INTELIGENCIA DE NEGOCIO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTELIGENCIA DE NEGOCIO 2014-2015"

Transcripción

1 INTELIGENCIA DE NEGOCIO Tema 1. Introducción a la Inteligencia de Negocio Tema 2. Retos en Inteligencia de Negocio Tema 3. Minería de Datos Tema 4. Modelos de Predicción: Clasificación, regresión y series temporales Tema 5. Preprocesamiento de Datos Tema 6. Modelos de Agrupamiento o Segmentación Tema 7. Modelos de Asociación Tema 8. Modelos Avanzados de Minería de Datos Tema 9. Big Data Comentarios Finales

2 INTELIGENCIA DE NEGOCIO Comentarios Finales El objetivo de la asignatura Inteligencia de Negocio ha sido introducir los elementos básicos de las herramientas de Inteligencia de Negocio (Business Intelligence), los retos, e introducir los conocimientos básicos para el uso de herramientas de Analítica de Negocio. Comprender el funcionamiento de los algoritmos de minería de datos permite su uso para la extracción de conocimiento de bases de datos y el uso de las mencionadas herramientas. Big Data es el área emergente en el análisis de datos, y Ciencia de Datos es el nombre que recibe el área que engloba los algoritmos de extracción de conocimiento, visualización y big data. Las prácticas de la asignatura han pretendido acercarse a la resolución de problemas reales con herramientas disponibles y de libre distribución. Esperamos que se haya cumplido.

3 En lo que sigue: INTELIGENCIA DE NEGOCIO Comentarios Finales Estamos en la década de los datos. Surge como profesión el Científico de Datos. Una web sobre el software libre para Inteligencia de Negocio, Ciencia de Datos Sobre los lenguajes de programación (R, Phyton, ). El website CRAN. Enlaces para continuar la formación con cursos online y un buen enlace para comenzar a practicar, KAGGEL. Una demanda creciente de profesionales en Big Data y Ciencia de Datos.

4 Big Data Estamos en la década de los datos Alex ' Sandy' Pentland, director del programa de emprendedores del 'Media Lab' del Massachusetts Institute of Technology (MIT) Considerado por 'Forbes' como uno de los siete científicos de datos más poderosos del mundo 4

5 Surge como profesión el Científico de Datos Data Science (Ciencia de Datos es el ámbito de conocimiento que engloba las habilidades asociadas al procesamiento de datos, big data,.) 5

6 Surge como profesión el Científico de Datos Data Science (Ciencia de Datos es el ámbito de conocimiento que engloba las habilidades asociadas al procesamiento de datos) Has "Big Data" significantly changed Data Science principles and practice? Gregory Piatetsky-Shapiro Of course, these terms are fuzzy - but many terms are, but still useful. Try to define Art or Pornography! The best definition of "Big Data" I saw is "Data is Big when data size (velocity, variety) becomes part of the problem". Data Science is really the latest name for Data Mining, Knowledge Discovery, Predictive Analytics - topic of research at many conferences. 6

7 Surge como profesión el Científico de Datos Científico de Datos Oportunidad profesional: En 2015, Gartner predice que 4,4 millones de empleos serán creados en torno a big data. (Gartner, 2013) Fuente: Surge la figura del Científico de Datos 7

8 Una web sobre el software libre para Inteligencia de Negocio, Ciencia de Datos Software (open source tools) 8

9 Una web sobre el software libre para Inteligencia de Negocio, Ciencia de Datos 9

10 Sobre los lenguajes de programación (R, Phyton, ). Lenguajes a usar para Data Science

11 Sobre los lenguajes de programación (R, Phyton, ). Para comenzar con 11

12 Sobre los lenguajes de programación (R, Phyton, ). El website CRAN The Comprehensive R Archive Network cran.r-project.org/ 12

13 Sobre los lenguajes de programación (R, Phyton, ). El website CRAN The Comprehensive R Archive Network cran.r-project.org/ 13

14 Enlaces para continuar la formación con cursos online y Cursos para continuar la formación Learning From Data: a free, introductory Machine Learning online course (MOOC), Caltech https://www.coursera.org/course/ml 14

15 y un buen enlace para comenzar a practicar, KAGGEL Kaggle: The Home of Data Science Es una empresa con un website que ofrece competiciones, ofertas de empleo, 15

16 y un buen enlace para comenzar a practicar, KAGGEL Kaggle: Go from Big Data to Big Analytics 16

17 y un buen enlace para comenzar a practicar, KAGGEL Kaggle: Go from Big Data to Big Analytics 17

18 y un buen enlace para comenzar a practicar, KAGGEL Kaggle: Go from Big Data to Big Analytics 18

19 y un buen enlace para comenzar a practicar, KAGGEL Kaggle: Go from Big Data to Big Analytics Es una muy buena ventana a la resolución de problemas reales y la adquisición de habilidades en Data Science. Enero

20 y un buen enlace para comenzar a practicar, KAGGEL Kaggle: Go from Big Data to Big Analytics Es una muy buena ventana a la resolución de problemas reales y la adquisición de habilidades en Data Science. Enero

21 Una demanda creciente de profesionales en Big Data y Ciencia de Datos Oportunidades en Big Data (en España) Existe una demanda mundial para formar a 4,4 millones de profesionales de la gestión Big Data desde ingenieros, gestores y científicos de datos, comenta Antón. Sin embargo, las empresas todavía no ven en el Big Data un modelo de negocio, lamenta. Solo se extrae un 1% de los datos disponibles en la red, añade. Hace falta formación y concienciación. 21

22 Una demanda creciente de profesionales en Big Data y Ciencia de Datos Oportunidades en Big Data (científico de datos es una profesión con creciente demanda) La demanda de profesionales formados en Ciencia de Datos y Big Data es enorme. Se estima que la conversión de datos en información útil generará un mercado de millones de dólares en 2015 y que se crearán más de 4.4 millones de empleos. España necesitará para 2015 más de profesionales con formación en Ciencia de Datos y Big Data. 7/actualidad/ _ html 22

23 INTELIGENCIA DE NEGOCIO

INTELIGENCIA DE NEGOCIO 2015-2016

INTELIGENCIA DE NEGOCIO 2015-2016 INTELIGENCIA DE NEGOCIO 2015-2016 Tema 1. Introducción a la Inteligencia de Negocio Tema 2. Retos en Inteligencia de Negocio Tema 3. Minería de Datos. Ciencia de Datos Tema 4. Modelos de Predicción: Clasificación,

Más detalles

INTELIGENCIA DE NEGOCIO 2014-2015

INTELIGENCIA DE NEGOCIO 2014-2015 INTELIGENCIA DE NEGOCIO 2014-2015 Tema 1. Introducción a la Inteligencia de Negocio Tema 2. Retos en Inteligencia de Negocio Tema 3. Minería de Datos. Ciencia de Datos Tema 4. Modelos de Predicción: Clasificación,

Más detalles

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos Published on Dataprix (http://www.dataprix.com) Principal > Artículos de Minería de Datos de Dataprix By Dataprix Created 26/12/2009-17:13 Artículos de Minería de Datos de Dataprix Introducción a la minería

Más detalles

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

BIG DATA Y SU APLICACIÓN REAL EN LA EMPRESA

BIG DATA Y SU APLICACIÓN REAL EN LA EMPRESA BIG DATA Y SU APLICACIÓN REAL EN LA EMPRESA Javier González Sánchez Director Comercial de Information Management España, Portugal, Grecia e Israel. IBM Software Características de Big Data Procesamiento

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico

Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico Aplicación de herramientas de inteligencia de negocios en modelamiento geometalúrgico Verónica Escobar González, Claudio Barrientos Ochoa, Sergio Barrientos Ochoa, Dirección de Modelamiento Geometalúrgico

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

Retos para competir en BigData

Retos para competir en BigData Retos para competir en BigData #ProCom15 Jornada ProCOM 2015 21 de Mayo Algunos datos sobre BIGDATA Source: www.datacenterknowledge.com BigData Data Data Data 50.000 EXABYTES CRECIMIENTO UNIVERSAL DE LOS

Más detalles

Los futuros desafíos de la Inteligencia de Negocios. Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile.

Los futuros desafíos de la Inteligencia de Negocios. Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile. Los futuros desafíos de la Inteligencia de Negocios Richard Weber Departamento de Ingeniería Industrial Universidad de Chile rweber@dii.uchile.cl El Vértigo de la Inteligencia de Negocios CRM: Customer

Más detalles

ESCUELA POLITÉCNICA SUPERIOR

ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN PETICIÓN DE TEMA PARA PROYECTO FIN DE CARRERA: TÍTULO Herramienta para la preparación de conjuntos de aprendizaje

Más detalles

Juan Carlos Olarte B Innovation and Business Development Management. BIG DATA & ANALYTICS: El Futuro es Ahora

Juan Carlos Olarte B Innovation and Business Development Management. BIG DATA & ANALYTICS: El Futuro es Ahora Juan Carlos Olarte B Innovation and Business Development Management BIG DATA & ANALYTICS: El Futuro es Ahora Temas a Tratar Evolución y Tendencias Big Data & Analytics Data Mining, Data Science y Big Data

Más detalles

Weka como herramienta de data mining

Weka como herramienta de data mining Weka como herramienta de data mining Lic. Aldave Rojas Isaac Alberto Instituto Tecnológico Superior de Ciudad Serdán Abstract El presente trabajo muestra un ejemplo introductorio a la herramienta de Data

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos Guía docente

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos Guía docente Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos Guía docente Impartido por: Juan Alfonso Lara Torralbo 1. Datos del docente NOMBRE Juan Alfonso Lara Torralbo FORMACIÓN

Más detalles

SOFISTICACION ANALITICA PARA EL CONOCIMIENTO DEL CLIENTE Y PERSONALIZACIÓN DE LA PROPUESTA DE VALOR

SOFISTICACION ANALITICA PARA EL CONOCIMIENTO DEL CLIENTE Y PERSONALIZACIÓN DE LA PROPUESTA DE VALOR SOFISTICACION ANALITICA PARA EL CONOCIMIENTO DEL CLIENTE Y PERSONALIZACIÓN DE LA PROPUESTA DE VALOR Carlos Mendoza Astroz SAS INSTITUTE Domain Expert carlos.mendoza@sas.com AGENDA 1. La nueva visión del

Más detalles

Especialización. en sistemas de soporte a la decisión: Estrategia e Implantación

Especialización. en sistemas de soporte a la decisión: Estrategia e Implantación Especialización en sistemas de soporte a la decisión: Estrategia e Implantación Especialización en sistemas de soporte a la decisión: Estrategia eimplantación En esta especialización de Análisis de datos

Más detalles

INTELIGENCIA DE NEGOCIO

INTELIGENCIA DE NEGOCIO Página 1de 9 GUIA DOCENTE DE LA ASIGNATURA INTELIGENCIA DE NEGOCIO MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO COMPLEMENTOS DE SISTEMAS DE INFORMACIÓN SISTEMAS DE INFORMACIÓN EN LA EMPRESA 4º 7º 6 Optativa

Más detalles

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Álvaro J. Méndez Services Engagement Manager IBM SPSS / Profesor Econometría UAM Jecas, 22 Oct 2010 Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Business Analytics software Agenda Minería

Más detalles

Postgrado. Big Data Management. & Analytics Industria 4.0

Postgrado. Big Data Management. & Analytics Industria 4.0 Postgrado Big Data Management & Analytics Industria 4.0 Presentación del programa Big Data es un paradigma de acceso a la información que permite recopilar, almacenar, gestionar y analizar grandes conjuntos

Más detalles

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre:

DES: Programa(s) Educativo(s): Tipo de materia: Clave de la materia: Semestre: : : lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. lemas propios de la. 12 6 lemas propios de la. 12 6 lemas propios de la.

Más detalles

OPTATIVA I: MINERIA DE DATOS

OPTATIVA I: MINERIA DE DATOS UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: OPTATIVA I: MINERIA DE DATOS DES: Programa(s) Educativo(s): Tipo de materia: Clave de la

Más detalles

Julia Díaz Directora Health&Energy Predictive Analytics

Julia Díaz Directora Health&Energy Predictive Analytics Instituto de Ingeniería del Conocimiento 5 febrero 2015 ÍNDICE IIC Concepto KnowBig Objetivos Metodología Resultados esperados Convocatorias y consorcio Julia Díaz Directora Health&Energy Predictive Analytics

Más detalles

Prontuario. I. Titulo del curso: Minería de Datos. II. Codificación: ESTA 5504. Horas / Crédito: 3 horas semanales / 3 Créditos

Prontuario. I. Titulo del curso: Minería de Datos. II. Codificación: ESTA 5504. Horas / Crédito: 3 horas semanales / 3 Créditos Universidad de Puerto Rico Recinto de Rio Piedras Facultad de Administración de Empresas 1 2 I. Titulo del curso: Minería de Datos Prontuario II. Codificación: ESTA 5504 III. Horas / Crédito: 3 horas semanales

Más detalles

1. Entender los principios de Business Intelligence y sus implicancias para la innovación en los negocios.

1. Entender los principios de Business Intelligence y sus implicancias para la innovación en los negocios. ENFIN748 Business Intelligence y Data Mining Financiero Profesor: PhD. David Díaz E-mail Profesor: ddiaz@unegocios.cl E-mail Tareas: BI-DM@unegocios.cl PRESENTACIÓN DEL CURSO El objetivo de éste curso

Más detalles

Análisis predictivo en las acciones online

Análisis predictivo en las acciones online Análisis predictivo en las acciones online Marketing on Tour 17 de junio de 2009 Juan Ramírez Senior Sales Engineer SPSS Empresa de Software Más de 40 años de innovación en tecnología analítica Presencia

Más detalles

El fenómeno Big Data y los títulos en Estadística en España.

El fenómeno Big Data y los títulos en Estadística en España. El fenómeno Big Data y los títulos en Estadística en España. Daniel Peña Rector Universidad Carlos III de Madrid V Conferencia Interuniversitaria sobre Titulaciones en Estadística UCM, enero 2014 Indice

Más detalles

ENSIA 605 Inteligencia de Negocios y Minería de Datos

ENSIA 605 Inteligencia de Negocios y Minería de Datos ENSIA 605 Inteligencia de Negocios y Minería de Datos Profesor: Jaime Miranda P. E mail profesor: jmirandap@fen.uchile.cl OBJETIVOS DEL CURSO OBJETIVO GENERAL Estudiar, analizar, diseñar y aplicar tecnologías

Más detalles

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas para la Gestión Unidad 3 Aplicaciones de Sistemas U.N.Sa. Facultad de Cs.Económicas SIG 2010 UNIDAD 3: APLICACIONES DE SISTEMAS Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración

Más detalles

La Inteligencia Analítica: Una Herramienta para el Mejoramiento en la Administración Pública

La Inteligencia Analítica: Una Herramienta para el Mejoramiento en la Administración Pública La Inteligencia Analítica: Una Herramienta para el Mejoramiento en la Administración Pública Dr. Viterbo H. Berberena G. Coordinador de la Maestría en Inteligencia Analítica Consultor Sénior en Inteligencia

Más detalles

BASES TORNEO DE EMPRENDIMIENTO COLLECTIVE INTELLIGENCE

BASES TORNEO DE EMPRENDIMIENTO COLLECTIVE INTELLIGENCE BASES TORNEO DE EMPRENDIMIENTO COLLECTIVE INTELLIGENCE Presentación: CollectiveIntelligence es un programa de emprendimiento tecnológico organizado por MetricArts y Microsoft, apoyado por la Corporación

Más detalles

TweetAlert: Sistema de Análisis Semántico de la Voz de los Ciudadanos en Redes Sociales en la Ciudad del Futuro

TweetAlert: Sistema de Análisis Semántico de la Voz de los Ciudadanos en Redes Sociales en la Ciudad del Futuro TweetAlert: Sistema de Análisis Semántico de la Voz de los Ciudadanos en Redes Sociales en la Ciudad del Futuro Julio Villena-Román 1,2, Adrián Luna-Cobos 1,3, José Carlos González-Cristóbal 3,1 1 DAEDALUS

Más detalles

Grupo de investigación en Minería de Datos http://mida.usal.es

Grupo de investigación en Minería de Datos http://mida.usal.es Departamento de Informática y Automática Postgrado en Informática y Automática MÁSTER EN SISTEMAS INTELIGENTES ASIGNATURAS Introducción a la Minería de Datos Minería Web María N. Moreno García http://avellano.usal.es/~mmoreno

Más detalles

PROGRAMA DE ASIGNATURA

PROGRAMA DE ASIGNATURA PROGRAMA DE ASIGNATURA 01. Carrera Lic. En Administración de Negocios Internacionales Lic. En Dirección del Factor Humano Lic. En Comercialización x Lic. En Tecnología Informática Lic. En Administración

Más detalles

Diseño e Implementación de un Sistema para la Segmentación de Clientes de una Operadora Celular

Diseño e Implementación de un Sistema para la Segmentación de Clientes de una Operadora Celular Diseño e Implementación de un Sistema para la Segmentación de Clientes de una Operadora Celular AUTORES: Fabián Cabrera Cuenca 1, Sergio Jonathan León García 2, Ilse Lorena Ycaza Díaz 3, Juan Aurelio Alvarado

Más detalles

Curso Magistral de Smart Cities Calidad de vida en un Ecosistema Integrado con el uso Inteligente de Plataformas Tecnológicas. Programa del Curso

Curso Magistral de Smart Cities Calidad de vida en un Ecosistema Integrado con el uso Inteligente de Plataformas Tecnológicas. Programa del Curso Duración del Curso: 16 horas. Programa del Curso Módulo I. Estado del Arte de las Smart(er) Cities y la calidad de vida de los Ciudadanos Inteligentes. Rol del Profesional Inteligente (4 horas). *Incluye

Más detalles

TÓPICOS AVANZADOS DE BASES DE DATOS

TÓPICOS AVANZADOS DE BASES DE DATOS TÓPICOS AVANZADOS DE BASES DE DATOS 1. DATOS DE LA ASIGNATURA. Nombre de la asignatura: TÓPICOS AVANZADOS DE BASES DE DATOS Carrera: Ingeniería en Sistemas Computacionales Clave de la asignatura: Modulo

Más detalles

POSTGRADO. Ingeniería EXPERTO EN BIG DATA

POSTGRADO. Ingeniería EXPERTO EN BIG DATA POSTGRADO Ingeniería EXPERTO EN BIG DATA Data analytics Bases de datos NoSQL Hadoop Spark Map/Reduce Diseño de modelo de datos Integración con Data Warehouse Business intelligence Knowledge discovery Proceso

Más detalles

Revista Científica ECOCIENCIA

Revista Científica ECOCIENCIA LA CIENCIA DE LOS DATOS Y SU IMPACTO EN LA GESTIÓN UNIVERSITARIA. PhD. Giraldo de la Caridad León Rodríguez Doctor en Ciencias Informáticas. Docente de la Facultad de Sistemas y Telecomunicaciones de la

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

Instituto de Ingeniería del Conocimiento

Instituto de Ingeniería del Conocimiento Instituto de Ingeniería del Conocimiento 5 de febrero de 2015 ÍNDICE IIC Concepto CIS (Citizens Intelligent Solutions) Objetivos Metodología Resultados esperados Convocatorias y consorcio Julia Díaz Directora

Más detalles

Cómo aprovechar la potencia de la analítica avanzada con IBM Netezza

Cómo aprovechar la potencia de la analítica avanzada con IBM Netezza IBM Software Information Management White Paper Cómo aprovechar la potencia de la analítica avanzada con IBM Netezza Un enfoque de appliance simplifica el uso de la analítica avanzada Cómo aprovechar la

Más detalles

Conceptos básicos de Big Data

Conceptos básicos de Big Data Conceptos básicos de Big Data Este documento no podrá ser reproducido, total o parcialmente, sin el permiso expreso de TRC Informática, S.L. Correos electrónicos, mensajes de textos, datos en formularios

Más detalles

Proyecto Piloto sobre Viabilidad de Internet como Fuente de Datos. Resultados del Proyecto

Proyecto Piloto sobre Viabilidad de Internet como Fuente de Datos. Resultados del Proyecto Proyecto Piloto sobre Viabilidad de Internet como Fuente de Datos Resultados del Proyecto ÍNDICE 1. Detección automática de B2C 2. Análisis de demanda de profesionales TICC y programas formativos 3. Análisis

Más detalles

Nombre del documento: Programa de estudio de Asignatura de Especialidad. Referencia a la Norma ISO 9001:2008 7.3 Página 1 de 6

Nombre del documento: Programa de estudio de Asignatura de Especialidad. Referencia a la Norma ISO 9001:2008 7.3 Página 1 de 6 142 Nombre del documento: Programa de estudio de Asignatura de Especialidad. Código: ITVH- AC-PO-011-02 Revisión: O Referencia a la Norma ISO 9001:2008 7.3 Página 1 de 6 1.- DATOS DE LA ASIGNATURA Nombre

Más detalles

Diploma en Business Analytics

Diploma en Business Analytics Diploma en Business Analytics JULIO 2010 FACULTAD DE INGENIERÍA Y CIENCIAS www.uai.cl Por qué un Diploma en Business Analytics? El análisis metódico e inteligente de datos es una actividad estratégica

Más detalles

KDD y MD. Dr. Juan Pedro Febles Rodríguez BIOINFO CITMA 2005. Juan Pedro Febles KDD y MD

KDD y MD. Dr. Juan Pedro Febles Rodríguez BIOINFO CITMA 2005. Juan Pedro Febles KDD y MD KDD y MD Dr. Juan Pedro Febles Rodríguez BIOINFO febles@bioinfo.cu http://www.bioinfo.cu CITMA 2005 Temas a tratar Algunos antecedentes académicos. El proceso de descubrimiento de conocimientos en Datos

Más detalles

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación

Máster Universitario en Modelización e Investigación Matemática, Estadística y Computación 5.5.1. Denominación: Introducción a la Minería de Datos 5.5.2. Breve Descripción del Contenido: Introducción a la minería de datos. Aprendizaje supervisado, modelos no paramétricos y modelos generalizados

Más detalles

Presentación. Introducción a las técnicas de reconocimiento de patrones. Materia de doctorado en ingeniería/informática

Presentación. Introducción a las técnicas de reconocimiento de patrones. Materia de doctorado en ingeniería/informática Presentación Introducción a las técnicas de reconocimiento de patrones Materia de doctorado en ingeniería/informática Tópicos de minería de datos Materia optativa de LCC Docente: Pablo M. Granitto Horarios:

Más detalles

Áreas de conocimiento:

Áreas de conocimiento: Objetivo del programa: El objetivo del programa de Magíster en Ingeniería Informática, es la formación de graduados de alto nivel, con conocimientos avanzados en Computación e Informática, capaces de impulsar

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

Introducción a la Minería de Datos Educativos

Introducción a la Minería de Datos Educativos I Escuela de Verano en Inteligencia Artificial Coruña, Septiembre de 2014 Introducción a la Minería de Datos Educativos Sebastián Ventura Department of Computer Sciences and Numerical Analysis. University

Más detalles

RW.02 RW.01. Curso Data Mining y Aplicaciones en Riesgo de Crédito

RW.02 RW.01. Curso Data Mining y Aplicaciones en Riesgo de Crédito RW.02 RW.01 Curso Data Mining y Aplicaciones en Riesgo de Crédito RICHARD WEBER PhD. En Investigación de Operaciones del Instituto de Tecnología de Aachen, Alemania La actividad comercial de las empresas

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios para la Gestión UNIDAD 3: APLICACIONES DE SISTEMAS Unidad 3 Aplicaciones de Sistemas Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración de la cadena de suministros. Sistemas

Más detalles

Goverment Data Analytics

Goverment Data Analytics Goverment Data Analytics Índice 1. nuestra visión i. big data ii.datos de la administración iii.caso de éxito: MADdata 2. centro de excelencia de inteligencia artificial i. el futuro del análisis ii.nuestro

Más detalles

Alicia Iriberri Dirección de Tecnologías de Información. I.- Definición del foco estratégico

Alicia Iriberri Dirección de Tecnologías de Información. I.- Definición del foco estratégico Alicia Iriberri Dirección de Tecnologías de Información I.- Definición del foco estratégico II.- Establecimiento de mediciones a través del Balanced Scorecard (Tablero de Comando) III.- Despliegue del

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Minería de Datos Complementos de Computación Módulo Titulación Grado en Ingeniería Informática Plan 463 45220 Periodo de impartición 1 er Cuatrimestre Tipo/Carácter

Más detalles

NubaDat An Integral Cloud Big Data Platform. Ricardo Jimenez-Peris

NubaDat An Integral Cloud Big Data Platform. Ricardo Jimenez-Peris NubaDat An Integral Cloud Big Data Platform Ricardo Jimenez-Peris NubaDat Market Size 3 Market Analysis Conclusions Agenda Value Proposition Product Suite Competitive Advantages Market Gaps Big Data needs

Más detalles

v.1.0 Clase 1 Docente: Gustavo Valencia Zapata

v.1.0 Clase 1 Docente: Gustavo Valencia Zapata v.1.0 Clase 1 Docente: Gustavo Valencia Zapata Temas Clase 1: Introducción a la Inteligencia de Negocios Hitos y personajes Arquitectura de BI Evolución de la Información Inteligencia de Negocios (BI)

Más detalles

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.

Text Mining. Laura Alonso i Alemany. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu. Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/ laura SADIO 12, 13 y 14 de Marzo de 2008 grupo de PLN en FaMAF http://www.cs.famaf.unc.edu.ar/ pln/

Más detalles

El Programa estadístico R

El Programa estadístico R El Programa estadístico R R es un lenguaje y entorno que permite realizar manipulación de datos, cálculos y gráficos estadísticos, bajo la modalidad de software libre y puede ser instalado en distintos

Más detalles

How organizations are influenced by Business Analytics? Octubre 2014

How organizations are influenced by Business Analytics? Octubre 2014 How organizations are influenced by Business Analytics? Octubre 2014 El boom de los datos Fuente: Gestión. Artículo: Big Data: La nueva moneda en el mundo de los negocios. Martes, 07 de octubre del 2014

Más detalles

Del Big Data al Fast Data: Inteligencia competitiva en tiempo real aplicada al sector turístico. Víctor Ayllón CEO Novayre

Del Big Data al Fast Data: Inteligencia competitiva en tiempo real aplicada al sector turístico. Víctor Ayllón CEO Novayre : Inteligencia competitiva en tiempo real aplicada al sector turístico Víctor Ayllón CEO Novayre Agenda Breve presentación de Novayre Qué es Big Data? Patrones de comportamiento Acelerando la toma de decisiones:

Más detalles

Área Académica: Sistemas Computacionales. Profesor: Felipe de Jesús Núñez Cárdenas

Área Académica: Sistemas Computacionales. Profesor: Felipe de Jesús Núñez Cárdenas Área Académica: Sistemas Computacionales Tema: Sistemas ROLAP y MOLAP Profesor: Felipe de Jesús Núñez Cárdenas Periodo: Agosto Noviembre 2011 Keywords: ROLAP, MOLAP,HOLAP Tema: Sistemas ROLAP y MOLAP Abstract

Más detalles

BIG DATA. Alex Gimenez, CTO EMC España @alexgimenezf 7 Mayo 2013. Copyright 2011 EMC Corporation. Todos los derechos reservados.

BIG DATA. Alex Gimenez, CTO EMC España @alexgimenezf 7 Mayo 2013. Copyright 2011 EMC Corporation. Todos los derechos reservados. BIG DATA Alex Gimenez, CTO EMC España @alexgimenezf 7 Mayo 2013 1 !!!!!!!!! Big data tiene menos que ver con el tamaño y más con la libertad Techcrunch!!! YA ESTÁ AQUÍ!!!!!!!!!!!! Big data es real, en

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador DATOS INFORMATIVOS: MATERIA O MÓDULO: APLICACIONES DIFUSAS CÓDIGO: IS -10344 CARRERA: NIVEL: INGENIERIA DE SISTEMAS OCTAVO No. CRÉDITOS: 4 CRÉDITOS TEORÍA: 2 CRÉDITOS PRÁCTICA: 2 SEMESTRE / AÑO ACADÉMICO:

Más detalles

ASIGNATURA FECHA HORA AULA. Matemática Discreta 20-ene 08,00-11,00 0,10H / 1,4H. Antropología Aplicada 22-ene 09,00-11,00 0,10H / 1,4H

ASIGNATURA FECHA HORA AULA. Matemática Discreta 20-ene 08,00-11,00 0,10H / 1,4H. Antropología Aplicada 22-ene 09,00-11,00 0,10H / 1,4H EXÁMENES FEBRERO - CURSO 2015-2016 PRIMER CURSO Matemática Discreta 20-ene 08,00-11,00 0,10H / 1,4H Antropología Aplicada 22-ene 09,00-11,00 0,10H / 1,4H Programación de Robots I 25-ene 11,00-13,00 0,10H

Más detalles

Máster. en Inteligencia de Negocios

Máster. en Inteligencia de Negocios Máster en Inteligencia de Negocios Máster en Inteligencia de Negocios Este máster se presenta como un programa muy equilibrado que abarca todos los aspectos de la estrategia, la gestión, la implementación

Más detalles

Colegio Agustiniano Ciudad Salitre Área de Tecnología e Informática - Guía de Apoyo 2014. Docente: José Luis Solano Ospino

Colegio Agustiniano Ciudad Salitre Área de Tecnología e Informática - Guía de Apoyo 2014. Docente: José Luis Solano Ospino Colegio Agustiniano Ciudad Salitre Área de Tecnología e Informática - Guía de Apoyo 2014 Bimestre: III Grado: Garden Docente: José Luis Solano Ospino Name: Course: III PERÍODO: LA MULTIMEDIA Y EL COMPUTADOR

Más detalles

Pages: 171. Dr. Olga Torres Hostench. Chapters: 6

Pages: 171. Dr. Olga Torres Hostench. Chapters: 6 Pages: 171 Author: Dr. Olga Torres Hostench Chapters: 6 1 General description and objectives The aim of this course is to provide an in depth analysis and intensive practice the various computerbased technologies

Más detalles

Big Data & Machine Learning. MSc. Ing. Máximo Gurméndez Universidad de Montevideo

Big Data & Machine Learning. MSc. Ing. Máximo Gurméndez Universidad de Montevideo Big Data & Machine Learning MSc. Ing. Máximo Gurméndez Universidad de Montevideo Qué es Big Data? Qué es Machine Learning? Qué es Data Science? Ejemplo: Predecir origen de artículos QUÉ DIARIO LO ESCRIBIÓ?

Más detalles

IBM PERFORMANCE EVENTS. Smarter Decisions. Better Results.

IBM PERFORMANCE EVENTS. Smarter Decisions. Better Results. Smarter Decisions. Better Results. 1 Aumente el valor de su BI con Análisis Predictivo José Ignacio Marín SPSS Sales Engineer 25/11/2010 2 Agenda Cómo está cambiando la toma de decisiones La potencia del

Más detalles

Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos

Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos Productividad en Empresas de Construcción: Conocimiento adquirido de las bases de datos Productivity in Construction Companies: Knowledge acquired from the databases Hernando Camargo Mila, Rogelio Flórez

Más detalles

Diplomatura en Analítica de Negocios y Gestión de la Información

Diplomatura en Analítica de Negocios y Gestión de la Información Diplomatura en Analítica de Negocios y Gestión de la Información "El bien más valioso que conozco es el recurso información" Fuente : Richard Burger, George Davies, (2005) The most valuable commodity I

Más detalles

RETOS Y APLICACIONES DEL BIG DATA

RETOS Y APLICACIONES DEL BIG DATA RETOS Y APLICACIONES DEL BIG DATA TENDENCIAS DE FUTURO EN EHEALTH jlcruz@idiphim.org @jotaelecruz Juan Luis Cruz CIO Hospital Puerta de Hierro Madrid España RETOS Y APLICACIONES DEL BIG DATA 1. QUÉ ES

Más detalles

Kais Analytics Business Intelligence

Kais Analytics Business Intelligence Analizador de datos Analice toda la información estratégica y mejore la toma de decisiones Con la globalización de la información en los últimos años nace el concepto Business Intelligence. La gran cantidad

Más detalles

Carrera: TID-1015 SATCA1 2-2 - 4

Carrera: TID-1015 SATCA1 2-2 - 4 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA1 Ingeniería del Conocimiento Ingeniería en Tecnologías de la Información y Comunicaciones TID-1015 2-2 - 4 2.-

Más detalles

Big Data: retos a nivel de desarrollo. Ing. Jorge Camargo, MSc, PhD (c) jcamargo@bigdatasolubons.co

Big Data: retos a nivel de desarrollo. Ing. Jorge Camargo, MSc, PhD (c) jcamargo@bigdatasolubons.co Big Data: retos a nivel de desarrollo Ing. Jorge Camargo, MSc, PhD (c) jcamargo@bigdatasolubons.co Cámara de Comercio de Bogotá Centro Empresarial Chapinero Agenda Introducción Bases de datos NoSQL Procesamiento

Más detalles

Sistema de Asignación de Riesgos Crediticios

Sistema de Asignación de Riesgos Crediticios Sistema de Asignación de Riesgos Crediticios Quienes somos Propuesta de Asignación de Riesgos Crediticios (Credit Scoring) CONTENIDO QUIENES SOMOS Matrix Data Labs es una Unidad de Negocios de Matrix CPM

Más detalles

De qué tratará el curso. Otras consideraciones. Objetivos. Introducción. Motivación Explosión en la disponibilidad de información:

De qué tratará el curso. Otras consideraciones. Objetivos. Introducción. Motivación Explosión en la disponibilidad de información: Datamining y Aprendizaje Automatizado Prof. Carlos Iván Chesñevar Email: cic@cs.uns.edu.ar Http:\\cs.uns.edu.ar\~cic Departamento de Cs. e Ing. de la Computación Universidad Nacional del Sur Bahía Blanca,

Más detalles

Minería de datos en la nube. Patricia Rayón Villela

Minería de datos en la nube. Patricia Rayón Villela Minería de datos en la nube Patricia Rayón Villela 1 Contenido Big-Data BI en la nube Analítica Texto Video Visual 2 Big data Problemas que eran difíciles o imposibles de resolver antes de ahora son manejables.

Más detalles

WICC 2014 XVI Workshop de Investigadores en Ciencias de la Computación

WICC 2014 XVI Workshop de Investigadores en Ciencias de la Computación ESTUDIO DE TECNICAS DE DATA MINING APLICADAS AL ANALISIS DE DATOS GENERADOS CON LA METODOLOGIA BLENDED LEARNING Marcelo Omar Sosa, Sosa Bruchmann Eugenia Cecilia Departamento Computación/Facultad de Ciencias

Más detalles

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES Actualmente se vive una época donde se tiene una enorme cantidad de datos que se generan diariamente (del orden de Terabytes, Petabytes 1 (Han, Kamber, & Pei, 2012))

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

Minería de datos: concepto y aplicaciones

Minería de datos: concepto y aplicaciones Minería de datos: concepto y aplicaciones Marvin Coto-Jiménez * *Universidad Autónoma Metropolitana/Universidad de Costa Rica. marvin.coto@ucr.ac.cr Minería de datos: concepto y aplicaciones. Marvin Coto-Jiménez.

Más detalles

SAS Data Scientist. Plan de Formación

SAS Data Scientist. Plan de Formación SAS Data Scientist Plan de Formación www.sas.com/spain/formacion Juan Lorenzo, Director del Plan de Formación juan.lorenzo@sas.com formacion@sas.com Tel: +34 91 200 73 00 BIG DATA EL NUEVO RETO EN LAS

Más detalles

Analítica. Alejandro Regueiro (regueial@ar.ibm.com) Business Analytics and Optimization Argentina Leader. 2011 IBM Corporation

Analítica. Alejandro Regueiro (regueial@ar.ibm.com) Business Analytics and Optimization Argentina Leader. 2011 IBM Corporation Evolución y tendencias en la provisión ió de Información Analítica Alejandro Regueiro (regueial@ar.ibm.com) Business Analytics and Optimization Argentina Leader BAO es una de las principales iniciativas

Más detalles

TÓPICOS ESPECIALES DE INGENIERÍA DE SISTEMAS E INFORMÁTICA SÍLABO

TÓPICOS ESPECIALES DE INGENIERÍA DE SISTEMAS E INFORMÁTICA SÍLABO TÓPICOS ESPECIALES DE INGENIERÍA DE SISTEMAS E SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL : INGENIERÍA DE SISTEMAS E CÓDIGO DE LA CARRERA : 02 NOMBRE DE LA ASIGNATURA : TÓPICOS ESPECIALES DE INGENIERÍA

Más detalles

Especialización en bases de datos, Datamining y data Warehouse

Especialización en bases de datos, Datamining y data Warehouse Especialización en bases de datos, Datamining y data Warehouse Especialización en bases de datos, El uso y la gestión de la información de la empresa y de su entorno para mejorar la toma de decisiones,

Más detalles

La revolución de los datos, nuevas tecnologías analíticas cognitivas y nuevos roles.

La revolución de los datos, nuevas tecnologías analíticas cognitivas y nuevos roles. Ricardo Míguez del Olmo, Director de Soluciones de Analytics. IBM La revolución de los datos, nuevas tecnologías analíticas cognitivas y nuevos roles. 2015 IBM Corporation Nuevos Roles: El Director de

Más detalles

Art Studio. Did you know...?

Art Studio. Did you know...? Art Studio Did you know...? Did you know...? In our Art Studio, we encourage children to use the materials in any way they wish. We provide ideas that they may use to begin work but do not expect copies

Más detalles

Máster en Big Data & Business Analytics

Máster en Big Data & Business Analytics 1 Máster en Big Data & Business Analytics Descripción y Objetivo General: La Universidad Isabel I & Consulta International School, han puesto en marcha para este periodo 2016/17 el Máster Big Data & Business

Más detalles

Desmitificando Big Data:

Desmitificando Big Data: Desmitificando Big Data: Data Mining y Business Intelligence 2.0 Ignacio Bustillo Ignacio.Bustillo@stratebi.com Twitter: @IgnacioBustillo Fecha presentación: 14 de Noviembre de 2014 'Hello world!' Creador

Más detalles

Herramienta de gestión para la Ciudad Inteligente basada en el Sensor Ciudadano

Herramienta de gestión para la Ciudad Inteligente basada en el Sensor Ciudadano CIUDAD2020: HACIA UN NUEVO MODELO DE CIUDAD INTELIGENTE SOSTENIBLE PROYECTO INNPRONTA www.innprontaciudad2020.es Herramienta de gestión para la Ciudad Inteligente basada en el Sensor Ciudadano Julio Villena,

Más detalles

Guía Docente DIGITAL MARKETING INTELLIGENCE MASTER EN DIRECCIÓN DE MARKETING

Guía Docente DIGITAL MARKETING INTELLIGENCE MASTER EN DIRECCIÓN DE MARKETING Guía Docente MASTER EN DIRECCIÓN DE MARKETING Curso 2014 /2015 Profesor/es Periodo de impartición Curso Tipo Idioma en el que se imparte: Juan José López García 2º Semestre 1 0 OB Obligatoria Español Nº

Más detalles

Manual de Instalación

Manual de Instalación Manual de Instalación MANUAL DE INSTALACIÓN... 1 1. REQUERIMIENTOS DEL SISTEMA... 2 1.1 Hardware... 2 1.2 Software... 2 2. MANUAL DE INSTALACIÓN... 3 2.1 Descargar instalador Weka... 3 2.2 Instalación

Más detalles

Máster. en en Business Intelligence

Máster. en en Business Intelligence Máster en en Business Intelligence Máster en Business Intelligence Este máster se presenta como un programa muy equilibrado que abarca todos los aspectos de la estrategia, la gestión, la implementación

Más detalles