Tema 3. Segundo y Tercer Principio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3. Segundo y Tercer Principio"

Transcripción

1 ema 3. Seundo y ercer Principio PROBLEMAS EJEMPLO.- Un de as ideal que se encuentra inicialmente a 5º se expande: a) isotérmicamente y reversiblemente desde 0 hasta 40l, y b) isotérmicamente contra una presión de oposición nula (expansión de Joule) desde 0 hasta 40l. alcular S, Q y W para ambos procesos. Obsérvese la relación entre S y Q en ambos procesos. La variación de entropía siempre viene definida por S, lo que habrá que calcular en cada caso es el valor de dqrev porque en ambos procesos es constante. ondiciones: = constante =98K n= = 0 l =40 l a) Expansión isotérmica reversible de as ideal: Seún el Primer Principio du dq dw dq Pext d omo el proceso es reversible du dqrev Pintd dqrev du Pd En el caso de G.I. Uf() du = d= 0 por ser p. isotérmico d=0 P=nR P=nR/ Lueo dq rev nr d y por tanto dq nr S d nrln rev = 5,763J/K omo U=0 nr Q W Pd d nrln, 77KJ b) Expansión isotérmica contra el vacío (expansión de Joule): Proceso irreversible, la diferencia de P entre el sistema y los alrededores hace que la expansión sea muy rápida e irreversible. Seún el Primer Principio du dq dw dq Pext d En el caso de G.I. Uf() du = d= 0 por ser p. isotérmico d=0 Por ser una expansión contra el vacío, P ext =0 y por tanto W P d 0 omo U=0 y W=0 Q = 0 pero este Q es el correspondiente al proceso irreversible lueo no se puede emplear para calcular S. El S hay que calcularlo a partir de un proceso reversible que llevara del estado incial al mismo estado final: dqrev du dwrev ( ) d Pd ( ) P nr S ds d d 0 d (la primera interal se hace 0 porque d=0), por tanto nr S d nrln 5, 763 J / K omo se observa, U y S en ambos procesos (uno reversible y otro irreversible) son los mismos porque los estados inicial y final en ambos casos son los mismos, y U y S son funciones de estado. Sin embaro los Q y W implicados son diferentes porque las trayectorias son diferentes ext

2 .- a) Un de as ideal con 3 R / se expande adiabática y reversiblemente desde un estado inicial con 300K y at, hasta un estado con 0,5at. alcular Q, W, U y S. b) Si el mismo as se expande adiabáticamente contra una presión constante de 0,5at. alcular Q, W, U y S. (omparar los resultados con los del apartado a)). ondiciones: = 300 K P = at P =0,5 at Procesos adiabáticos, lueo Q=0 La variación de entropía siempre viene definida por S. Pero en el apartado a) el proceso es reversible, mientras que en el apartado b) el proceso es irreversible ya que la P int no es P ext dp a) Expansión adiabática reversible de as ideal Proceso adiabático reversible Q rev =0 S 0 Seún el Primer Principio y por ser reversible du dq dw P d P d En el caso de G.I. Uf() du = d P=nR P=nR/ 0 ext int Por tanto nr d d d nr d Ln nrln nr P P P P P siendo y para un G.I. P R Se conoce el valor de, P y P pero es necesario calcular para obtener, y conocido este obtener : nr at. l 0, K P at 4,6l 3 P R R R 5 3 R P = 37,l P P 6,83K nr U nd n ( ) 9,5J =Q+ W W=-9,5J Importante: No se puede interar directamente proceso adiabático la no es constante. nr W Pd d porque como se ha visto, en el b) Expansión adiabática irreversible de as ideal El proceso es irreversible ya que la P int = at no es P ext dp=0,5 at

3 Proceso adiabático irreversible Q=0, pero S En el caso de G.I. Uf() du = d Seún el Primer Principio y por ser adiabático du dq dw 0 Pext d d P extd Pext d nr ( ) Pext ( ) P P at. l 0, 08 3 at. l 0, 08 (. 300 ) 0,5 K K at 4, 6l 0,5at =40,5K 3 J U n. 8,34 (40,5 300) K 74J W at. l 0,08 W 74 J K. P ( ) 0,5 at( 4,6 l) J 8, 34 K. = 39,4 l En cuanto al cálculo de S, y por ser un proceso adiabático Q=0, pero el proceso es irreversible, por tanto el S hay que calcularlo a partir de un proceso reversible que llevara del estado incial al mismo estado final: dq du dw d Pd nr S rev rev ds d d nln nrln ,5 39, 4. 8, 34 J.8,34 J, J 300 4, 6 K S n RLn nrln Ln Ln Observar que aunque se parte del mismo estado inicial en el caso a) y b), y se llea a la misma P final, el estado final del as es diferente (diferente final), por tanto no son iuales las U, o S en ambos procesos de Sn (capacidad calorífica ar 6, cal/) inicialmente a 00º y 00 de H O (capacidad calorífica ar 8 cal/) inicialmente a 5º, se mezclan en un calorímetro. Suponiendo que las capacidades caloríficas son constantes, calculese a) La final del sistema, b) La variación de S del Sn, del H O y del universo. Puesto que la mezcla se hace en un calorímetro, Q=0, no hay intercambio de enería entre el sistema y los alrededores, pero sí entre las distintas partes del sistema (Sn y H O porque están a diferente temperatura). a) Supondremos que la P permanece constante en el proceso, por tanto Q=Q P =H= P + H cambio fase =0 omo el Sn está a una superior a la del H O, el Sn cederá enería. Si cuando calculemos final <00º, estaremos seuros de que no hay que incluir ninún cambio de fase: el aua se evapora a esa si P=at, y el Sn en ese rano de no presenta cambios de fase.; en caso contrario habría que recalcular f incluyendo en el cómputo de enería el correspondiente cambio de fase Q H nsnp ( f i ) nh ( ) 6, cal ( 373) 8 cal ( 98) 0 OP f i f K f K 8, 7 8 f =305K <373 K lueo el H O siue siendo líquida al final del proceso

4 b) omo S y q rev =dh= P d porque el proceso ocurre a P constante y no hay cambios de fase d SH 8,3 O cal cal np Ln 8 98 K d SSn np 6,cal. Ln, 07cal K 8,7 373 K Suniverso SH,3cal,07cal 0, 5cal O SSn >0 proceso espontáneo K K K 4.- Una máquina térmica funciona reversiblemente entre focos térmicos, uno de ellos formado por 0 3 K de H O (v) a 00º, y otro, por 0 3 K de H O (s) a 0º a la P=at. uál es el rendimiento máximo de la máquina?. Qué trabajo podrá producir hasta que se funda todo el hielo?. ΔH f = 80 cal K H O ( ) =00º Q W P=at constante W QF F 00K.68 =6.8% Q Q 373K Q F 0 3 K H O (s ) =0º Para fundir el hielo: Q F =H F =m H F = cal/= cal<0 Q QF La máquina funciona cíclica y reversiblemente 0 F cal 3 Q.373K 09, 3.0 Kcal W=Q -Q F = cal cal= -9.3 Kcal 73K 00K W 9.3Kcal Para calcular el rendimiento: 0.68 es decir =6,8% 73K Q 09.3Kcal PROBLEMAS.- Un de un as ideal recorre un ciclo de arnot reversible ABD con A =0l, B =40l, t AB =7º y t D =- 73º. Dibujar las etapas del ciclo en un diarama de presión frente a volumen. alcular P,,, U, H y S en cada etapa del ciclo. =3/R Etapa A B P= -0,65 at = 0 l =0 U=0 H=0 S=,37 cal/k Etapa B S=0 = - 00K = 3,88 l P= - 0,390 at U= -97cal H= -495cal Etapa DA S=0 = - 6, l P= 0,78 at U=97cal H= 495cal Etapa D =0 U=0 H=0 = -36,6 l P= 0,6 at S= -,37 cal/k Observar que en el ciclo completo U=H=S=P===0, el estado inicial y final es el mismo, A

5 .- alcular S cuando se mezcla de N con 3 es de O a 5º, siendo la P final at. La P inicial de cada as es at. Sol. S= 8,70 J/K 3.- Una muestra de H se encuentra en un cilindro de sección transversal de 50cm dotado de un pistón. El inicial a 5º es 500cc y la P= at. alcular el ΔS del sistema cuando el as, supuesto ideal, se expande de forma isotérmica a lo laro de 0cm. Sol. S= 0,4 J/K 4.- alcular el cambio de entropía cuando una muestra de Ar a 5º y at, en un recipiente de 500cc, se expande hasta 000cc y simultáneamente se calienta hasta 00º., 48 J / K Sol. S= 0,7 J/K 5.- n es de un as perfecto sufren una expansión libre adiabática en el vacío (experimento de Joule). a) Expresar ΔS en términos de las y iniciales y finales, b) alule S si =. Sol. d a) S nr nrln b) S 5, 76 J 6.- Siendo los calores específicos del hielo y del aua liquida a 0º, y 4,8 J K - - respectivamente, y la entalpía de fusión del hielo 33 J -, calcular el cambio de entropía de la conelación de de aua sobreenfriada a -0º. Sol. S sistema = -0,58 J/K S Universo >0 7.- alcúlese U, H e S para el proceso: H O (liq, 0º,at) H O (, 50º,at), a partir de los siuientes datos: P( liq) 8,0 cal / K, P( ) 8,6 cal / K y H (00º, at) 970 cal / Sol. H=450cal S=33,38ca/K U=40,5cal 8.- Dos es de un as ideal monoatómico inicialmente a at y 300K realizan el siuiente ciclo, cuyas etapas son todas reversible: I) ompresión isotérmica a at, II) Aumento isobárico de la a 400K y III) Retorno al estado inicial por el camino P=a+b, siendo a y b constantes. Dibújese esquemáticamente el ciclo sobre un diarama P- y calcúlense las variaciones numéricas ΔU y ΔS para la sustancia de trabajo en cada etapa del ciclo. ( para un as ideal monoatómico = 3/ R). Sol. Etapa I: U=0 S= -,5 J/K Etapa II: U=494, J S=,96 J/K Etapa III: U= -49, J S= -0,46 J/K 9.- alcular la entropía ar del as B a 300K, sabiendo que ese compuesto es sólido por debajo de 00K, y que sublima a esa temperatura cuando la presión es de bar, con una entalpía de sublimación de 000 cal/. Datos: p(b(s)) = cal/ 0< < 373 K P (B())= 6 cal/ > 00 K Sol. S 0 (,300 K ) 69, 9 cal

6 0.- Exprese para cada uno de los procesos siuientes cuando Q, W, ΔU, ΔH, ΔS y ΔS Universo son cero, positivos o neativos: a) Fusión reversible del benceno sólido a at y punto de fusión normal. b) Fusión reversible de hielo a at y 0º c) Expansión adiabática reversible de un as perfecto d) Expansión isotérmica reversible de un as perfecto e) Expansión adiabática en el vacío (experimento de Joule) de un as perfecto f) Estranulamiento adiabático de Joule-hompson de un as perfecto ) alentamiento reversible de un as perfecto a P constante h) Enfriamiento reversible de un as perfecto a constante.- erdadero o falso? a) La aplicación de la ecuación ΔS=ΔH/ es siempre correcta. b) En un diarama entrópico ( frente a S), el trabajo de un ciclo reversible de arnot es iual a su área. c) La manitud / es la diferencial de una función de estado. d) En un sistema no aislado en cuyo interior tiene luar un proceso irreversible la S sist aumenta necesariamente. e) En un sistema aislado en cuyo interior tiene luar un proceso irreversible la S sist aumenta necesariamente.

Tema 2. Primer Principio

Tema 2. Primer Principio ema. rimer rincipio ROBLEMAS EJEMLO.- Un sistema cerrado, inicialmente en reposo sobre la tierra, es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 00KJ. Durante

Más detalles

Ejercicios relacionados con termodinámica básica

Ejercicios relacionados con termodinámica básica Ejercicios relacionados con termodinámica básica. Una cantidad de 0,227 moles de un as que se comporta idealmente se expande isotérmicamente y en forma reversible desde un volumen de 5 L hasta dos veces

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

Problemas de Termodinámica. Primera Ley.

Problemas de Termodinámica. Primera Ley. Problemas de Termodinámica. Primera Ley. ) a) uál es el cambio de energía interna, cuando un sistema pasa del estado a al b a lo largo de la transformación acb recibe una cantidad de calor de 0000 cal

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 emas 5. Segunda ley de la ermodinámica. i. Máquinas térmicas y su eficiencia. ii. Segunda

Más detalles

al volume n molar V cuando se expande según un proceso isotérmico reversible, desde el volumen molar, V

al volume n molar V cuando se expande según un proceso isotérmico reversible, desde el volumen molar, V 9.- Un sistema cerrado inicialmente en reposo sobre la tierra es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 00KJ. durante este proceso hay una transferencia

Más detalles

03 TEST. Termoquímica. 1. Para la energía interna de un sistema tenemos que:

03 TEST. Termoquímica. 1. Para la energía interna de un sistema tenemos que: Nombre: Apellidos: Fecha: Curso: 1. Para la enería interna de un sistema tenemos que: a) Su variación a lo laro de una transformación depende del camino seuida en ella. b) Es iual al calor máximo que puede

Más detalles

CAPITULO 15. SEGUNDA LEY DE LA TERMODINAMICA Y ENTROPIA.

CAPITULO 15. SEGUNDA LEY DE LA TERMODINAMICA Y ENTROPIA. ap. 15. Segunda ley de la termodinámica APIULO 15. SEGUNDA LEY DE LA ERMODINAMIA Y ENROPIA. La primera ley de la termodinámica es la ley de conservación de la energía generalizada para incluir el calor

Más detalles

Lección: Primer principio de la termodinámica

Lección: Primer principio de la termodinámica Lección: Primer principio de la termodinámica TEMA: Introducción 1 Adolfo Bastida Pascual Universidad de Murcia. España... 2 I.A. Energía interna..................... 2 I.B. Enunciado del primer principio......

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

Objetivo principal del tema: introducción al conocimiento del intercambio de energía que tiene lugar en una transformación química.

Objetivo principal del tema: introducción al conocimiento del intercambio de energía que tiene lugar en una transformación química. QUÍMICA. 2º BACHILLERATO. TERMOQUÍMICA Contenidos: 1) Introducción. Conceptos generales. 2) Primer principio de la termodinámica. 3) Entalpías de formación y de reacción. 4) Ley de Hess. 5) Entalpía de

Más detalles

DRAFT. Trabajo, Calor y Primer Principio de la Termodinámica.

DRAFT. Trabajo, Calor y Primer Principio de la Termodinámica. DRAFT Trabajo, Calor y Primer Principio de la Termodinámica. J.V. Alvarez Departmento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid. 28049 Madrid, Spain. (Dated: October 10, 2007)

Más detalles

Problemas resueltos de termoquímica.

Problemas resueltos de termoquímica. Problemas resueltos de termoquímica. 12 de noviembre de 2014 1. Variables termodinámicas. 1. Calcula el volumen molar en ml/mol del H 2 O a 1 atm y 100 C si su densidad es ρ = 0,958 gr/cm 3. V m = V/P

Más detalles

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3

1. Procesos de transformación de la energía y su análisis 2 1.2. Representación de sistemas termodinámicos... 3 Contenido Aclaración III 1. Procesos de transformación de la energía y su análisis 1.1. Representación de sistemas termodinámicos................. 1.. Representación de sistemas termodinámicos.................

Más detalles

Calor: energía transferida debida únicamente a diferencias de temperatura

Calor: energía transferida debida únicamente a diferencias de temperatura TERMODINÁMICA La termodinámica estudia la energía y sus transformaciones. Energía: capacidad para realizar trabajo. Formas de energía Energía radiante Energía térmica Energía química Energía potencial

Más detalles

CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA:

CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA: CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA: 1.1.. Introducción: El concepto de temperatura está muy relacionado con el diario vivir. Tenemos un concepto intuitivo de algo

Más detalles

SOLUIONES A LOS ESS MONOEMÁIOS DE ERMODINAMIA.-. La curva que representa una expansión adiabática tiene una pendiente mayor que la correspondiente expansión isoterma, como se puede comprobar en la igura.

Más detalles

Tema 5: Termoquímica. Contenidos

Tema 5: Termoquímica. Contenidos Tema 5: Termoquímica Slide 1 of 50 Contenidos 5-1 Terminología 5-2 Energía en los procesos químicos 5-3 Energía cinética y temperatura 5-4 Calor de reacción 5-5 Primer principio de la termodinámica 5-6

Más detalles

Calor: energía transferida debida únicamente a diferencias de temperatura

Calor: energía transferida debida únicamente a diferencias de temperatura TERMODINÁMICA La termodinámica estudia la energía y sus transformaciones. Energía: capacidad para realizar trabajo. Formas de energía Energía radiante Energía térmica Energía química Energía potencial

Más detalles

Práctico de Física Térmica 2 da Parte

Práctico de Física Térmica 2 da Parte Enunciados Lista 4 Práctico de Física Térmica 2 da Parte Nota: Los ejercicios 6.16, 6.22 y 6.34 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 6.12* Se propone calentar una casa en

Más detalles

Principio de la Termodinámica

Principio de la Termodinámica ema.- Primer P Princiio de la ermodinámica..- El rabajo en la Mecánica. rabajo realizado or una fuerza externa F, que actúa sobre los límites del sistema, cuando su unto de alicación exerimenta un deslazamiento

Más detalles

1. Definición de trabajo

1. Definición de trabajo ermodinámica. ema rimer rincipio de la ermodinámica. Definición de trabajo Energía transmitida por medio de una conexión mecánica entre el sistema y los alrededores. El trabajo siempre se define a partir

Más detalles

HOJA DE PROBLEMAS 1: ENUNCIADOS

HOJA DE PROBLEMAS 1: ENUNCIADOS Tema: TERMODINÁMICA HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) Discuta la veracidad o falsedad de las siguientes afirmaciones: a) Cuando un sistema termodinámico abierto experimenta un ciclo termodinámico

Más detalles

EFECTO JOULE-THOMSON

EFECTO JOULE-THOMSON PRACTICA nº 4 EFECTO JOULE-THOMSON Fundamentos teóricos El proceso de Joule-Thomson consiste en el paso de un gas desde un contenedor a presión constante a otro a presión también constante y menor (Pf

Más detalles

Problemas de Termotecnia

Problemas de Termotecnia Problemas de Termotecnia 2 o curso de Grado de Ingeniería en Explotación de Minas y Recursos Energéticos Profesor Gabriel López Rodríguez (Área de Máquinas y Motores Térmicos) Curso 2011/2012 Tema 2: Primer

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD

SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD 6 TERMOQUÍMICA SOLUCIONES A LAS ACTIVIDADES DE FINAL DE UNIDAD Enería, trabajo y calor 1. Calcula el trabajo que desarrolla el as encerrado en un cilindro cuando sufre una expansión de 50 cm 3 sometido

Más detalles

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura?

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? 9 ENERGÍA Y CALOR EJERCICIOS PROPUESTOS 9.1 Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? Al aumentar la temperatura, se mueven con mayor velocidad y

Más detalles

Termoquímica. EJERCICIOS PARA EXAMEN U4 Química 2º Bachiller. Recopilación de ejercicios preguntados en exámenes de cursos anteriores

Termoquímica. EJERCICIOS PARA EXAMEN U4 Química 2º Bachiller. Recopilación de ejercicios preguntados en exámenes de cursos anteriores 2010 Termoquímica EJERCICIOS PARA EXAMEN U4 Química 2º Bachiller Recopilación de ejercicios preguntados en exámenes de cursos anteriores Mª Teresa Gómez Ruiz IES Politécnico Cartagena. Dpto: Física y Química

Más detalles

3. REVISIÓN BIBLIOGRÁFICA

3. REVISIÓN BIBLIOGRÁFICA 3. REVISIÓN BIBLIOGRÁFICA 3.1. Diseño de rocesos Químicos 3.1.1 Jerarquización del Diseño de rocesos Químicos. La transformación de las materias primas no se puede hacer en un solo paso (Smith, 1995).

Más detalles

Tema 8. Termodinámica

Tema 8. Termodinámica Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 8. Termodinámica Índice 1. Conceptos básicos

Más detalles

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA. Ejercicios Propuestos: Enunciados

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA. Ejercicios Propuestos: Enunciados Universidad Nacional de Educación a Distancia Escuela Técnica Superior de Ingenieros Industriales Departamento de Ingeniería Energética INTRODUCCIÓN TERMODINÁMICA A LA ENERGÍA TÉRMICA APLICADA I.T.I. Electrónica

Más detalles

TERMODINÁMICA. 164 Capítulo 9. Termodinámica.

TERMODINÁMICA. 164 Capítulo 9. Termodinámica. 9 La ciencia es una tentativa en el sentido de lograr que la caótica diversidad de nuestras experiencias sensoriales corresponda a un sistema lógicamente ordenado Albert Einstein TERMODINÁMICA CONTENIDOS

Más detalles

Laboratorio 4. Cocientes de capacidades de calor de gases

Laboratorio 4. Cocientes de capacidades de calor de gases Laboratorio 4. Cocientes de capacidades de calor de gases Objetivo Determinar el cociente de capacidades de calor () para gases como dióxido de carbono (CO ) y nitrógeno (N ) utilizando la expansión adiabática.

Más detalles

Examen de TERMODINÁMICA II Curso 1997-98

Examen de TERMODINÁMICA II Curso 1997-98 ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra Examen de TERMODINÁMICA II Curso 997-98 Obligatoria centro - créditos de agosto de 998 Instrucciones para el examen de TEST: Cada pregunta

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

Primer principio de la termodinámica.

Primer principio de la termodinámica. Primer principio de la termodinámica. Introducción a la Física Ambiental. Tema. Tema IFA (Prof. RAMOS) Tema.- " Primer principio de la termodinámica". Calor y Trabajo. Capacidad calorífica, calores específicos

Más detalles

SOLUCIONARIO DE TERMODINAMICA

SOLUCIONARIO DE TERMODINAMICA RESUELO POR: AUX. DOC. UNI. GUIERREZ SOLUCIONARIO DE ERMODINAMICA Ejercicios de Energía, Calor y rabajo y la Primera Ley de la ermodinamica. Calcule el trabajo que puede ser hecho por una masa de 400 g

Más detalles

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla El gas ideal Física II Grado en Ingeniería de Organización Industrial rimer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Física Aplicada III Universidad de Sevilla Índice Introducción Ecuación

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

Tema 4 - EL GAS IDEAL

Tema 4 - EL GAS IDEAL ema 4 - EL GAS IDEAL ÍNDICE. DEFINICIÓN DE GAS IDEAL...4.. ECUACIÓN DE ESADO ÉRMICA...4.. ECUACIÓN DE ESADO ENERGÉICA...4.3.. Experiencia de Joule...4.4.. Energía interna y entalpía de un Gas Ideal...4.5.

Más detalles

14. ENTALPÍA DE FUSIÓN DEL HIELO

14. ENTALPÍA DE FUSIÓN DEL HIELO 14. ENTALPÍA DE FUSIÓN DEL HIELO OBJETIVO Determinar la entalpía de fusión del hielo, H f, utilizando el método de las mezclas. Previamente, ha de determinarse el equivalente en agua del calorímetro, K,

Más detalles

Limitaciones de la 1ra. ley de la termodinámica

Limitaciones de la 1ra. ley de la termodinámica Termodinámica Tema 9 (segunda parte) Química General e Inorgánica A Limitaciones de la 1ra. ley de la termodinámica Procesos espontáneos o irreversibles Una cascada corre cuesta abajo Un terrón de azúcar

Más detalles

a) Suponiendo que el sistema está prácticamente aislado del exterior, cuál es la temperatura final de la limonada?

a) Suponiendo que el sistema está prácticamente aislado del exterior, cuál es la temperatura final de la limonada? TERMODINAMICA Grupo 7. Ejercicio 3 Un jarro de limonada ha estado sobre una mesa de picnic durante todo el día a 33 ºC.En un momento dado, se vierten en un vaso 0,24 kg de la misma y se le añaden dos cubitos

Más detalles

TEMA 12.-TERMODINÁMICA QUÍMICA.

TEMA 12.-TERMODINÁMICA QUÍMICA. EMA.-ERMODINÁMICA QUÍMICA. ema.- ermodinámica Química. Introducción.. Definiciones básicas. 3. rabajo y calor. 4. Primer principio de la termodinámica. 5. Calor específico y capacidad calorífica. 6. Medida

Más detalles

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones.

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. Esquema: TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones....1 1.- Introducción...1 2.- Máquina frigorífica...1

Más detalles

TERMODINÁMICA Tema 10: El Gas Ideal

TERMODINÁMICA Tema 10: El Gas Ideal TERMODINÁMICA Tema 10: El Gas Ideal Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Ecuación de estado Experimento de Joule Capacidades

Más detalles

TEMA 1 Conceptos básicos de la termodinámica

TEMA 1 Conceptos básicos de la termodinámica Bases Físicas y Químicas del Medio Ambiente TEMA 1 Conceptos básicos de la termodinámica La termodinámica es el estudio de la transformación de una forma de energía en otra y del intercambio de energía

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

ENERGÍA INTERNA DE UN SISTEMA

ENERGÍA INTERNA DE UN SISTEMA ENERGÍA INTERNA DE UN SISTEMA Definimos energía interna U de un sistema la suma de las energías cinéticas de todas sus partículas constituyentes, más la suma de todas las energías de interacción entre

Más detalles

Joaquín Bernal Méndez Dpto. Física Aplicada III 1

Joaquín Bernal Méndez Dpto. Física Aplicada III 1 TERMODINÁMICA Tm Tema 7: 7Cn Conceptos ptsfndmntls Fundamentales Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Sistema y entorno

Más detalles

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 3 - CALORIMETRÍA Y TRANSMISIÓN DEL CALOR Capacidad calorífica y su medida. Calor específico. Calor latente. Transmisión del calor. Conductividad térmica. Ley de

Más detalles

Física de Sistemas Fuera del Equilibrio Gas de Knudsen

Física de Sistemas Fuera del Equilibrio Gas de Knudsen Física de Sistemas Fuera del Equilibrio Gas de Knudsen Iñigo Romero Arandia 9 de mayo de. Ejercicio 6: Efusión en el gas de Knudsen El gas de Knudsen es una configuración experimental en la que dos gases

Más detalles

Tema 3. Termodinámica Química

Tema 3. Termodinámica Química Tema 3. Termodinámica Química Indice 1. Definiciones 2. Primer principio de la termodinámica 3. Entalpía y Calor de reacción 4. Espontaneidad 5. Segundo y Tercer Principios de la Termodinámica 6. Energía

Más detalles

Cinemática en una dimensión

Cinemática en una dimensión Capítulo 2. Cinemática en una dimensión La meánica, la más antiüa de las ciencias físicas es el estudio del movimiento de los cuerpos. 1. Distinción entre cinemática y dinámica Cuando describimos el mvimiento

Más detalles

www.academianuevofuturo.com

www.academianuevofuturo.com Tecnología Industrial. Septiembre 2013. Opción A. Cuestión 1. a) 1--> Región monofásica (α) 2--> Región bifásica (α+l) 3--> Región monofásica (Líquido) 6--> Región bifásica (α+β) b) Hasta llegar a los

Más detalles

Segunda Ley. Ileana Nieves Martínez QUIM de Junio de Criterios de cambios espontáneos. Procesos que ocurren espontáneamente:

Segunda Ley. Ileana Nieves Martínez QUIM de Junio de Criterios de cambios espontáneos. Procesos que ocurren espontáneamente: Segunda Ley (Justificación de Entropía) Ileana Nieves Martínez QUIM 4041 1 Criterios de cambios espontáneos rocesos que ocurren espontáneamente: Joule: U = 0 Condensación (ensión de vapor): H < 0 Fusión:

Más detalles

HOMOGÉNEO y HETEROGÉNEO; CONTINUO

HOMOGÉNEO y HETEROGÉNEO; CONTINUO Indice 1. Definiciones 2. Primer principio de la termodinámica 3. Entalpía y Calor de reacción 4. Espontaneidad 5. Segundo Principio de la Termodinámica 6. Energía Libre SISTEMA TERMODINÁMICO: Es la parte

Más detalles

MÁQUINAS TERMODINÁMICA

MÁQUINAS TERMODINÁMICA MÁQUINAS r r Trabajo: W F * d (N m Julios) (producto escalar de los dos vectores) Trabajo en rotación: W M * θ (momento o par por ángulo de rotación) Trabajo en fluidos: W p * S * d p * Energía: capacidad

Más detalles

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).

GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). Gases - Primera ley de la Termodinámica Ley Cero. 1. Se mantiene

Más detalles

CAPITULO 13. CALOR Y LA PRIMERA LEY DE LA TERMODINAMICA.

CAPITULO 13. CALOR Y LA PRIMERA LEY DE LA TERMODINAMICA. CAPITULO 13. CALOR Y LA PRIMERA LEY DE LA TERMODINAMICA. La termodinámica es la rama de la física que estudia los procesos donde hay transferencia de energía en forma de calor y de trabajo. Cuando dos

Más detalles

Transformación de trabajo en calor y calor en trabajo. Motores y Frigoríficos.

Transformación de trabajo en calor y calor en trabajo. Motores y Frigoríficos. Transformación de trabajo en calor y calor en trabajo Motores y Frigoríficos. De lo expuesto, se debe concluir que cualquier sistema que este expuesto al intercambio de trabajo y calor con el exterior

Más detalles

TERMODINAMICA 1 Conceptos Basicos

TERMODINAMICA 1 Conceptos Basicos TERMODINAMICA 1 Conceptos Basicos Prof. Carlos G. Villamar Linares Ingeniero Mecánico MSc. Matemáticas Aplicada a la Ingeniería 1 CONTENIDO DEFINICIONES BASICAS Definición de Termodinámica, sistema termodinámico,

Más detalles

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia. INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA 1. Qué es la Química Física? "La química física estudia los principios que gobiernan las propiedades el comportamiento de los sistemas químicos" El estudio de los

Más detalles

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6.

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. CICLO DE CARNOT 7. DIAGRAMAS ENTRÓPICOS 8. ENTROPIA Y DEGRADACIÓN ENERGÉTICA INTRODUCCIÓN

Más detalles

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS FUNDAMENOS DE ERMODINÁMICA ROBLEMAS 1.- Clasifique cada propiedad como extensiva o intensiva: a) temperatura, b) masa, c) densidad, d) intensidad del campo eléctrico, e) coeficiente de dilatación térmica,

Más detalles

2º de Bachillerato. Termoquímica.

2º de Bachillerato. Termoquímica. 2º de Bachillerato. Termoquímica. Preámbulo El propano está formado por moléculas constituidas por átomos de carbono y de hidrógeno. Como sabemos, la combustión completa de un hidrocarburo produce dióxido

Más detalles

Energía útil: segundo P pio de la termodinámica.

Energía útil: segundo P pio de la termodinámica. Energía útil: segundo P pio de la termodinámia. Físia Ambiental. ema 3. ema 3. FA (Pro. RAMOS) ema 3.- " Energía útil: segundo P pio de la termodinámia" Conversión alor-trabajo. Máquinas térmias y rigoríias.

Más detalles

CAPÍTULO 5º. Resumen de teoría: Regla de las fases: ϕ Número de fases. r Número de reacciones químicas. Ejercicios y problemas de Termodinámica I

CAPÍTULO 5º. Resumen de teoría: Regla de las fases: ϕ Número de fases. r Número de reacciones químicas. Ejercicios y problemas de Termodinámica I CAPÍULO 5º Ejercicios y problemas de ermodinámica I ransiciones de fase. Regla de las fases. Resumen de teoría: Regla de las fases: ϕ + l = c r ρ + ϕ Número de fases. r Número de reacciones químicas. l

Más detalles

Tema 9: Calor, Trabajo, y Primer Principio

Tema 9: Calor, Trabajo, y Primer Principio 1/34 Tema 9: Calor, Trabajo, y Primer Principio Fátima Masot Conde Ing. Industrial 2007/08 Tema 9: Calor, Trabajo, Primer Principio 2/34 Índice: 1. Introducción. 2. Capacidad calorífica. Calor específico.

Más detalles

Primer principio. Calor a presión y volumen constante.

Primer principio. Calor a presión y volumen constante. TERMOQUÍMICA. Primer principio. Calor a presión y volumen constante. 1.- a) Primer principio de la Termodinámica. b) Q v y Q p ; relación entre ambas. 2.- En un recipiente cerrado a volumen constante tiene

Más detalles

ÍNDICE PARA CALOR, TEMPERATURA Y TERMODINÁMICA.

ÍNDICE PARA CALOR, TEMPERATURA Y TERMODINÁMICA. 1 ÍNDICE PARA CALOR, TEMPERATURA Y TERMODINÁMICA. 1.- Energía interna. 2.- Temperatura. 3.- Calor. 4.- Termómetros y escalas de temperatura. 5.- Dilatación 6.- Calor específico. 7.- Capacidad calorífica.

Más detalles

Termodinámica y Ondas

Termodinámica y Ondas Termodinámica y Ondas Prueba #1 Prof. Andrés Gomberoff Segundo semestre 2015 Ayudante: Constanza Farías 1. Para cierto sistema gaseoso se ha determinado que, para presiones suficientemente grandes (mayores

Más detalles

λ fus + λ vap = λ sub

λ fus + λ vap = λ sub Cambios De Fase Ecuacion De Clasius V : diferencia de volumen entre ambas fases. λ = T(s f s i ) se denomina calor latente o entalpia de transición. Se considera normalmente como constante. Además se cumple

Más detalles

Termodinámica I: Calores específicos

Termodinámica I: Calores específicos Termodinámica I: Calores específicos I Semestre 2012 CALORES ESPECÍFICOS Se requieren distintas cantidades de energía para elevar un grado la temperatura de masas idénticas de diferentes sustancias. Es

Más detalles

TERMOQUÍMICA QCA 01 ANDALUCÍA

TERMOQUÍMICA QCA 01 ANDALUCÍA TERMOQUÍMICA QCA 1 ANDALUCÍA 1.- El suluro de cinc al tratarlo con oxígeno reacciona según: ZnS(s) + 3 O (g) ZnO(s) + SO (g) Si las entalpías de ormación de las dierentes especies expresadas en kj/mol

Más detalles

10 Termoquímica y espontaneidad

10 Termoquímica y espontaneidad 102 Química General. Grupo B. Curso 1993/94 10 Termoquímica y espontaneidad 10.1 Calores químicos 10.2 Primer principio de la termodinámica 10.3 El primer principio y las reacciones químicas 10.4 Espontaneidad

Más detalles

CRITERIOS DE ESPONTANEIDAD

CRITERIOS DE ESPONTANEIDAD CRITERIOS DE ESPONTANEIDAD Con ayuda de la Primera Ley de la Termodinámica podemos considerar el equilibrio de la energía y con La Segunda Ley podemos decidir que procesos pueden ocurrir de manera espontanea,

Más detalles

el calor cedido al medio disipante (generalmente el aire ambiente o agua) i W el trabajo necesario para que funcione el sistema.

el calor cedido al medio disipante (generalmente el aire ambiente o agua) i W el trabajo necesario para que funcione el sistema. Capítulo 1 Métodos frigoríficos 1. Introducción La refrigeración consiste en la extracción de calor de una sustancia que deseamos mantener a una temperatura inferior a la del medio ambiente. Para ello

Más detalles

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.

1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4. 1.- Conceptos básicos. Sistemas, variables y procesos. 2.- Energía, calor y trabajo. 1 er Principio de la Termodinámica. 3.- Entalpía. 4.- Calor de reacción. Ley de Hess. 5.- Entalpías estándar de formación.

Más detalles

1.- Un émbolo de 40 cm de diámetro avanza 5 cm bajo una presión de 10 atm. Cuántas calorías corresponderán a este trabajo?

1.- Un émbolo de 40 cm de diámetro avanza 5 cm bajo una presión de 10 atm. Cuántas calorías corresponderán a este trabajo? 1.- Un émbolo de 40 cm de diámetro avanza 5 cm bajo una presión de 10 atm. Cuántas calorías corresponderán a este trabajo? Sabemos que el trabajo termodinámico es el producto de la presión y la variación

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

dt dv dt dp Entropía. La entropía se define como

dt dv dt dp Entropía. La entropía se define como Entrpía. La entrpía se define cm ds q reversible La entrpía es una función de estad, es una prpiedad extensiva. La entrpía es el criteri de espntaneidad y equilibri en s aislads (vlumen y energía interna

Más detalles

UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGÍA I.P.N. ANTOLOGÍA DE LA ASIGNATURA TERMODINÁMICA ELABORADO POR

UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGÍA I.P.N. ANTOLOGÍA DE LA ASIGNATURA TERMODINÁMICA ELABORADO POR UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGÍA I.P.N. ANTOLOGÍA DE LA ASIGNATURA TERMODINÁMICA ELABORADO POR M. EN C. MARÍA GUADALUPE ORDORICA MORALES 2006 M. en C. María Guadalupe Ordorica Morales

Más detalles

Para aprender Termodinámica resolviendo Problemas

Para aprender Termodinámica resolviendo Problemas Para aprender ermodinámica resolviendo Problemas Entropía. La entropía se define como δ ds = q reversible La entropía es una función de estado, es una propiedad extensiva. La entropía es el criterio de

Más detalles

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente:

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente: Facultad de Contaduría Administración. UNAM Teoría de unciones Autor: r. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS TEORÍA E FUNCIONES Las manitudes que caracterizan un enómeno dado pueden quedar

Más detalles

UNIDAD III. ESTADO LIQUIDO.

UNIDAD III. ESTADO LIQUIDO. REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD EXPERIMENTAL SUR DEL LAGO Jesús María Semprúm PROGRAMA DE INGENIERÌA DE ALIMENTOS UNIDAD CURRICULAR: QUIMICA GENERAL UNIDAD III. ESTADO LIQUIDO. Prof. David

Más detalles

La segunda ley de La termodinámica se puede establecer de tres formas diferentes.

La segunda ley de La termodinámica se puede establecer de tres formas diferentes. La segunda ley de La termodinámica se puede establecer de tres formas diferentes. 1.- La energía calorífica fluye espontáneamente desde un objeto mas caliente a uno más frio, pero no en sentido inverso.

Más detalles

Sistema termodinámico

Sistema termodinámico IngTermica_01:Maquetación 1 16/02/2009 17:53 Página 1 Capítulo 1 Sistema termodinámico 1.1 Introducción En sentido amplio, la Termodinámica es la ciencia que estudia las transformaciones energéticas. Si

Más detalles

Entropía, segunda ley de la termodinámica.

Entropía, segunda ley de la termodinámica. Entropía, segunda ley de la terodináica. rocesos físicos y quíicos espontáneos hysical heistry, Atkins, De aula. Novena Edición. Los procesos (cabios) espontáneos son acopañados por una dispersión caótica

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO Facultad de Ingeniería Química Escuela Profesional de Ingeniería Química CALORIMETRIA, DETERMINACION DE CAPACIDAD CALORIFICA DEL CALORIMETRO ( TERMO ) CURSO : FISICO QUIMICA

Más detalles

XII.- CICLOS DE MAQUINAS TÉRMICAS pfernandezdiez.es

XII.- CICLOS DE MAQUINAS TÉRMICAS pfernandezdiez.es XII.- CICLOS DE MAQUINAS TÉRMICAS XII.1.- INTRODUCCIÓN Y CLASIFICACIÓN DE LAS MAQUINAS TÉRMICAS Se llaman máquinas térmicas a todos aquellos sistemas que funcionando periódicamente sean susceptibles de

Más detalles

1. Probabilidad de que se encuentre en uno de los dos lados del envase depende. Para una partícula. Para dos partículas.

1. Probabilidad de que se encuentre en uno de los dos lados del envase depende. Para una partícula. Para dos partículas. TERCERA LEY DE TERMODINÁMICA, ENERGÍA LIBRE DE GIBBS-HELMHOLTZ Y GIBBS I. Estadística (entropía) - aumento en el desorden de la energía y configuración espacial. A. = configuración B. Ejemplo: 1. Probabilidad

Más detalles

JOHN ERICSSON ( )

JOHN ERICSSON ( ) FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA GENERAL Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA PRIMER EXAMEN FINAL COLEGIADO 2010-1 JUEVES 3 DE DICIEMBRE DE 2009, JOHN ERICSSON

Más detalles

TERMODINÁMICA DE LA ATMÓSFERA. 3º Ciencias Físicas

TERMODINÁMICA DE LA ATMÓSFERA. 3º Ciencias Físicas TERMODINÁMICA DE LA ATMÓSFERA 3º Ciencias Físicas Termodinámica de la atmósfera 1 Equilibrio de los cambios de fase del agua 2 Calores latentes de cambio de estado 3 Ecuación de Clausius-Clapeyron: Conclusiones

Más detalles

Gas independientes Variables o p, V, T coordenadas de Estado. Núm. mínimo de coordenadas independientes que lo describen.

Gas independientes Variables o p, V, T coordenadas de Estado. Núm. mínimo de coordenadas independientes que lo describen. ema 1.- ermodinámica. Conceptos previos. 1.1.- Descripciones macro y microscópicas. Sistemas termodinámicos: Porción de materia separada del exterior por una superficie cerrada, real o imaginaria. Estado:

Más detalles

PROBLEMAS RESUELTOS. Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES

PROBLEMAS RESUELTOS. Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES PROBLEMAS RESUELOS Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES A-01 -.- El "hielo seco" es dióxido de carbono sólido a temperatura inferior a -55 ºC y presión de 1 atmósfera. Una

Más detalles

Tema 3: Termoquímica. Termoquímica Conceptos básicos Primer principio Entalpía Ley de Hess Segundo principio

Tema 3: Termoquímica. Termoquímica Conceptos básicos Primer principio Entalpía Ley de Hess Segundo principio Tema 3: Termoquímica Objetivos. Principios y conceptos básicos. Primera ley de la termodinámica. Energía interna y entalpía. Calores de reacción. Ley de Hess. Segunda ley de la termodinámica. Entropía.

Más detalles

PROBLEMAS RESUELTOS DE TERMODINAMICA

PROBLEMAS RESUELTOS DE TERMODINAMICA PROBLEMAS RESUELTOS DE TERMODINAMICA 1. Responder a. Qué es el calor latente de una sustancia? y el calor específico? b. Es posible transformar todo el calor en trabajo en un ciclo? Razona la respuesta.

Más detalles

TERMODINÁMICA Y CINÉTICA QUÍMICA

TERMODINÁMICA Y CINÉTICA QUÍMICA ERMODINÁMICA Y CINÉICA QUÍMICA ERMODINÁMICA No depende del tiempo La termodinámica clásica sólo tiene validez en el equilibrio CINÉICA Estudia aquellos procesos que dependen del tiempo RIMER RINCIIO DE

Más detalles

PRÁCTICA L3: CICLO REAL SIMPLIFICADO DE UNA MÁQUINA FRIGORÍFICA.

PRÁCTICA L3: CICLO REAL SIMPLIFICADO DE UNA MÁQUINA FRIGORÍFICA. PRÁTIA L3: ILO REAL SIMPLIFIADO DE UNA MÁQUINA FRIGORÍFIA. OBJETIVOS 1º. Determinar los ciclos ideal (ciclo simple) y real (denominado real simplificado) en un proceso frigorífico midiendo dos niveles

Más detalles