16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes."

Transcripción

1 TEMA 5. VECTORES 5.1. Vectores en el plano. - Definición. - Componentes de un vector. - Módulo. - Vectores equivalentes Operaciones con vectores. - Suma y resta. - Multiplicación por un número real. - Combinación lineal de vectores Producto escalar de vectores. - Definición. - Propiedades Vectores paralelos y perpendiculares. - Obtención de vectores paralelos. - Obtención de vectores perpendiculares. - Vectores unitarios. - Vectores paralelos y perpendiculares de módulo m División de segmentos - Punto medio de un segmento de extremos A y B. - Simétrico de un punto respecto de otro. - División de segmentos en igual número de partes. - División de segmentos en dos partes que cumplen determinada condición Puntos alineados Distancia entre dos puntos. - Cálculo de perímetros de figuras poligonales.

2 5.1. Vectores en el plano. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene) y su sentido (el que va de A a B). Sus coordenadas son: Para hallar su módulo: Dos vectores son equivalentes cuando tienen las mismas componentes. Cuando se diga vector de coordenadas se entenderá que se habla del vector de origen en el punto O(0,0) y extremo en el punto P(a,b). Su módulo será 1. Halla las coordenadas de los siguientes vectores: 2. Dados los puntos A(3,6), B(-3,0), C(0,-5) y D(-2,6), Representa gráficamente los vectores,, y y halla sus coordenadas.

3 3. Halla las coordenadas del vector de origen A(2,4) y extremo B(4,3). 4. Halla las coordenadas del vector de origen A(-2,4) y extremo B(6,-2). 5. Dados los puntos A(5,7) y B(3,1), halla las coordenadas de y de. 6. Dados los puntos o(0,0), A(-1,3), B(3,-2) y C(-1,3), halla las coordenadas de los vectores,,,, y. 7. Halla B sabiendo que A(5,7) y 8. Halla P sabiendo que Q(8,-3) y. 9. Halla el módulo de los vectores de los ejercicios números 1 y Son equivalentes los vectores siguientes? 11. Son equivalentes los vectores y donde A(2,5), B(4,3), P(8,-1) y Q(10,-3)? 12. Dado el vector donde A(2,5) y B(4,3). Halla las coordenadas del punto D para que los vectores y sean equivalentes, donde C(5,-3). 13. Tres vértices consecutivos de un paralelogramo son los puntos A(1,1), B(6,6) y C(3,9). Halla las coordenadas del cuarto vértice. 14. Si los puntos A(1,1), B(1,3) y C(7,3) son los vértices de un paralelogramo ABCD. Halla las coordenadas del punto D. 15. Representa los vectores y y, y halla sus módulos. 16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.

4 5.2. Operaciones con vectores. Suma y resta de vectores. Gráficamente se hace usando la regla del paralelogramo: En coordenadas: Producto de un vector por un número real. En coordenadas: Gráficamente es un vector con la misma dirección que, el mismo sentido si k>0 y el opuesto si k<0 y cuyo módulo es k veces el módulo de. Combinación lineal. Dados tres vectores del plano:, y. Escribir el vector como combinación lineal de y, es encontrar dos números reales, h y k, tales que =h + k 1. Si y. Halla las gráficamente los vectores, y.

5 2. Completa y representa: 3. Si y, halla gráfica y analíticamente y. 4. Si y. Halla las coordenadas del vector 5. Dados los vectores, y, halla: a) b) c) d) 6. Calcula las coordenadas del vector. 7. Dados los vectores y. Escribe el vector como combinación lineal de y. 8. Expresa como combinación lineal de y. 9. Expresa como combinación lineal de y. 10.

6 5.3. Producto escalar Dados dos vectores del plano: y. Se define el producto escalar de y como el número real obtenido de la siguiente manera: En coordenadas. Si y, entonces: Propiedades del producto escalar: Halla el producto escalar de y, en los siguientes casos: a). b) y c) y d) 2. Si, y. Calcula: a) d) b) e) 3. Halla el valor de x para que donde, 4. Si, y. Calcula: a) d) b) e) c) f)

7 5.4. Vectores paralelos y perpendiculares Dado el vector Un vector paralelo a él es un vector con su misma dirección. Analíticamente es un vector proporcional a él. Por tanto un vector paralelo a será para cualquier valor de k (k. Si los vectores a y son perpendiculares, forman un ángulo de 90, con lo que el coseno del ángulo que forman es 0. Entonces por la propiedad 4 del producto escalar se sabe que dos vectores son perpendiculares cuando. Sus coordenadas serán o o cualquier otro vector proporcional a estos. Vectores ortogonales = vectores perpendiculares. Vector unitario. Un vector unitario es un vector de módulo 1. Para hallar un vector unitario paralelo a, se dividen las componentes de entre su módulo, es decir, el vector es unitario y paralelo a Si se busca un vector unitario perpendicular a entonces: 1. Halla tres vectores paralelos a y otros tres paralelos a. 2. Halla x e y para que los vectores y sean paralelos. 3. Halla un vector unitario paralelo a. 4. Halla un vector unitario paralelo a. 5. Halla un vector paralelo a y que tenga de módulo Halla un vector paralelo a y que tenga de módulo Son perpendiculares las siguientes parejas de vectores? a) y b) y c) y d) y 8. Halla m para que los vectores y sean perpendiculares. 9. Comprueba si el triángulo de vértices A(2,0), B(7,2) y C(6,-10) es rectángulo. 10. Halla tres vectores perpendiculares a y otros tres perpendiculares a 11. Halla un vector unitario perpendicular a.

8 12. Halla un vector unitario perpendicular a. 13. Representa gráficamente la figura que tiene por vértices los puntos A(-3,-2), B(-2,3), C(3,5) y D(12,3). Es un trapecio? 14. Averigua si el cuadrilátero ABCD, cuyos vértices son los puntos A = (1, 2), B = (6, 4), C=(13, 5) y D = (8, 3) es un paralelogramo División de segmentos Punto medio de un segmento de extremos A y B. Dados los puntos del plano y. El punto medio entre A y B se obtiene haciendo la semisuma de sus coordenadas, de modo que: 1. Halla el punto medio del segmento de extremos A(3,5) y B(9,11). 2. Halla el punto medio del segmento de extremos A(2,-6) y B(-4,12). 3. Si el punto medio de AB es M(3,5) y A(9,7), halla B. 4. Halla el simétrico del punto A(7,2) respecto del punto M(0, -3). 5. Halla las coordenadas de los puntos medios del triángulo de vértices A(2,1), B(2,5) y C(- 2,3). 6. Calcula las coordenadas de los puntos que dividen el segmento en cuatro partes iguales siendo A(22,7) y B(-6,5). 7. Calcula las coordenadas de los puntos que dividen al segmento de extremos A(2, -5) y B(10, -1) en cuatro partes iguales. 8. Calcula las coordenadas de los puntos que dividen al segmento de extremos A(5,-1) y B(17,8) en tres partes iguales. 9. Halla las coordenadas de los puntos que dividen el segmento de extremos A(1,4) y B(10,10) en tres partes iguales 10. Divide el segmento de extremos A(1,-2) y B(11,-7) en cinco partes iguales. 11. Sean A, B, y C tres puntos no alineados, y sean M y N los puntos medios de los segmentos AB y BC, respectivamente. Comprueba que: a) b)

9 5.6. Puntos alineados. Dados tres puntos del plano, y C. Si están alineados es evidente que los vectores y, tienen la misma dirección, es decir, son paralelos. Y sabemos que dos vectores son paralelos si sus coordenadas son proporcionales. Por tanto, para comprobar si tres puntos están alineados basta con ver si las coordenadas de los vectores que defina son proporcionales. 1. Están alineados los puntos A(2,1), B(-1,4) y C(4,-1)? Y los puntos P(-1,0), Q(2,3) y R(4,2)? 2. Halla el valor de k para que los puntos A(4,-1), B(-1,2) y C(k,k+1) estén alineados. 3. Halla el valor de k para que los puntos A(1, 2), B(-2, k-2) y C(3, -k) estén alineados. 4. Hay alguna recta que contenga a los puntos A(2, -1), B(6,1) y C(8,2)? 5.7. Distancia entre dos puntos. Dados los puntos del plano y, es evidente que la distancia ente ellos es igual a la longitud del vector que definen, es decir, 1. Halla la distancia entre los puntos A(4,3) y B(-2,-5). 2. Comprueba que el triángulo que tiene vértices en los puntos A(1,1), B(5,1) y C(3,9) es isósceles. 3. Halla la longitud del segmento de extremos A(4,9) y B(-2,3). 4. Comprueba que el triángulo que tiene vértices en los puntos A(1,1), B(5,1) y C(3,9) es isósceles. 5. Comprueba mediante el teorema de Pitágoras que el triángulo de vértices en A(-2, -1), B(3, 1) y C(1, 6) es rectángulo. 6. Halla el perímetro de las siguientes figuras: 7. Dado el triángulo de vértices A(-4, -2), B(-1, 3) y C(3,-3). Si los puntos P, Q y R son los puntos medios de los lados AB, BC y AC, respectivamente, comprueba que y son paralelos y la longitud del primero es la mitad que la del segundo. Haz lo mismo con los otros lados.

Cálculo vectorial en el plano.

Cálculo vectorial en el plano. Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores

Más detalles

Boletín de Geometría Analítica

Boletín de Geometría Analítica Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector

Más detalles

1. Representa en el plano los vectores: v=(2,3), u=(-1,2), w=3451.

1. Representa en el plano los vectores: v=(2,3), u=(-1,2), w=3451. PROBLEMAS DE VECTORES 1. Representa en el plano los vectores: v=(2,3), u=(-1,2), w=3451. 2. )Cuales son las componentes del vector de módulo 4 y argumento 301?. Sol: (2 3,2) 3. Escribe las componentes

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA 1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición

Más detalles

B7 Cuadriláteros. Geometría plana

B7 Cuadriláteros. Geometría plana Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.

Más detalles

4º ESO VECTORES y RECTAS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa. VECTORES y RECTAS

4º ESO VECTORES y RECTAS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa. VECTORES y RECTAS º ESO VECTORES RECTAS DEPARTAMENTO DE MATEMÁTICAS. VECTORES RECTAS.- Calcula las coordenadas del punto C(C x,c ) para que forme el paralelogramo ABCD junto con los puntos A(,), B(,) D(,-). Dibujo. _Sol

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,

Más detalles

PROBLEMAS METRICOS. r 3

PROBLEMAS METRICOS. r 3 PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices

Más detalles

8.- GEOMETRÍA ANÁLITICA

8.- GEOMETRÍA ANÁLITICA 8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),

Más detalles

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0)

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0) 1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-,1) y su vector de dirección es v = (,0) b) Pasa por el punto P(5,-) y es paralela a : x = 1 t y = t c) Pasa por

Más detalles

Forman base cuando p 0 y 1.

Forman base cuando p 0 y 1. 1 VECTORES: cuestiones y problemas Preguntas de tipo test 1. (E11). Los vectores u = (p, 0, p), v = (p, p, 1) y w = (0, p, ) forman una base de R : a) Sólo si p = 1 b) Si p 1 c) Ninguna de las anteriores,

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 241 EJERCICIOS Clasificación. Propiedades 1 Observa el siguiente diagrama: cuadriláteros 4 rectángulos trapecios rombos 2 1 3 5 paralelogramos 6 Qué figura geométrica corresponde al recinto?

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

TRANSFORMACIONES DEL PLANO

TRANSFORMACIONES DEL PLANO PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál

Más detalles

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS Página 7 REFLEXIONA Y RESUELVE Punto medio de un segmento Toma los puntos P(, ), Q(0, ) y represéntalos en el plano: P (, ) Q (0, ) Localiza gráficamente

Más detalles

UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO

UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO UNIDAD 10. FIGURAS PLANAS: POLÍGONOS CIRCUNFERENCIA Y CÍRCULO 1. POLÍGONOS: DEFINÍCIÓN, ELEMENTOS Y CLASIFICACIÓN. 2. POLÍGONOS REGULARES E IRREGULARES. 3. TRIÁNGULOS Y CUADRILÁTEROS: CLASIFICACIÓN. 4.

Más detalles

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema

Más detalles

PROBLEMAS RESUELTOS GEOMETRÍA

PROBLEMAS RESUELTOS GEOMETRÍA PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Hoja de problemas nº 7. Introducción a la Geometría

Hoja de problemas nº 7. Introducción a la Geometría Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como

Más detalles

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE . LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos

Más detalles

Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.

Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos

Más detalles

GEOMETRÍA Y TRIGONOMETRÍA

GEOMETRÍA Y TRIGONOMETRÍA GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un

Más detalles

UNIDAD 8 Geometría analítica. Problemas afines y métricos

UNIDAD 8 Geometría analítica. Problemas afines y métricos UNIDAD Geometría analítica. Problemas afines y métricos Pág. 1 de 5 1 Se consideran los puntos A (, ) y B (4, 6). a) Calcula las coordenadas de un punto P que divida al segmento AB en dos partes 1 tales

Más detalles

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Dadas las coordenadas del punto A(, ). Hallar la ecuación de la recta (r) paralela al eje por dicho punto. Hallar la ecuación de la recta (p) paralela al eje por dicho punto. )

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C

A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C 8 GEOMETRíA DEL PLA EJERCCOS PROPUESTOS Calcula la medida del ángulo que falta en cada figura. a) b) a) En un triángulo, la suma de las medidas de sus ángulos es 180, A = 180-90 - 6 = 8 El ángulo mide

Más detalles

Resuelve. Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I. m = (7, 3) El embarcadero. \ Solución: P = (8, 6) Página 187

Resuelve. Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I. m = (7, 3) El embarcadero. \ Solución: P = (8, 6) Página 187 Resuelve Página 87 El embarcadero A Tenemos dos pueblos, A y B, cada uno a un lado de un canal. Se desea construir un embarcadero situado exactamente a la misma distancia de los dos pueblos. Dónde habrá

Más detalles

5. POLÍGONOS. 5.1 Definición y notación de polígonos

5. POLÍGONOS. 5.1 Definición y notación de polígonos 5. POLÍGONOS 5.1 Definición y notación de polígonos Un polígono es una figura geométrica limitada por segmentos de recta denominados lados, donde el extremo de un segmento es el origen del otro. E D Etimológicamente,

Más detalles

8Soluciones a las actividades de cada epígrafe PÁGINA 168

8Soluciones a las actividades de cada epígrafe PÁGINA 168 8Soluciones a las actividades de cada epígrafe PÁGINA 68 Pág. Para manejarse por el centro de Roma Eva y Clara han construido sobre el plano un sistema de referencia cartesiano tomando como centro de coordenadas

Más detalles

GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 GEOMETRÍA (Selectividad 014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 014 1 Aragón, junio 014 Dados el punto P (1, 1, 0), y la recta: x+ z 1= 0 s : 3x y 3= 0 Ax + By

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos

Más detalles

1. Polígonos. 1.1 Definición

1. Polígonos. 1.1 Definición 1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

sen sen sen a 2 a cos cos 2 a

sen sen sen a 2 a cos cos 2 a BLOQUE I: TRIGONOMETRÍA Y TRIÁNGULOS.- Sabiendo que tg g y cot, calcular tg y cos( ).- Demostrar razonadamente las fórmulas del seno, coseno y tangente del ángulo mitad.- Demostrar las siguientes igualdades:

Más detalles

PUNTOS Y VECTORES EN EL PLANO

PUNTOS Y VECTORES EN EL PLANO PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un

Más detalles

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3 TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre

Más detalles

Tema 10. Geometría plana

Tema 10. Geometría plana Tema 10. Geometría plana Contenido 1. Relaciones angulares... 2 1.1. Ángulos en una circunferencia... 2 1.2. Ángulos opuestos por el vértice... 3 1.3. Ángulos formados por lados paralelos y perpendiculares...

Más detalles

Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.

Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos. ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA

SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA SOLUCIONES MINIMOS º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA Ejercicio nº 1.- Los lados de un triángulo miden, respectivamente, 9 cm, 1 cm y 15 cm. Averigua si el triángulo es rectángulo. Según el teorema

Más detalles

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica: Pàgina 1 de 6 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones

Más detalles

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35. Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

7.1.2. Cuadriláteros cóncavos y convexos. 7.1.3. Cuadriláteros idénticos, iguales y semejantes.

7.1.2. Cuadriláteros cóncavos y convexos. 7.1.3. Cuadriláteros idénticos, iguales y semejantes. 7. CUADRILÁTEROS 7.1. CARACTERÍSTICAS GENERALES Un cuadrilátero ABCD es una figura plana limitada por cuatro lados y cuatro vértices. Puede ser cóncavo o convexo, inscriptible o circunscriptible. La denominación

Más detalles

FIGURAS PLANAS. Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos:

FIGURAS PLANAS. Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos: FIGURAS PLANAS Esto es un segmento: Esto es una línea poligonal abierta, formada por la unión de varios segmentos: Y esto, una línea poligonal cerrada en la que se unen el extremo inicial del primer segmento

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

Proporcionalidad geométrica

Proporcionalidad geométrica TEMA 9: Proporcionalidad geométrica INTRODUCCIÓN: THALES DE MILETO Thales, filósofo, astrónomo y matemático griego nació en Mileto en el año 624 a. de C. y murió a la edad de 78 años durante la quincuagésima

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números?

RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números? RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES 1.- El perímetro de un rectángulo es 4 cm y su área es 0 cm. Cuáles son sus dimensiones? Sea = altura ; y = base Como perímetro es 4: + y = 1 y = 1 Como el área

Más detalles

TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS. 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS

TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS. 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA. ÁREAS DE FIGURAS PLANAS 1. Calcula el área de las figuras siguientes: TEOREMA DE PITÁGORAS En un triángulo rectángulo, los lados menores son los que forman el ángulo

Más detalles

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS 8 GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS Página 88 PARA EMPEZAR, REFLEXIONA Y RESUELVE Punto medio de un segmento ;;;;;; Toma los puntos P (, ), Q (0, ) y represéntalos en el plano: ;;;;;; P

Más detalles

COLEGIO TIRSO DE MOLINA DEPARTAMENTO DE DIBUJO TÉCNICO CURSO 2010-11 DIBUJO TÉCNICO II

COLEGIO TIRSO DE MOLINA DEPARTAMENTO DE DIBUJO TÉCNICO CURSO 2010-11 DIBUJO TÉCNICO II DIBUJO TÉCNICO II TEMA 2: PROPORCIONALIDAD Y SEMEJANZA Media proporcional Teoremas del Cateto y la Altura Figuras equivalentes Figuras semejantes y sus diferencias con las homotéticas Razón de semejanza

Más detalles

Unidad didáctica 3. Cálculo de superficies y volúmenes

Unidad didáctica 3. Cálculo de superficies y volúmenes Unidad didáctica. Cálculo de superficies y volúmenes.1 Cálculo de superficies. En el presente apartado se estudiarán las superficies, perímetros y relaciones geométricas más importantes de las principales

Más detalles

1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 8. 3. EJERCICIOS DE DESARROLLO Página 20. 5. EJERCICIOS DE REFUERZO Página 36

1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 8. 3. EJERCICIOS DE DESARROLLO Página 20. 5. EJERCICIOS DE REFUERZO Página 36 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 20 5. EJERCICIOS DE REFUERZO Página 36 1 1. ESQUEMA - RESUMEN Página 1.1. POLÍGONOS 2 1.2. TRIÁNGULOS

Más detalles

UNIDAD X - GEOMETRIA. Ejercitación

UNIDAD X - GEOMETRIA. Ejercitación UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.

Más detalles

Geometría Analítica Enero 2016

Geometría Analítica Enero 2016 Laboratorio #1 Distancia entre dos puntos I.- Halle el perímetro del triángulo cuyos vértices son los puntos dados 1) ( 3, 3), ( -1, -3), ( 4, 0) 2) (-2, 5), (4, 3), (7, -2) II.- Demuestre que los puntos

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia:

Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia: GEOMETRÍA Ángulos En la circunferencia: ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la circunferencia y son todos iguales. AOE ˆ es el ángulo central correspondiente y su medida es dos veces la medida

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 19 REFLEXIONA Las cajas, los contenedores y la caseta son poliedros. También es un poliedro la figura que forma la caja que pende de la grúa con las cuatro cuerdas que la sostienen. Cuántas

Más detalles

Fundación Uno. Ejercicio Reto. ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS:

Fundación Uno. Ejercicio Reto. ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS: ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS: 1. Triángulos.Rectas notables. Propiedades. 2. Cuadriláteros. Propiedades. 3. Polígonos. Propiedades. 4. Circunferencia.

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

Created with novapdf Printer (www.novapdf.com)

Created with novapdf Printer (www.novapdf.com) GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de innovación didáctica Departamento de Matemáticas Universidad de Extremadura Índice Puntos y vectores en En R 3, conviene distinguir

Más detalles

LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO.

LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO. LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. Polígono es la superficie plana limitada por una línea poligonal cerrada. Línea poligonal es la figura formada

Más detalles

RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental

RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental Geometría Elemental Punto Sólo tiene posición. No posee longitud, anchura ni espesor. Se representa por un. Se designa por medio de una letra mayúscula colocada cerca del punto gráfico. Línea recta Es

Más detalles

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer

Más detalles

TEMA 7. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO.

TEMA 7. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO. TEMA 7. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO. 1. INTRODUCCIÓN.... ÁNGULOS Y DISTANCIAS EN EL PLANO... 3 3. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS... 4 4. DISTANCIA ENTRE PUNTOS, RECTAS Y PLANOS.... 1

Más detalles

13. PROBLEMAS DE CUADRILÁTEROS

13. PROBLEMAS DE CUADRILÁTEROS 13. PROBLEMAS DE CUADRILÁTEROS 13.1. Propiedades. Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades: - Las diagonales de un paralelogramo se cortan en sus

Más detalles

Polígonos y circunferencia

Polígonos y circunferencia 826464 _ 055-070.qxd 12/2/07 09:22 Página 55 Polígonos y circunferencia INTRODUCCIÓN RESUMEN DE LA UNIDAD Nos introducimos en el estudio de los polígonos, recordando contenidos trabajados por los alumnos

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

TEMA 5. GEOMETRÍA ANALÍTICA

TEMA 5. GEOMETRÍA ANALÍTICA TEMA 5. GEOMETRÍA ANALÍTICA 6.1. Ecuaciones de la recta. - Vector director. - Ecuación vectorial. - Ecuaciones paramétricas. - Ecuación contínua. - Ecuación general. - Ecuación punto-pendiente. - Ecuación

Más detalles

TEMA 6 Ejercicios / 3

TEMA 6 Ejercicios / 3 TEMA 6 Ejercicios / 1 TEMA 6: RECTAS Y PLANOS EN EL ESPACIO 1. Ecuaciones de los planos cartesianos en forma vectorial, paramétrica e implícita. Ecuaciones del plano XY: Punto del plano P 0, 0, 0 Vectores

Más detalles

1. La circunferencia.

1. La circunferencia. http://www.telefonica.net/web/jlgarciarodrigo/. La circunferencia... Elementos de una circunferencia. Definición. Se llama circunferencia al lugar geométrico formado por los puntos que equidistan de otro

Más detalles

Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej.

Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej. Los Ángulos 1. Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS 1) En cada ejercicio hallar la ecuación de la circunferencia que cumple: 1) El radio es igual a 6 y las coordenadas de su centro son ( 1, 2). 2) Su centro es el origen de coordenadas

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.-

ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.- ÁNGULOS EN POLÍGONOS Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c Ejercicio nº.- Halla el valor del ángulo en cada uno de estos casos: a b c Ejercicio nº 3.- Halla el

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 = 5 dm b) 8 = 8 cm P =

Más detalles

Teoremas del seno y el coseno: ejercicios resueltos

Teoremas del seno y el coseno: ejercicios resueltos Teoremas del seno y el coseno: ejercicios resueltos 1) En los siguientes triángulos, halla los lados y ángulos restantes: a) b) c) d) 22º 12 92º 6 110º 25 28 8 79º 15 70º 5 2) Desde lo alto de un globo

Más detalles

Segmento de una recta es la porción de ella que limitan dos de sus puntos. La razón entre los segmentos AB y CD es el cociente AB/CD.

Segmento de una recta es la porción de ella que limitan dos de sus puntos. La razón entre los segmentos AB y CD es el cociente AB/CD. Geometría plana B2 Segmentos Segmento de una recta es la porción de ella que limitan dos de sus puntos. Razón de dos segmentos: Es el cociente entre sus longitudes. La razón entre los segmentos AB y CD

Más detalles

Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO

Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO 1º.- Deducir razonadamente el valor del ángulo α marcado en la figura sabiendo que esta representa

Más detalles

EJERCICIOS RESUELTOS DE CÁLCULO VECTORIAL

EJERCICIOS RESUELTOS DE CÁLCULO VECTORIAL EJERCICIOS RESUELTOS DE CÁLCULO VECTORIAL La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución. b) Si el resultado no es correcto,

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben

Más detalles

BLOQUE II GEOMETRÍA. Resolución a) Para que los tres vectores formen una base, han de ser L.I. Veámoslo:

BLOQUE II GEOMETRÍA. Resolución a) Para que los tres vectores formen una base, han de ser L.I. Veámoslo: II BLOQUE II GEOMETRÍA Página 6 Considera los vectores u(3,, ), v ( 4, 0, 3) y w (3,, 0): a) Forman una base de Á 3? b) Halla m para que el vector (, 6, m) sea perpendicular a u. c) Calcula u, ì v y (

Más detalles

4 Vectores en el espacio

4 Vectores en el espacio 4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) + 5,, 4, 7, b),, c) 6(,, ) + 4(, 5, ) 4 6 5 a),, 6 9 b) 6,, c) (6,, ) 4 4.II. Calcula los valores de a, b

Más detalles