TEORÍA DE POLIEDROS Y CONSTRUCCIÓN DE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEORÍA DE POLIEDROS Y CONSTRUCCIÓN DE"

Transcripción

1 TEORÍA DE POLIEDROS Y CONSTRUCCIÓN DE Vicente Viana Martínez Vicente Viana Martínez Pág 1

2 CONSTRUCCIÓN DE UN OMNIPOLIEDRO Introducción. Definiciones Un poliedro es un cuerpo geométrico totalmente limitado por polígonos planos. La palabra poliedro significa; "varias caras" o "varias superficies". En un poliedro vamos a considerar los siguientes elementos. a) Caras: son los polígonos planos que lo limitan. polígonos. b) Aristas: son los lados de esos c) Vértices: son los puntos de concurrencia de las aristas. d) Ángulos diedros: son los formados por dos caras del poliedro, con una arista común. e) Ángulos poliedros: son los ángulos formados por tres o más caras que tienen un vértice común. Un poliedro se dice que es convexo cuando todos sus ángulos diedros son positivos, o bien cuando al prolongar una cara cualquiera, el plano resultante deja de un mismo lado a todo el poliedro. Un poliedro se dice que es cóncavo cuando posee ángulos diedros negativos o bien, cuando al prolongar una cara, el plano resultante, corta al poliedro. Un poliedro es regular si está formado por polígonos regulares iguales y sus ángulos diedros y poliedros son iguales. Los poliedros regulares son todos convexos. Vicente Viana Martínez Pág

3 Propiedades de los poliedros En cada vértice de un poliedro concurren m polígonos regulares de n lados. La suma de los ángulos de los polígonos, concurrentes, debe ser menor de 360º. Pues, de lo contrario se formaría una figura plana, no sería un sólido. Además, en un polígono regular, cada ángulo mide. 180º (n ) n Por tanto, para formarse un poliedro debe cumplirse que. 180º (n ) m n < 360 Vicente Viana Martínez Pág 3

4 POLIEDROS ESTRELLADOS Johann Kepler ( ) estudió los poliedros estrellados, obtenidos a partir del pentagrama de los pitagóricos. La diferencia principal de estos poliedros estrellados con el resto es que son cóncavos. Hay cuatro, dos de puntas estrelladas con pirámides pentagonales y otros dos de puntas estrelladas con pirámides triangulares. Kepler los llamó gran y pequeño dodecaedro estrellado (de 1 puntas) y gran y pequeño icosaedro estrellado (de 0 puntas). El resto son trece sólidos diferentes: El TETRAEDRO TRUNCADO: 4 hexágonos regulares y 3 triángulos equiláteros El CUBO TRUNCADO: 6 octógonos regulares y 8 triángulos equiláteros El CUBOCTAEDRO: 6 cuadrados y 8 triángulos equiláteros El ROMBICUBOCTAEDRO MENOR: 18 cuadrados y 8 triángulos equiláteros El OCTAEDRO TRUNCADO: 8 hexágonos regulares y 6 cuadrados El CUBO REDONDEADO: 6 cuadrado y 3 triángulos equiláteros El ROMBICUBOCTAEDRO MAYOR: 4 octógonos regulares, 10 hexágonos regulares y 1 cuadrados El ICOSIDODECAEDRO: 1 pentágonos regulares y 0 triángulos equiláteros El DODECAEDRO TRUNCADO: 1 decágonos regulares y 0 triángulos equiláteros El ICOSAEDRO TRUNCADO: 0 hexágonos regulares y 1 pentágonos regulares El ROMBICOSIDODECAEDRO MENOR: 1 pentágonos regulares, 30 cuadrado y 0 triángulos equiláteros El DODECAEDRO REDONDEADO: 1 pentágonos regulares y 80 triángulos El ROMBICOSIDODECAEDRO MAYOR: 1 decágonos regulares, 0 hexágonos regulares y 30 cuadrados Vicente Viana Martínez Pág 4

5 Vicente Viana Martínez Pág 5 Teoría de poliedros y Construcción de un omnipoliedro

6 Teorema de Euler más dos. En todo poliedro convexo, el número de caras más el de vértices, es igual al de aristas C + V = A + No existen más que cinco poliedros convexos regulares. Propiedades de los 5 poliedros regulares. NOMBRE CARAS Nº DE CARAS Nº DE VÉRTICES Nº DE ARISTAS Tetraedro Triángulos equiláteros Hexaedro o Cubo Cuadrados Octaedro Triángulos equiláteros Dodecaedro Pentágonos Icosaedro Triángulos equiláteros Vicente Viana Martínez Pág 6

7 Áreas y volúmenes de los 5 poliedros regulares Teoría de poliedros y Construcción de un omnipoliedro Áreas El área total de un poliedro se determina calculando el área de una cara y multiplicando por el número de caras. Volúmenes Todos los vértices de un poliedro regular equidistan de un punto interior llamado centro. Haciendo pasar planos por este punto y por todas las aristas, el poliedro queda descompuesto en tantas pirámides iguales como caras tiene. Para calcular el volumen de un poliedro será suficiente calcular el volumen de una de estas pirámides y multiplicar por el número de caras del poliedro. El volumen de una pirámide es, siendo B el área de la base y "a" la distancia del centro del poliedro al centro de la cara, distancia que se llama apotema. El volumen de un poliedro regular es la tercera parte del producto del área de su cara por la apotema, multiplicado por el número de caras. Nombre Área de una cara Área total Apotema Volumen Tetraedro Octaedro Icosaedro Hexaedro Dodecaedro Vicente Viana Martínez Pág 7

8 Un poco de historia Los pitagóricos, que veían en los resultados matemáticos algo parecido a una verdad religiosa, consideraban muy importante la observación de que había sólo cinco poliedros regulares posibles. Muchos creen que fueron ellos quienes la hicieron por primera vez y por eso llaman "sólidos pitagóricos" a los poliedros regulares. (Lo más probable es que la demostración de esta afirmación se deba a los miembros de esa escuela.) Sin embargo, los arqueólogos han hallado imágenes en piedra de los poliedros regulares considerablemente más antiguas. Esferas de piedra de unos 8 cm de diámetro talladas en forma de poliedros, recogidas en un yacimiento neolítico (.000 a.c.) en Escocia Se cree que fue Empédocles quien primero asoció el cubo, el tetraedro, el icosaedro y el octaedro con la tierra, el fuego, el agua y el aire, respectivamente. Estas sustancias eran los cuatro "elementos" de los griegos antiguos. Luego Platón asoció el dodecaedro con el Universo pensando que, dado que era tan distinto de los restantes, por sus caras pentagonales, debía tener relación con la sustancia de la cual estaban hechos los planetas y las estrellas. Por entonces se creía que los cuerpos celestes debían estar hechos de un elemento distinto del que estaban hechas las cosas que rodean al hombre en la Tierra. De aquí que a los poliedros regulares se los conozca también como sólidos platónicos. Platón afirmaba que una superficie perfectamente plana se compone de triángulos. Todos los triángulos tienen su origen en dos tipos de triángulos Existen infinitos triángulos rectángulos escalenos (todos los triángulos rectángulos isósceles son semejantes), por esto Platón elige el mas bello: "aquel en el cual el cuadrado del cateto mayor es triple del cuadrado del menor". Vicente Viana Martínez Pág 8

9 Este triángulo rectángulo es aquel que se obtiene al dividir un triángulo equilátero por su altura (la hipotenusa es doble que el cateto menor). Los triángulos isósceles y escalenos son los principios geométricos de los cuatro cuerpos elementales (el fuego, la tierra, el agua y el aire); pero por encima de estos principios geométricos están los principios numéricos, los números, conocidos solamente por Dios y por un número reducido de hombres a quien ama. Uniendo estos dos tipos de triángulos, Platón, forma los diferentes polígonos regulares (caras) y uniendo éstos forma los sólidos regulares (poliedros regulares). Finalmente asocia los poliedros regulares con los diferentes elementos: El cubo La tierra El tetraedro El fuego El octaedro El aire El icosaedro El agua El dodecaedro El mundo Desmenuzando estos cuerpos en los triángulos que lo constituyen y reajustándolos de nuevo, podemos efectuar transformaciones entre los elementos. Las partículas que poseen puntas agudas, penetran en los otros cuerpos. El agua se compone de partículas mucho mas suaves, de ahí el deslizamiento de los fluidos. Vicente Viana Martínez Pág 9

10 En este esquema no queda lugar para el dodecaedro. De los cinco poliedros regulares es el único que no tiene caras triangulares ni cuadradas, sino pentagonales (el pentágono era el símbolo místico de los pitagóricos). Platón le asigna al dodecaedro la representación del mundo (es el poliedro que tiene un aspecto más redondeado). Por otra parte, en excavaciones realizadas cerca de Pádova (Italia), se halló un dodecaedro etrusco (500 a.c.) que probablemente era usado como juguete o bien como base para flores o velas. La figura inferior corresponde a un icosaedro encontrado también en unas excavaciones romanas. Vicente Viana Martínez Pág 10

11 Luca Pacioli ( ) Teoría de poliedros y Construcción de un omnipoliedro Es el primer matemático del que tenemos un retrato auténtico. Luca Pacioli, fraile franciscano, aparece señalando con la mano izquierda un ejemplar de la Summa de Arithmetica (1494), mientras con la derecha indica en una pizarra una figura geométrica y una suma de números representada según la "nueva" notación. Por la posición de los ojos de los personajes, Pacioli parece estar observando el cuerpo suspendido enfrente, que es un rombicuboctaedro de cristal con agua, y comprobando alguna propiedad del mismo en el dibujo de la pizarra, a la vez que consulta la Summa. En la mesa, sobre el libro, aparece un dodecaedro. Su acompañante observa directamente al espectador. Leonardo da Vinci ( ) Fue la quintaesencia del hombre del Renacimiento: artista, matemático, científico e ingeniero. Gran amante de la geometría, dedicó mucho tiempo al estudio de los sólidos. Su más famosa muestra de los poliedros son las ilustraciones para el libro de Luca Pacioli (1509) La Divina Proporción. Estas son algunas de ellas. Vicente Viana Martínez Pág 11

12 Johannes Kepler Kepler estaba convencido de que Dios había hecho el mundo siguiendo proporciones matemáticas perfectas. Esto lo expresó en su primera obra Mysterium cosmograficum (1596). Kepler fue un brillante pensador y un lúcido escritor, pero un desastre como profesor. Se perdía en digresiones. A veces era totalmente incomprensible. Su primer año como profesor en Graz (Austria) atrajo a un puñado escaso de alumnos; al año siguiente no había ninguno. Le distraía de aquel trabajo un incesante clamor interior de asociaciones y de especulaciones que rivalizaban por captar su atención. En la época de Kepler sólo se conocían seis planetas: Mercurio, Venus, La Tierra, Marte, Júpiter y Saturno. Kepler se preguntaba por qué eran sólo seis. Por qué no eran más? Por qué sus órbitas presentaban el espaciamiento que Copérnico había deducido?. Nunca hasta entonces se había preguntado nadie cuestiones de este tipo. Se conocía la existencia de cinco sólidos regulares o "platónicos", cuyos lados eran polígonos regulares tal como los conocían los antiguos matemáticos griegos posteriores a Pitágoras. Kepler pensó que los números estaban relacionados. La razón de que hubiera sólo seis planetas era porque había sólo cinco sólidos regulares y que esos sólidos, inscritos o anidados uno dentro de otro, determinarían las distancias del Sol a los planetas. Llamó a su idea El Misteri o Cósmico. La explicación del Misterio Cósmico sólo podía estar en la Mano de Dios, el Geómetra. Vicente Viana Martínez Pág 1

13 Presentó una propuesta para que el duque de Württemberg le diera una ayuda a la investigación, ofreciéndose para supervisar la construcción de sus sólidos anidados en un modelo tridimensional que permitiera vislumbrar la grandeza de la sagrada geometría. Añadió que podía fabricarse de plata y piedras preciosas y que serviría también de cáliz ducal. La propuesta fue rechazada con el amable consejo de que antes construyera un modelo menos caro, de papel, a lo cual se puso manos a la obra. Pero a pesar de todos sus esfuerzos, los sólidos y las órbitas planetarias no encajaban bien. En el cuadro siguiente aparecen reproducciones de otros grabados de la misma obra de Kepler en donde se observa cómo sobrevivía en esta época tan tardía la asociación entre elementos y poliedros establecida por Empédocles y Platón. Figuras tomadas del tratado Mysterium Cosmographicum de Johannes Kepler Vicente Viana Martínez Pág 13

14 Los poliedros regulares y M. C. Escher Los sólidos platónicos, por su historia, perfección, y belleza, continúan siendo hoy inspiradores de matemáticos y artistas. El holandés Maurits Cornelis Escher es uno de los artistas clásicos de nuestro tiempo que han experimentado la fascinación por estas figuras. A continuación se reproduce su grabado Estrellas (1948) y una fotografía que lo muestra observando una de sus obras: un conjunto de sólidos platónicos superpuestos. Se dice que cierta vez, cuando tuvo que mudarse de oficina, Escher dejó muchas de sus pertenencias, excepto ésta. Vicente Viana Martínez Pág 14

15 Proceso de construcción del omnipoliedro Vamos a intentar construir el armazón de los 5 poliedros regulares de forma que queden perfectamente inscritos unos dentro de otros. NOMBRE CARA Nº DE CARAS Nº DE VÉRTI- CES Nº DE ARISTAS Tetraedro Triángulos equiláteros Hexaedro o cubo Cuadrados Octaedro Triángulos equiláteros Dodecaedro Pentágonos Icosaedro Triángulos equiláteros Vamos a utilizar para su construcción; cañitas de refrescos, tacos de plástico tipo Fichet, cáncamos y alambre. Como el número de aristas total es = 90 Necesitaremos, 90 cañitas, 180 tacos y 180 cáncamos. Para calcular la longitud de las aristas de cada figura, partiremos de la arista del cubo como arista unidad y el resto las obtendremos a partir de ella. Vicente Viana Martínez Pág 15

16 NOMBRE CARA Nº DE ARISTAS LONGITUD ARISTAS Tetraedro Triángulo 6 a Cubo - Hexaedro Cuadrado 1 a Octaedro Triángulo 1 a 1 Dodecaedro Pentágono 30 a 5 Icosaedro Triángulo 30 a Comenzamos construyendo el tetraedro. La arista del tetraedro es justamente la diagonal menor del cubo. Por tanto, si la arista del cubo vale a. Aplicando Pitágoras. a tetraedro a cubo A continuación, construimos el octaedro, dentro del tetraedro. De forma que los vértices del octaedro descansen sobre la mitad de la arista del tetraedro. Vicente Viana Martínez Pág 16

17 Fácilmente, se comprueba que. Teoría de poliedros y Construcción de un omnipoliedro a a octaedro octaedro a a tetraedro cubo El paso siguiente es la construcción del cubo. Como la arista del tetraedro es la diagonal del cubo, resulta sencillo proceder a su construcción (véase figura inicial). Ahora pasamos al dodecaedro. El proceso se lleva a cabo teniendo en cuenta que la arista del cubo es justamente, la diagonal del pentágono. Tomando como base, los vértices del cubo, situamos en cada uno de ellos 3 aristas del pentágono y luego las unimos tal y como se indica en la figura. Tal como vimos en el tema del Número de oro, la relación entre la diagonal del pentágono y su lado es justamente la razón áurea. Diagonal lado pentágono pentágono Por consiguiente. arista dodecaedro arista cubo arista dodecaedro arista cubo 1 5 Vicente Viana Martínez Pág 17

18 La estructura así formada no es rígida. Necesitamos situar ahora el icosaedro para rigidizarla. Los triángulos equiláteros de las caras del icosaedro forman una pirámide pentagonal por encima de cada cara del dodecaedro, cuyo vértice está justo sobre el centro geométrico de cada pentágono, aunque en un plano superior. AP = arista dodecaedro = MP = AP RQ = arista icosaedro arista cubo El triángulo ORQ es equilátero. Por tanto. RQ MN Por otra parte, el ángulo MNP = 108º, por ser ángulo interno de un pentágono regular y ángulo NMP = 36º. Ahora nos construimos el triángulo NSM (triángulo aúreo), de ángulos 7º, 7º y 36º. Prolongamos MP, hasta determinar el punto L. Los triángulos NML y NMS son semejantes. Luego. MS MN MN LN LN = MP MN = MP Vicente Viana Martínez Pág 18

19 arista icosaedro = RQ = MN = MP = arista cubo En definitiva. arista icosaedro = arista cubo Vicente Viana Martínez Pág 19

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Poliedros regulares Cuerpos de revolución

Poliedros regulares Cuerpos de revolución Poliedros regulares Cuerpos de revolución Poliedro. Un poliedro es un cuerpo limitado por caras poligonales. Ángulo diedro. Ángulo poliedro Se llama ángulo diedro de un poliedro el que está formado por

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

Talento Matemático 2002/2003. Real Academia de Ciencias

Talento Matemático 2002/2003. Real Academia de Ciencias Volvemos al hermoso tema de la simetría. Además de la imágenes de multitud de objetos y de seres vivos que poseen simetrías recuerdas en qué consistía una simetría desde el punto de vista matemático?,

Más detalles

Áreas de cuerpos geométricos

Áreas de cuerpos geométricos 9 Áreas de cuerpos geométricos Objetivos En esta quincena aprenderás a: Calcular el área de prismas rectos de cualquier número de caras. Calcular el área de pirámides de cualquier número de caras. Calcular

Más detalles

CAPÍTULO VI KEPLER Una vida austera y laboriosa

CAPÍTULO VI KEPLER Una vida austera y laboriosa CAPÍTULO VI KEPLER Una vida austera y laboriosa Johannes Kepler (1571-1630) nació en Würtemberg, Alemania, en el seno de una familia luterana. Vivió en varias naciones -Alemania, Austria, Bohemia, Hungría-

Más detalles

DESARROLLO DE UNA APLICACIÓN JAVA PARA LA REPRESENTACIÓN Y MANIPULACIÓN DE POLIEDROS EN EL ESPACIO

DESARROLLO DE UNA APLICACIÓN JAVA PARA LA REPRESENTACIÓN Y MANIPULACIÓN DE POLIEDROS EN EL ESPACIO Capítulo 5. Uso de los recursos tenológicos en el proceso de aprendizaje de las matemáticas DESARROLLO DE UNA APLICACIÓN JAVA PARA LA REPRESENTACIÓN Y MANIPULACIÓN DE POLIEDROS EN EL ESPACIO Salvador Lacaba

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Tema 6: Geometría en dimensión 3

Tema 6: Geometría en dimensión 3 Tema 6: Geometría en dimensión 3 Contenidos: 1. Introducción. 2. Poliedros. 3. Volumen. Capacidad. Unidades. 4. Volumen de sólidos básicos: prismas y cilindros. 5. Volumen de pirámides y conos. 6. Volumen

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

GEOMETRÍA 1.- INTRODUCCIÓN:

GEOMETRÍA 1.- INTRODUCCIÓN: GEOMETRÍA 1.- INTRODUCCIÓN: Etimológicamente hablando, la palabra Geometría procede del griego y significa Medida de la Tierra. La Geometría es la parte de las Matemáticas que estudia las idealizaciones

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 37. Marzo 2014 páginas 139-145 Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Oportunidades para estimular el pensamiento

Más detalles

Lectura: LA PIRÁMIDE DE KEOPS. Consideraciones didácticas y soluciones

Lectura: LA PIRÁMIDE DE KEOPS. Consideraciones didácticas y soluciones Lectura: LA PIRÁMIDE DE KEOPS Consideraciones didácticas y soluciones 1 El tema de las pirámides nos parece atractivo y motivador para el alumnado y, por ello, nos sirve como excelente punto de partida

Más detalles

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO III - GEOMETRIA ENCUENTRO NÚMERO TRES El Teorema de Thales y sus Aplicaciones 03 DE AGOSTO DE 2014 MANAGUA FINANCIADO

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

TORNEO DE LAS CUENCAS. 2013 Primera Ronda Soluciones PRIMER NIVEL

TORNEO DE LAS CUENCAS. 2013 Primera Ronda Soluciones PRIMER NIVEL TORNEO DE LAS CUENCAS 2013 Primera Ronda Soluciones PRIMER NIVEL Problema 1- La figura adjunta está formada por un rectángulo y un cuadrado. Trazar una recta que la divida en dos figuras de igual área.

Más detalles

Terapia con Geometría Sagrada

Terapia con Geometría Sagrada Terapia con Geometría Sagrada Los sólidos platónicos, también conocidos como cuerpos platónicos son poliedros convexos cuyas caras son polígonos regulares iguales y en cuyos vértices se unen el mismo número

Más detalles

Hay 5 sólidos platónicos

Hay 5 sólidos platónicos 1 Un sólido es un poliedro, o sea una figura tridimensional conformada por planos de diversas formas (polígonos) que se intersectan. Hay 5 sólidos platónicos Fueron estudiados y descriptos por los geómetras

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

RELACIONES ENTRE ARTE Y CIENCIA

RELACIONES ENTRE ARTE Y CIENCIA RELACIONES ENTRE ARTE Y CIENCIA Estamos de acuerdo en que arte y ciencia son: Partes de un todo. Caras de la misma moneda. Se complementan recíprocamente. Cubren un mismo espacio desde perspectivas diferentes.

Más detalles

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS 1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS LibrosMareaVerde.tk www.apuntesmareaverde.org.es Revisores: Javier Rodrigo y Raquel Hernández Ilustraciones: Banco de Imágenes de INTEF 19 Índice 1. PERÍMETROS Y ÁREAS

Más detalles

PÁGINA 77 PARA EMPEZAR

PÁGINA 77 PARA EMPEZAR Soluciones a las actividades de cada epígrafe PÁGINA 77 Pág. 1 PARA EMPEZAR El arte cósico Vamos a practicar el arte cósico : Si a 16 veces la cosa le sumamos 5, obtenemos el mismo resultado que si multiplicamos

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

La increíble experiencia del artista gráfico holandés Janosh

La increíble experiencia del artista gráfico holandés Janosh Transición manual La increíble experiencia del artista gráfico holandés Janosh La geometría es una vibración, una energía esencial que está en todo y se conecta con todo. La vibración de esas imágenes

Más detalles

Puedes Desarrollar Tu Inteligencia

Puedes Desarrollar Tu Inteligencia Puedes desarrollar tu Inteligencia (Actividad-Opción A) Puedes Desarrollar Tu Inteligencia Una nueva investigación demuestra que el cerebro puede desarrollarse como un músculo Muchas personas piensan que

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Tema 6: Ecuaciones e inecuaciones.

Tema 6: Ecuaciones e inecuaciones. Tema 6: Ecuaciones e inecuaciones. Ejercicio 1. Encontrar, tanteando, alguna solución de cada una de las siguientes ecuaciones: 3 a) + 5 = 69 Probamos para =,3,4,... = = 3 3 = 4 4 3 3 3 + 5 = 13. + 5 =

Más detalles

METROS CÚBICOS O LITROS?

METROS CÚBICOS O LITROS? METROS CÚBICOS O LITROS? 10 Comprende qué son las unidades de volumen (litros y decímetros cúbicos). En Presentación de Contenidos, para explicar las unidades de volumen se explica la diferencia entre

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15

5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15 LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,

Más detalles

LAS FRACCIONES DE CARLOS

LAS FRACCIONES DE CARLOS LAS FRACCIONES DE CARLOS (Un cuento de partes de una parte) MAURICIO CONTRERAS LAS FRACCIONES DE CARLOS (Un cuento de partes de una parte) Carlos estaba triste. Su hermana Eva se le acercó. Qué te pasa

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

PREDICANDO AL VERDADERO JESÚS A.A.

PREDICANDO AL VERDADERO JESÚS A.A. 2Corintios 11:4 Porque si viene alguno predicando a otro Jesús que el que os hemos predicado, o si recibís otro espíritu que el que habéis recibido, u otro evangelio que el que habéis aceptado, bien lo

Más detalles

El proyecto Eratóstenes. Guía para el estudiante.

El proyecto Eratóstenes. Guía para el estudiante. El proyecto Eratóstenes. Guía para el estudiante. En esta actividad vas a trabajar en colaboración con estudiantes de otra escuela para medir el radio de la Tierra. Vas a usar los mismos métodos y principios

Más detalles

Micropíldora 3: Liquidez, Solvencia y Rentabilidad

Micropíldora 3: Liquidez, Solvencia y Rentabilidad Micropíldora 3: Liquidez, Solvencia y Rentabilidad ÍNDICE MC 03 LIQUIDEZ, SOLVENCIA Y REBTABILIDAD 1. El balance final. 2. Liquidez, solvencia y rentabilidad. 2 1.- El balance final Hasta ahora, en el

Más detalles

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = =

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = = Matemáticas EDUCACIÓN SECUNDARIA Opción A SOLUCIONES Evaluación: Fecha: Ejercicio nº 1.- a) Opera y simplifica: 1 1 1, 4, + : 5 b) Reduce a una sola potencia: 4 1 5 5 0 a) Expresamos N =, en forma de fracción:

Más detalles

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema:

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema: Problemas fáciles y problemas difíciles Alicia Avila Profesora investigadora de la Universidad Pedagógica Nacional Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R MATEMÁTICAS PARA EDUCACIÓN INFANTIL N Enseñamos y aprendemos llos números:: Método Siingapur y Fernández Bravo,, Porr Clarra Garrcí ía,, Marrtta Gonzzál lezz y Crri isstti ina Lattorrrre.. Ú M E R O S

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

Dra. Carmen Ivelisse Santiago Rivera 1 MÓDULO DE LOS ENTEROS. Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA

Dra. Carmen Ivelisse Santiago Rivera 1 MÓDULO DE LOS ENTEROS. Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA Dra. Carmen Ivelisse Santiago Rivera 1 1 MÓDULO DE LOS ENTEROS Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA Dra. Carmen Ivelisse Santiago Rivera 2 Módulo 3 Tema: Los Enteros

Más detalles

GUIA BASICA DE REGLETAS MATEMATICAS Aprender jugando con regletas matemáticas de Cuisenaire

GUIA BASICA DE REGLETAS MATEMATICAS Aprender jugando con regletas matemáticas de Cuisenaire EDICIONES MANITAS CREATIVAS LTDA. GUIA BASICA DE REGLETAS MATEMATICAS Aprender jugando con regletas matemáticas de Cuisenaire Alejandro Ortiz Gómez INDICE 1. Las regletas matemáticas...2 2. Uso de las

Más detalles

PROBLEMAS DE ECUACIONES SIMULTÁNEAS

PROBLEMAS DE ECUACIONES SIMULTÁNEAS PROBLEMAS DE ECUACIONES SIMULTÁNEAS Por: ELÍAS LOYOLA CAMPOS 1. En un recinto del zoológico se tienen dos tipos de animales: avestruces y jirafas. Hay 30 ojos y 44 patas, cuántos animales hay de cada tipo?

Más detalles

TE IMAGINAS LOS INFINITOS PROBLEMAS DE UN HOTEL CON UN NÚMERO INFINITO DE HABITACIONES, QUE SUELE LLENARSE CON UN NÚMERO INFINITO DE HUÉSPEDES?

TE IMAGINAS LOS INFINITOS PROBLEMAS DE UN HOTEL CON UN NÚMERO INFINITO DE HABITACIONES, QUE SUELE LLENARSE CON UN NÚMERO INFINITO DE HUÉSPEDES? El Gran Hotel CANTOR Un hotel infinito Juan Manuel Ruisánchez Serra TE IMAGINAS LOS INFINITOS PROBLEMAS DE UN HOTEL CON UN NÚMERO INFINITO DE HABITACIONES, QUE SUELE LLENARSE CON UN NÚMERO INFINITO DE

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

EL SISTEMA SOLAR A ESCALA

EL SISTEMA SOLAR A ESCALA Cómo motivar a los estudiantes mediante actividades científicas atractivas EL SISTEMA SOLAR A ESCALA Introducción: Mª Teresa de la Calle García COLEGIO PÍO XII Valencia En la mayoría de los libros de texto

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

2. KEPLER: LAS LEYES PLANETARIAS. Una herencia maravillosa

2. KEPLER: LAS LEYES PLANETARIAS. Una herencia maravillosa 2. KEPLER: LAS LEYES PLANETARIAS Una herencia maravillosa Johannes Kepler (1571-1630) ingresó en la universidad de Tübingen en 1589. Allí estudió matemáticas con el profesor Michael Maestlin (1550-1630),

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

EJERCICIOS PROPUESTOS. c) 5 2 d) 5 2 3

EJERCICIOS PROPUESTOS. c) 5 2 d) 5 2 3 Potencias y raíces EJERCICIOS PROPUESTOS. Escribe como potencias positivas las negativas, y viceversa. a) 8 b) 6 a) b) 6 c) 8 c) d) d). Expresa estas potencias como potencias únicas y calcula las operaciones.

Más detalles

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen TEMA 6 FUNCIONES 1.- Estudia y clasifica las relaciones que aparecen en las siguientes situaciones (elementos relacionados, características de la relación, dependencia entre elementos, conjuntos que se

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

Beatriz Galán Luque Natividad Adamuz-Povedano Universidad de Córdoba

Beatriz Galán Luque Natividad Adamuz-Povedano Universidad de Córdoba Épsilon - Revista de Educación Matemática 2012, Vol. 29(1), nº 80, pp. 75-81 Actividades sobre el tamaño de la Luna y su distancia a la Tierra Beatriz Galán Luque Natividad Adamuz-Povedano Universidad

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Trabajo Práctico III Consigna:

Trabajo Práctico III Consigna: Trabajo Práctico III Consigna: Realizar fotografías con tema libre, teniendo en cuenta las siguientes pautas: 1. Fotografiar un sujeto en movimiento para que aparezca completamente nítido y ( congelado

Más detalles

El rincón de los problemas

El rincón de los problemas Marzo de 2010, Número 21, páginas 165-172 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe De lo particular a lo general, usando grafos Problema En

Más detalles

FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012

FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012 FRACCIONES EJERCICIOS PARA REPASAR VERANO 2012 PORCENTAJES 1.- El precio de un libro sin IVA es de 50. Si nos cobran 55, cuàl es el porcentaje del IVA que nos han cobrado. 2.-En un tienda hemos comprado

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

Polígonos, perímetros y áreas

Polígonos, perímetros y áreas 9 Polígonos, perímetros y áreas Objetivos Antes de empezar En esta quincena aprenderás a: Reconocer, representar e identificar los elementos geométricos que caracterizan a diferentes polígonos. Construir

Más detalles

LOS POLIEDROS. Los poliedros se clasifican en prismas y en pirámides.

LOS POLIEDROS. Los poliedros se clasifican en prismas y en pirámides. LOS POLIEDROS Una caja de zapatos, un dado y muchos otros objetos con superficies planas que ves a tu alrededor, tienen forma poliédrica. Se llaman poliedros a los cuerpos geométricos cuyas caras son polígonos.

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

Matemática Función exponencial

Matemática Función exponencial Matemática Función eponencial La selección de problemas que aquí se presentan forma parte del documento Función eponencial de la Serie Aportes para la enseñanza. Nivel Medio, en proceso de edición en la

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo GEOMETRÍA MOLECULAR Lic. Lidia Iñigo Hemos dicho al estudiar uniones químicas que un enlace covalente es polar cuando existe cierta diferencia de electronegatividad entre los átomos que se unen. La magnitud

Más detalles

Tema : ELECTRÓNICA DIGITAL

Tema : ELECTRÓNICA DIGITAL (La Herradura Granada) Departamento de TECNOLOGÍA Tema : ELECTRÓNICA DIGITAL.- Introducción. 2.- Representación de operadores lógicos. 3.- Álgebra de Boole. 3..- Operadores básicos. 3.2.- Función lógica

Más detalles

NÚMEROS REALES MÓDULO I

NÚMEROS REALES MÓDULO I MÓDULO I NÚMEROS REALES NUEVE planetas principales constituyen el sistema solar. Si los ordenamos de acuerdo a su distancia al Sol Mercurio es el que está más cerca (58 millones de Km ) Plutón el más lejano

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Recordando la experiencia

Recordando la experiencia Recordando la experiencia Lanzadera Cohete En el Taller de Cohetes de Agua cada alumno, individualmente o por parejas construisteis un cohete utilizando materiales sencillos y de bajo coste (botellas d

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

DIBUJOS DE M.C.ESCHER

DIBUJOS DE M.C.ESCHER DIBUJOS DE M.C.ESCHER M.C. Escher para los que no lo conocen... Maurits Cornelis Escher (1898-1972). más conocido por sus iniciales como M.C. Escher, es uno de los más grandes artistas gráficos del siglo

Más detalles

DEMOSTRACIONES GEOMÉTRICAS

DEMOSTRACIONES GEOMÉTRICAS DEMOSTRACIONES GEOMÉTRICAS Ana M. Martín Caraballo, Universidad Pablo de Olavide de Sevilla. José Muñoz Santonja, IES Macarena de Sevilla. ESTALMAT ANDALUCÍA SEDE SEVILLA ÍNDICE INTRODUCCIÓN PRIMERA PARTE:

Más detalles

Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009. Problemas 1 incógnita

Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009. Problemas 1 incógnita Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009 Problemas 1 incógnita 2º E.S.O Sobre números Quién miente? El famoso detective Roberto J. Pescador recibió una tarde la visita de

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

ÁNGULOS Y TRIÁNGULOS EN LAS PIRÁMIDES EGIPCIAS

ÁNGULOS Y TRIÁNGULOS EN LAS PIRÁMIDES EGIPCIAS ÁNGULOS Y TRIÁNGULOS EN LAS PIRÁMIDES EGIPCIAS En las pirámides egipcias, todo parece indicar que fueron diseñadas sobre la base de los Triángulos Sagrados egipcios, que son aquellos triángulos rectángulos

Más detalles

IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones

IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones Define la unidad de energía en el sistema internacional (S.I.). Escribe otras unidades de

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

TESELANDO LLEGAMOS A LAS FÓRMULAS PARA MEDIR ÁREA CONTENIDOS: REGULARIDADES EN FRISOS Y MOSAICOS. ÁREA DE FIGURAS GEOMÉTRICAS.

TESELANDO LLEGAMOS A LAS FÓRMULAS PARA MEDIR ÁREA CONTENIDOS: REGULARIDADES EN FRISOS Y MOSAICOS. ÁREA DE FIGURAS GEOMÉTRICAS. TESELANDO LLEGAMOS A LAS FÓRMULAS PARA MEDIR ÁREA CONTENIDOS: REGULARIDADES EN FRISOS Y MOSAICOS. ÁREA DE FIGURAS GEOMÉTRICAS. AUTORAS: PATRICIA CUELLO ADRIANA RABINO Las actividades con mosaicos y otras

Más detalles

SISTEMA DIÉDRICO PARA INGENIEROS. David Peribáñez Martínez DEMO

SISTEMA DIÉDRICO PARA INGENIEROS. David Peribáñez Martínez DEMO SISTEMA DIÉDRICO PARA INGENIEROS David Peribáñez Martínez SISTEMA DIÉDRICO PARA INGENIEROS David Peribáñez Martínez Valderrebollo 20, 1 A 28031 MADRID 1ª Edición Ninguna parte de esta publicación, incluido

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno.

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno. MECANISMOS En tecnología, cuando se diseña una máquina, lo más normal es que esté movida por un motor, que tiene un movimiento circular, pero a veces no es ese el tipo de movimiento que necesitamos. En

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

UNA LECCIÓN DE ESTEREOMETRÍA ASISTIDA POR COMPUTADORA

UNA LECCIÓN DE ESTEREOMETRÍA ASISTIDA POR COMPUTADORA IV CIEMAC S. Mata, C. Quesada 1 UNA LECCIÓN DE ESTEREOMETRÍA ASISTIDA POR COMPUTADORA Sergio Mata C. Cristian Quesada F. Resumen Con el desarrollo de este trabajo se pretende mejorar el proceso de enseñanza-

Más detalles

Traslaciones, Homotecias, Giros y Simetrías

Traslaciones, Homotecias, Giros y Simetrías Traslaciones, Homotecias, Giros y Simetrías Traslaciones Nombre e indicación Comando equivalente Vector entre Dos puntos Vector [A, B] Seleccionamos el icono correspondiente a la herramienta Vector entre

Más detalles

CÓMO HACER MOSAICOS AL ESTILO ESCHER POR: ELÍAS LOYOLA CAMPOS

CÓMO HACER MOSAICOS AL ESTILO ESCHER POR: ELÍAS LOYOLA CAMPOS CÓMO HACER MOSAICOS AL ESTILO ESCHER POR: ELÍAS LOYOLA CAMPOS AUTORETRATO 1943 El 17 de junio de 1998, se cumplió el primer centenario del natalicio del genial grabador Mauricio Cornelio Escher, quien

Más detalles

TEMA 8: TRAZADOS GEOMÉTRICOS

TEMA 8: TRAZADOS GEOMÉTRICOS EDUCACIÓN PLÁSTICA Y VISUAL 3º DE LA E.S.O. TEMA 8: TRAZADOS GEOMÉTRICOS En dibujo técnico, es fundamental conocer los trazados geométricos básicos para construir posteriormente formas o figuras de mayor

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

Edison, un niño inventor. Desarrollo de estrategias de comprensión

Edison, un niño inventor. Desarrollo de estrategias de comprensión Estudiantes Edison, un niño inventor. Desarrollo de estrategias de comprensión Actividad 1 Sabes quién era Thomas Edison? Cómo era de pequeño? Era un buen estudiante? Desde cuándo le gustaba experimentar?

Más detalles

Página 1 de 7. Qué es Scratch?

Página 1 de 7. Qué es Scratch? Página 1 de 7 Qué es Scratch? Scratch es un software desarrollado por un grupo de investigadores (LLK) del MIT (Instituto Tecnologíco de Massachussets) con amplia experiencia en el desarrollo de herramientas

Más detalles

Trabajo Práctico N 2

Trabajo Práctico N 2 Trabajo Práctico 2 Metodología de Investigación Trabajo Práctico N 2 Análisis de Galileo (1968), de Liliana Cavani 1 46207 leo_petricca@hotmail.com 1567819994 De Caro, Lucas Freixas, Catalina Petricca,

Más detalles

LA MASONERIA, EL NUMERO DE ORO Y EL TRIANGULO DORADO. Herbert Oré Belsuzarri Fénix 137-1 GRAN LOGIA CONSTITUCIONAL DEL PERU.

LA MASONERIA, EL NUMERO DE ORO Y EL TRIANGULO DORADO. Herbert Oré Belsuzarri Fénix 137-1 GRAN LOGIA CONSTITUCIONAL DEL PERU. LA MASONERIA, EL NUMERO DE ORO Y EL TRIANGULO DORADO Herbert Oré Belsuzarri Fénix 137-1 GRAN LOGIA CONSTITUCIONAL DEL PERU. LA MASONERIA, EL NUMERO DE ORO Y EL TRIANGULO DORADO. El Fi, también conocido

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles