la ciencia que

Más detalles

La meiosis consta de dos divisiones sucesivas de la célula con una única replicación del ADN. El producto final son cuatro células con n cromosomas.

La meiosis consta de dos divisiones sucesivas de la célula con una única replicación del ADN. El producto final son cuatro células con n cromosomas. 8) LA MEIOSIS LA MEIOSIS: CONCEPTO La meiosis es un mecanismo de división celular que permite la obtención a partir de células diploides (2n) de células haploides (n) con diferentes combinaciones de genes.

Más detalles

GUIA DE LABORATORIO PRACTICA 8 EXTRACCIÓN ADN PROGRAMA DE ENFERMERIA CURSO INTEGRADO DE PROCESOS BIOLOGICOS

GUIA DE LABORATORIO PRACTICA 8 EXTRACCIÓN ADN PROGRAMA DE ENFERMERIA CURSO INTEGRADO DE PROCESOS BIOLOGICOS GUIA DE LABORATORIO PRACTICA 8 EXTRACCIÓN ADN PROGRAMA DE ENFERMERIA CURSO INTEGRADO DE PROCESOS BIOLOGICOS Leidy Diana Ardila Leal Docente. INTRODUCCIÓN En esta práctica se va a realizar la extracción

Más detalles

La ataxia es, en principio, un síntoma, no es una enfermedad específica o un diagnóstico. Ataxia quiere decir torpeza o pérdida de coordinación.

La ataxia es, en principio, un síntoma, no es una enfermedad específica o un diagnóstico. Ataxia quiere decir torpeza o pérdida de coordinación. DEFINICIÓN: La ataxia es, en principio, un síntoma, no es una enfermedad específica o un diagnóstico. Ataxia quiere decir torpeza o pérdida de coordinación. La ataxia puede afectar a los dedos, manos,

Más detalles

Qué es un gen? EXPRESION GÉNICA 01/05/2013

Qué es un gen? EXPRESION GÉNICA 01/05/2013 Qué es un gen? Es una secuencia de nucleótidos en la molécula de ADN, equivalente a una unidad de transcripción. Contiene la información, a partir de la cual se sintetiza un polipéptido, una enzima, un

Más detalles

Genetica de Poblaciones, Ley de Hardy-Weinberg

Genetica de Poblaciones, Ley de Hardy-Weinberg Unidad 2. Genética & Evolución Genetica I Herencia, Leyes de Mendel hoy Genetica II Genetica de Poblaciones, Ley de Hardy-Weinberg Evolución I Evolución II Evolución III Evolución IV Evolución Humana I

Más detalles

Probabilidad y Herencia Nombre PSI Biología

Probabilidad y Herencia Nombre PSI Biología Probabilidad y Herencia Nombre PSI Biología Gregor Mendel estudió la herencia de las arvejas de jardín, y aunque él no entendía los mecanismos de la herencia, su obra se convirtió en la base para el estudio

Más detalles

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual Introducción Algunas de las personas que trabajan con SGBD relacionales parecen preguntarse porqué deberían preocuparse del diseño de las bases de datos que utilizan. Después de todo, la mayoría de los

Más detalles

DETERMINACIÓN DEL FACTOR Rh por PCR

DETERMINACIÓN DEL FACTOR Rh por PCR Ref.PCRRh DETERMINACIÓN DEL FACTOR Rh por PCR 1.OBJETIVO DEL EXPERIMENTO El objetivo de este experimento es introducir a los estudiantes en los principios y práctica de la Reacción en Cadena de la Polimerasa

Más detalles

TEMA 1: La célula. 1.- Busca el origen y el significado de los términos procariota (o procariótica) y eurocariota (o eucariótica).

TEMA 1: La célula. 1.- Busca el origen y el significado de los términos procariota (o procariótica) y eurocariota (o eucariótica). Biología Curso 2011/12 4º E.S.O. TEMA 1: La célula 1.- Busca el origen y el significado de los términos procariota (o procariótica) y eurocariota (o eucariótica). 2.- Cuándo fue enunciada la Teoría Celular?

Más detalles

BIOLOGÍA MOLECULAR. 1. Niveles de organización

BIOLOGÍA MOLECULAR. 1. Niveles de organización BIOLOGÍA MOLECULAR 1. Niveles de organización Como sabes, los seres humanos son organismos vivos pluricelulares capaces de realizar las funciones vitales de nutrición, relación y reproducción. Para el

Más detalles

1. CONCEPTOS BÁSICOS EN GENÉTICA CLÁSICA

1. CONCEPTOS BÁSICOS EN GENÉTICA CLÁSICA GENÉTICA MENDELIANA La genética mendeliana o clásica es la ciencia que establece las leyes que explican la herencia biológica, es decir, la forma en que los caracteres de los progenitores aparecen en sus

Más detalles

Tipos de células madre

Tipos de células madre Biología Bachillerato IES Fuentesnuevas 1 CÉLULAS MADRE O TRONCALES (STEM CELLS) Las células madre son células que tienen capacidad de renovarse continuamente por sucesivas divisiones por mitosis y de

Más detalles

1. Genes y caracteres hereditarios.

1. Genes y caracteres hereditarios. 1. Genes y caracteres hereditarios. 1.1. Dos genes para un carácter. Los individuos diploides tienen dos genes alelomórficos (alelos) para un único carácter. Por ejemplo para el color de la piel existen

Más detalles

INSTITUCIÓN EDUCATIVA HECTOR ABAD GOMEZ

INSTITUCIÓN EDUCATIVA HECTOR ABAD GOMEZ Proceso: CURRICULAR INSTITUCIÓN EDUCATIVA HECTOR ABAD GOMEZ Código NOMBRE DEL DOCUMENTO: PLANES DE MEJORAMIENTO Versión 01 Página 1 de 1 ASIGNATURA /AREA CIENCIAS NATURALES GRADO: OCTAVO PERÍODO 1 AÑO:

Más detalles

2. Los organizadores nucleares aportan información para la síntesis de: a- ARNm b- ARNr c- ARNt d- Histonas

2. Los organizadores nucleares aportan información para la síntesis de: a- ARNm b- ARNr c- ARNt d- Histonas CBC UBA 2º Parcial Biología (54) Paseo Colon Apellido y Nombre:... DNI...Comisión Nº... Lea atentamente cada pregunta con sus opciones de respuesta. Marque en su grilla la opción correspondiente a la respuesta

Más detalles

FORMACIÓN ACADÉMICA TALLER 1 AREA DE CIENCIAS NATURALES Y EDUCACIÓN AMBIENTAL GRADO OCTAVO PERIODO 01 NOMBRE:

FORMACIÓN ACADÉMICA TALLER 1 AREA DE CIENCIAS NATURALES Y EDUCACIÓN AMBIENTAL GRADO OCTAVO PERIODO 01 NOMBRE: FORMACIÓN ACADÉMICA TALLER 1 PFA-01-R04 Versión 01 AREA DE CIENCIAS NATURALES Y EDUCACIÓN AMBIENTAL GRADO OCTAVO PERIODO 01 NOMBRE: CAPACIDADES Razonar lógica y científicamente EJE Celular DESTREZAS Compara

Más detalles

Preguntas tipo test. Respuesta correcta +1, respuesta incorrecta -0,25, sin respuesta 0, Máximo 7 puntos.

Preguntas tipo test. Respuesta correcta +1, respuesta incorrecta -0,25, sin respuesta 0, Máximo 7 puntos. NOMBRE Preguntas tipo test. Respuesta correcta +1, respuesta incorrecta -0,25, sin respuesta 0, Máximo 7 puntos. 1. Los genes exclusivamente masculinos son los que se encuentran... a) en el segmento común

Más detalles

23. CRECIMIENTO Y DESARROLLO VEGETAL.

23. CRECIMIENTO Y DESARROLLO VEGETAL. 23. CRECIMIENTO Y DESARROLLO VEGETAL. Introducción. Cinética. Localización de las zonas de crecimiento. Concepto de fitohormona. Interacciones entre fitohormonas. Conceptos de mecanismo y modo de acción.

Más detalles

Ejercicios. 1. Qué simbolizan estos esquemas?

Ejercicios. 1. Qué simbolizan estos esquemas? Ejercicios 1. Qué simbolizan estos esquemas? Éste esquema representa la mitocondria, que quema los nutrientes básicos, con la ayuda del oxígeno, obteniendo principalmente energía, que la célula utiliza

Más detalles

CAPÍTULO 13 DIVISIÓN CELULAR

CAPÍTULO 13 DIVISIÓN CELULAR DIVISIÓN CELULAR 1. FISIÓN BINARIA Ocurre en procariontes: tras la duplicación del ADN, se segregan las moléculas hijas y se divide el citoplasma. Bacteria en Fisión Binaria Esquema de la Fisión Binaria

Más detalles

Definición de la célula

Definición de la célula Página 1 de 8 La Célula: estructura interna y metabolismo Definición de la célula La célula se entiende como la unidad mínima de un organismo capaz de actuar de manera autónoma en su funcionamiento y reproducción.

Más detalles

Genética La Esencia de la Vida

Genética La Esencia de la Vida UNIVERSIDAD METROPOLITANA Escuela de Educación Continua Mathematics and Science Partnership: content, integration, and research to improve academic achievement 2011-2012 Genética La Esencia de la Vida

Más detalles

PROBLEMAS DE GENÉTICA

PROBLEMAS DE GENÉTICA PROBLEMAS DE GENÉTICA 1.- Cobayas negras heterocigotas (Bb) se aparearon con cobayas blancas recesivas homocigotas (bb). Indicar las proporciones genotípicas y fenotípicas esperadas del retrocruzamiento

Más detalles

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now.

Easy PDF Creator is professional software to create PDF. If you wish to remove this line, buy it now. Unidad Curricular: Virología y Micología Veterinaria 1 TRABAJO PRÁCTICO No. 3 AMPLIFICACIÓN DE GENES VIRALES Reacción en Cadena de la Polimerasa, conocida como PCR (por sus siglas en inglés: Polimerase

Más detalles

Centro de Capacitación en Informática

Centro de Capacitación en Informática Fórmulas y Funciones Las fórmulas constituyen el núcleo de cualquier hoja de cálculo, y por tanto de Excel. Mediante fórmulas, se llevan a cabo todos los cálculos que se necesitan en una hoja de cálculo.

Más detalles

vg+ alas normales; vg alas vestigiales (vg+ > vg).

vg+ alas normales; vg alas vestigiales (vg+ > vg). PROBLEMAS GENETICA 1.- Una señora con sangre tipo A reclama a un torero la paternidad de su hijo de grupo sanguíneo 0. El torero cuyo grupo sanguíneo es A, dice que el niño no es suyo. Los padres del torero

Más detalles