APUNTE: SISTEMAS DIGITALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APUNTE: SISTEMAS DIGITALES"

Transcripción

1 PUNTE: SISTEMS DIGITLES ÁRE DE EET Página de 44

2 Confeccionado por: Ricardo Muñoz Toledo Docente Inacap Derechos Reservados Titular del Derecho: INCP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INCP Página 2 de 44

3 ÍNDICE Sistemas Numéricos... 7 Sistema decimal... 7 Notación posicional... 7 Sistema binario... 7 Conjuntos de bits... 8 Dígitos más y menos significativos... 8 Sistema hexadecimal... 8 Conversión de bases... 8 Conversión de un entero decimal a binario... 8 Conversión de decimal a hexadecimal... 9 Conversión de binario a decimal... 9 Conversión de hexadecimal a decimal... 9 Conversión de hexadecimal a binario... 0 Conversión de binario a hexadecimal... 0 Álgebra de oole... Operación ND... Operación OR... Complemento... Propiedades del álgebra de oole... 2 Leyes y teoremas del álgebra de oole... 2 Compuertas lógicas... 4 Compuerta ES... 4 Compuerta NOT... 4 Compuerta ND... 5 Compuerta OR... 6 Compuertas lógicas derivadas... 7 Compuerta NND... 7 Compuerta NOR... 7 Compuerta XOR... 8 Compuerta XNOR... 8 Lógica combinacional... 9 OR dentro de ND... 9 ND dentro de OR... 9 NOT dentro de ND... 9 NOT dentro de OR Compuertas lógicas comerciales uad 2-input ND gate uad 2-input ND gate uad 2-input OR gate uad 2-input OR gate Hex inverter Hex inverter uad 2-input NND gate uad 2-input NND gate uad 2-input NOR gate uad 2-input NOR gate uad 2-input XOR gate uad 2-input XOR gate uad 2-input XOR gate Triple 3-input ND gate Página 3 de 44

4 740 Triple 3-input NND gate Dual 4-input NND gate uad 3-input ND gate input NOR gate input NND gate Equivalencias Mapas de Karnaugh Mapa de Karnaugh minterm de 3 variables Mapa de Karnaugh minterm de 4 variables Mapa de Karnaugh maxterm de 3 variables Mapa de Karnaugh maxterm de 4 variables Ejemplos de agrupaciones Códigos binarios Código CD Conversión decimal a CD Ejemplo Conversión de CD a decimal Ejemplo Código de Gray Codificadores Decimal to CD priority encoder Decodificadores Decodificador básico de 2 a 4 líneas Tabla de verdad CD to decimal decoder Tabla de verdad Decodificadores CD a 7 segmentos Display de 7 segmentos CD to 7 seg decoder/driver Tabla de verdad Pines de Control Decodificador para display cátodo común Cálculo de las resistencias DC to 7 seg decoder/driver Terminales de Control Multiplexores Multiplexor de 4 a líneas Tabla de funcionamiento Esquema equivalente al multiplexor Cronograma de una transmisión Demultiplexores Demultiplexor de a 4 líneas Tabla de funcionamiento LS38 Decodificador / Demultiplexor de 3 a 8 líneas Diagrama interno Tabla de funcionamiento Decodificador / Demultiplexor Tabla de funcionamiento Circuitos comparadores Comparador de magnitud de 4 bits... 3 Circuito comparador de 8 bits... 3 Circuitos sumadores... 3 Página 4 de 44

5 Semisumador (Half-adder)... 3 Circuito lógico de un semisumador... 3 Sumador completo (Full-adder)... 3 Circuito sumador completo Circuito sumador de 4 bits it Full-adder Circuito sumador de 8 bits Circuito subtractor de 4 bits Unidad aritmética / lógica (LU) (ritmetic Logic Unit) Flip-flops Lógica combinacional y lógica secuencial Flip-flop SR NOR Circuito lógico Símbolo lógico del flip-flop NOR Tabla de funcionamiento Cronograma para un flip-flop SR NOR Flip-flop SR NND Circuito lógico Símbolo lógico del flip-flop NND Tabla de funcionamiento Cronograma para un flip-flop SR NND Flip-flop SR síncrono Circuito lógico Símbolo lógico Tabla de funcionamiento Flip-flop SR síncrono con preset y clear Circuito lógico Símbolo lógico Tabla de funcionamiento Flip-flop tipo D Circuito lógico Símbolo lógico Tabla de funcionamiento Flip-flop J-K Símbolo lógico Tabla de funcionamiento Flip-flop J-K disparado por flanco Tabla de funcionamiento Dual edge triggered J-K flip-flop dual edge triggered J-K flip-flop Tabla de funcionamiento Contadores Condensador de desacoplo Contadores síncronos Circuitos integrados contadores Doble contador binario asíncrono Contador binario asíncrono Contador binario asíncrono Contadores de décadas Dual decade counter Decade counter Página 5 de 44

6 Contadores conectados en cascada Programación de contadores EJEMPLO: Contadores síncronos Sincronous Up/Down binary counter... 4 Conexión en cascada de 2 contadores reversibles ibliografía Página 6 de 44

7 Sistemas Numéricos Un sistema numérico consiste en un conjunto ordenado de símbolos ó guarismos empleados en la representación de números, con reglas definidas para operaciones matemáticas sobre esos símbolos, tales como la adición y la substracción. Sistema decimal Un sistema numérico recibe su nombre de acuerdo a la cantidad de símbolos que se utilizan para representar una cantidad. En el caso del sistema numérico que usamos a diario, se usan diez (0) símbolos por lo que recibe el nombre sistema decimal y se dice que tiene base o rádix igual a diez (0). Los símbolos usados son: 0,, 2, 3, 4, 5, 6, 7, 8 y 9. Éste sistema derivó del sistema numérico indoarábigo y posiblemente se adoptó porque contamos con diez dedos en las manos. Para diferenciar un número decimal de uno con otra base, se escribe con letras subíndices el valor de la base a la derecha del número, como ejemplo: Los números están compuestos por uno o más dígitos, que son cada uno de los símbolos usados para formar un número. Por ejemplo, el número 69 tiene dos (2) dígitos; el número 55 posee tres (3) dígitos. Notación posicional En un sistema de notación posicional, como lo es el sistema decimal, el valor representado por cada símbolo componente de un número es diferente conforme a su posición. La cantidad representada por cada símbolo depende fundamentalmente de su valor absoluto (cantidad de unidades representadas por el símbolo) y de su posición relativa a la coma que ocupa dentro de un número. Se considera posición cero como el primer dígito a la izquierda de la coma. Por ejemplo, en el sistema decimal, el símbolo 3 representa una cantidad diferente en el número 43 0 que en el número En el primer caso, el número 3 se encuentra en la posición cero y representa tres (3) unidades, en cambio en el segundo caso, el número 3 se encuentra en la posición uno, donde representa treinta (30) unidades. Cabe señalar que al no existir coma, se supone como posición cero el primer dígito de la derecha. En general, una determinada cantidad, se puede expresar de la siguiente forma: N r = a n a n 2 N...a r = j...a n Σ j= m a a j 0 r, a j a 2... a m Donde: r = base. r j = factor de multiplicación del símbolo. a j = símbolo perteneciente al conjunto de símbolos del sistema. n = número de dígitos de la parte entera. m = número de dígitos de la parte fraccionaria. a n- = dígito más significativo. a -m = dígito menos significativo. Ejemplo: 2 j 0 = Σ a j ,27 j 0 = a j 0 Σ 2 83, = ,27 Sistema binario El sistema binario es importante motivo de estudio debido a que todos los Sistemas Digitales operan únicamente con números binarios. El sistema binario tiene base igual a dos (2) y los símbolos empleados son 0 y. En el lenguaje de los Sistemas Digitales cada dígito recibe la denominación de bit, que es la contracción de las palabras, del idioma inglés, binary digit (dígito binario). Para denotar un número binario, se indica con el subíndice igual a 2, como se muestra en el siguiente ejemplo: Página 7 de 44

8 Conjuntos de bits Se utilizan con nombre propio a determinados conjuntos de dígitos en binario, los más usados son: Nibble: Conjunto de cuatro bits. Esto no representaría una estructura interesante si no fuera por dos razones: El código CD, que estudiaremos más adelante, y los números hexadecimales. Se requieren cuatro bits para representar un sólo dígito CD ó hexadecimal. yte: Conjunto de 8 bits y se simboliza con la letra. El byte es una importante unidad de medida de cantidad de información, usada en muchas áreas relacionadas con la electrónica y comunicaciones entre otras. El byte es la unidad básica de capacidad de los medios de almacenamiento de información digital, tales como memorias, CDROM, disquetes y discos duros entre otros. Cabe señalar que en el lenguaje de Sistemas Digitales y computación, a un conjunto de.024 bytes se le llama kilobyte (k), a un conjunto de.024 kilobytes es igual a un megabyte (M) y un gigabyte (G) es igual a un conjunto de.024 megabyte. Word: Un word (palabra) es un conjunto de 6 bits. Dword: Un Dword ó Doubleword (palabra doble) es un conjunto de 32 bits. word: Un word ó uadword (palabra cuádruple) es un conjunto de 64 bits. Dígitos más y menos significativos En un número entero, se llama dígito más significativo al que posee la posición con mayor valor, mientras que el dígito menos significativo es el que se encuentra en la posición cero. En los Sistemas Digitales, no siempre se presentan los números con el dígito más significativo a la izquierda, como estamos acostumbrados a hacerlo con los números decimales. Se usan únicamente con números binarios las siglas MS, (Most Significant it) para señalar el dígito más significativo y LS (Least Significant it) para señalar el bit menos significativo. Ejemplo: MS 00 2 = LS 00 2 Sistema hexadecimal El sistema hexadecimal tiene base igual a dieciséis (6) y sus símbolos son: 0,, 2, 3, 4, 5, 6, 7, 8, 9,,, C, D, E y F. Cada símbolo hexadecimal representa una cantidad equivalente en el sistema decimal de acuerdo como se muestra en la siguiente tabla: Símbolo hexadecimal Cantidad expresada en decimal C 2 D 3 E 4 F 5 Conversión de bases Evidentemente, en muchas oportunidades tendremos la necesidad de convertir un número en su equivalente con base diferente. continuación de detallarán las formas más usuales para convertir: Conversión de un entero decimal a binario El método más usado para realizar esta conversión es el denominado como divisiones sucesivas cuyo desarrollo consiste en:. Dividir por 2 la parte entera del número decimal a convertir. 2. Dividir por 2 sucesivamente la parte entera del cociente de la división anterior hasta obtener cociente igual a cero (0). 3. El cociente de cada división se multiplica por 2. El resultado de cada multiplicación corresponde a un dígito del número binario, siendo el bit menos significativo el resultado de la primera multiplicación y el más significativo el de la última. Página 8 de 44

9 En el siguiente ejemplo, se convierte el número decimal 27 en el binario 0(27 0 x 2 ): 27 : 2 = 3, 5 3 : 2 = 6, 5 6 : 2 = 3,0 3 : 2 =,5 : 2 = 0,5 0,5 2 = 0,5 2 = 0 2 = 0 0,5 2 = 0,5 2 = 0 2 MS LS Conversión de decimal a hexadecimal Esta conversión se puede realizar mediante divisiones sucesivas, al igual que la conversión de decimal a binario con la diferencia que en vez de dividir por 2 y luego multiplicar por 2, se divide por 6 y luego se multiplica por 6. Los resultados de las multiplicaciones que son mayores que 9 se reemplazan por el símbolo hexadecimal correspondiente. En el siguiente ejemplo se muestra cómo convertir a hexadecimal el número decimal 698 (698 0 x 6 ): 698 : 6 = 43, : 6 = 2, : 6 = 0,25 0,625 6 = 0 = 0, = = 0,25 6 = 2 Conversión de binario a decimal La conversión de un número binario a uno decimal se realiza usando el método del polinomio ponderado, esto es que el número decimal es igual a la suma de los productos entre el valor de cada dígito binario y la potencia de 2 correspondiente a su posición. En el siguiente ejemplo se convierte a decimal el número binario 0 (00 2 x 0 ): x 0 = x0 = x 0 = x 0 = x 0 = 2 Conversión de hexadecimal a decimal Esta conversión se realiza de un forma similar que la conversión de binario a decimal. El número decimal es igual a la suma de los productos entre el valor decimal de cada dígito hexadecimal y la potencia de 6 correspondiente a su posición. En el siguiente ejemplo se muestra como convertir el número hexadecimal 2F3 en el decimal 755 (2F3 6 x 0 ): x 0 = 2F x0 = x 0 = x 0 = x 0 = Página 9 de 44

10 Conversión de hexadecimal a binario Los números hexadecimales son usados en los Sistemas Digitales por la sencilla razón que basta un () dígito hexadecimal para representar la misma cantidad que con cuatro (4) dígitos binarios, como se muestra en la siguiente tabla: Número hexadecimal Número binario C 00 D 0 E 0 F Conversión de binario a hexadecimal Para convertir un número binario entero en hexadecimal, primero se deben formar grupos de 4 bits a partir de la derecha hacia la izquierda y luego cada grupo se debe reemplazar por el símbolo hexadecimal equivalente de acuerdo con la tabla anterior. Si el último grupo de la izquierda no contempla 4 bits, se debe completar 4 bits agregando ceros ( 0 ) a la izquierda hasta completarlos. En el siguiente ejemplo se convierte a hexadecimal el número binario ( x 6 ): C 6 Ésta característica hace que sea muy fácil convertir un número hexadecimal en binario y viceversa. Nótese que por razones prácticas, en la tabla anterior, se han representando los ceros ( 0 ) a la izquierda del número binario hasta completar 4 dígitos. Para convertir un número hexadecimal en binario, simplemente se debe reemplazar cada dígito hexadecimal por cuatro dígitos binarios equivalente a su símbolo de acuerdo a la tabla anterior. En el siguiente ejemplo se cómo convertir a binario el número hexadecimal C3 (C3 6 x 2 ): C Página 0 de 44

11 Álgebra de oole Los Sistemas Digitales están compuestos por circuitos lógicos digitales que son componentes electrónicos que manipulan información binaria. Una manera de describir el comportamiento de éstos circuitos es mediante el uso de un álgebra (notación matemática) que especifica la operación de éstos. El álgebra utilizada se llama álgebra boleana ó álgebra de oole y es una herramienta fundamental para el análisis y el diseño. El álgebra de oole es un sistema algebraico cerrado que contiene elementos que pueden asumir dos estados perfectamente diferenciados que son 0 y, y tres operaciones lógicas denominadas ND, OR y complemento. Operación ND La operación ND recibe su nombre de la conjunción. Su símbolo en el álgebra de oole es el de la multiplicación del álgebra convencional ( ). Podríamos definir una operación mediante una tabla que exprese el resultado de la operación frente a cada posible combinación que puedan asumir los operadores. Esta tabla se denomina tabla de verdad (truth table). La siguiente tabla de verdad expresa la operación ND entre los operadores x e y: x y x y Nótese en la tabla que la función x y es igual a solamente cuando la variable x es igual a y la variable y es igual a. Operación OR La operación OR recibe su nombre de la conjunción O. Su símbolo en el álgebra de oole es el de la suma del álgebra convencional ( + ) y su tabla de verdad se muestra a continuación: x y x + y Nótese en la tabla que la función x + y es igual a cuando la variable x es igual a o la variable y es igual a. En forma genérica, en una operación con n operadores la función OR será igual a cuando uno ó más de los operadores son igual a. Complemento El complemento de una variable que es igual a 0 es y el de una variables que es igual a, es 0. El símbolo del complemento de una variable x es x y se lee x negado. El complemento de una variable x se muestra en la siguiente tabla de verdad: x x 0 0 En forma genérica, en una operación con n operadores la función ND será igual a solo si todos los operadores son igual a, por éste motivo a la operación ND se le llama también todo o nada. Página de 44

12 Propiedades del álgebra de oole El álgebra de oole reúne diversas propiedades que nos permitirán manipular ecuaciones lógicas.. Conmutatividad a) x + y = y + x. b) x y = y x. 2. Distributividad a) x ( y + z) = x y + x z. b) x y z = ( x + y) ( x + z) 3. sociatividad +. a) x ( y + z) = ( x + y) + z b) x ( y z) = ( x y) z +.. Leyes y teoremas del álgebra de oole continuación se expresan las más importantes leyes y teoremas del álgebra de oole, con sus correspondientes demostraciones :. Teorema de idempotencia a) x + x = x. b) x x = x. x x + x = x = 0 + = x x x = x 0 x 0 = 0 x = 2. Teorema de los elementos dominantes 4. Identidad a) 0 + x = x. b) x = x. 5. Para cada elemento x del álgebra, existe un elemento denominado x (complemento), tal que: a) 0 =. b) = 0. a) x + =. b) x 0 = 0. x x = + = x x = 0 0 = 0 6. xiomas del complemento a) x + x =. b) x x = Ley involutiva x = x. x x x Página 2 de 44

13 4. Teorema de absorción a) x + x y = x x y x y x + x y b) x ( x + y) = x x y y x + x ( x + y) Teorema del consenso a) x + x y = x + y x y x + y x x y x + x y Leyes de De Morgan a) x + y = x y x y x + y x y x y x y En general: x + y + z +... = x y z... b) x y = x + y x y x y x y x + y x + y En general: x y z... = x + y + z +... b) x ( x + y) = x y x y x y x y x + x ( x + y) Página 3 de 44

14 Compuertas lógicas La importancia del álgebra de oole en los Sistemas Digitales es que ésta se puede asociar con los circuitos eléctricos y electrónicos que operan bajo régimen de conmutación. El elemento básico de los circuitos lógicos digitales se llama compuerta lógica (logic gate). Una compuerta lógica es un circuito electrónico que se usa para realizar una función boleana. Compuerta ES En el siguiente ejemplo, se muestra un circuito compuesto por una batería, un pulsador normalmente abierto () y una ampolleta (): 2. Cuando está conectada la ampolleta luce. Consideraremos como cuando la ampolleta se encuentre bajo esta condición. Estado de la ampolleta No luce 0 Luce partir de estas observaciones, podemos elaborar una tabla que nos exprese qué estado asumirá la ampolleta ante los posibles estados en que se pueda encontrar el interruptor: 0 0 Éste comportamiento podemos expresarlo en el álgebra de oole como: = El símbolo usado en los circuito electrónicos digitales para esta función se muestra en la siguiente figura y se denomina compuerta ES: Estableceremos que el interruptor puede asumir solamente dos estados:. Cuando el interruptor está sin pulsar, éste se encuentra abierto por lo que no conduce. Consideraremos como 0 cuando el interruptor no se encuentre sin presionar. 2. Cuando se pulsa el interruptor éste se cierra y se establece la conducción. Consideraremos como cuando el interruptor se encuentre presionado. Estas dos condiciones las podríamos expresar en la siguiente tabla: En la figura anterior, la letra denota la entrada de la compuerta y la letra denota la salida. Compuerta NOT continuación se presenta el circuito anterior pero usando un pulsador normalmente cerrado: Estado del interruptor Sin presionar 0 Presionado También la ampolleta puede asumir solamente dos estados:. Cuando no está conectada la ampolleta no luce. Consideraremos como 0 cuando la ampolleta se encuentre bajo esta condición. Página 4 de 44

15 Continuaremos considerando que el interruptor sin presionar equivale a que la variable sea igual a 0 (=0) y cuando esté presionado la variable sea igual a (=), pero el efecto que tiene sobre es distinto. En efecto, mientras no presionemos el interruptor, la ampolleta lucirá y cuando lo presionemos, la ampolleta no lucirá. Si lo expresamos en una tabla de verdad obtendríamos: 0 0 Éste comportamiento se expresa en el álgebra de oole como: = El símbolo esquemático electrónico para esta función se muestra en la siguiente figura y se denomina compuerta NOT: Si elaboramos una tabla de verdad ante todos los posibles combinaciones que puedan asumir los estados de las variables y, verificaremos que el comportamiento de este circuito es análogo a la operación ooleana ND: La expresión algebraica de ésta tabla es: = El símbolo esquemático electrónico se muestra en la siguiente figura y se denomina compuerta ND: Compuerta ND En el siguiente circuito se encuentran dos pulsadores normalmente abiertos conectados en serie. Determinaremos cómo el comportamiento de este circuito está asociado a una operación del álgebra de oole: La operación ND se puede realizar con 2 o más variables. Como ejemplo, se muestra el siguiente circuito, que contiene 3 contactos normalmente abiertos: C nalizando el circuito, verificaremos que la única posibilidad para lograr que luzca la ampolleta es que ambos pulsadores se encuentren presionados, es decir = cuando = y =. Página 5 de 44

16 La tabla de verdad que muestra el comportamiento del circuito es: C La siguiente figura muestra el símbolo de la compuerta lógica ND de 3 entradas: C lgebraicamente expresaremos: = + El símbolo electrónico se muestra en la siguiente figura y se denomina compuerta OR: l igual que la operación ND, la operación OR puede tener 2 o más variables de entrada. Como ejemplo se muestra un circuito con 3 contactos normalmente abiertos en paralelo: C Compuerta OR Un circuito con interruptores normalmente abierto conectados en paralelo es equivalente a la operación OR del álgebra de oole: En este circuito se cumple que la salida será igual a cuando cualquiera o ambos interruptores se encuentres presionados, por lo tanto su tabla de verdad coincide con la función OR del álgebra de oole: La tabla de verdad que muestra el comportamiento del circuito es: C La siguiente figura muestra el símbolo de la compuerta lógica OR de 3 entradas: C Página 6 de 44

17 Compuertas lógicas derivadas Mientras que las tres operaciones básicas ND, OR y NOT son suficientes para llevar a cabo todas las posibles operaciones y funciones lógicas, algunas combinaciones son muy usadas, a tal grado que han recibido su propio nombre y símbolo lógico. Éstas combinaciones de compuertas son NND, NOR, XOR y XNOR, y se detallan a continuación: El siguiente circuito lógico de contactos tiene el comportamiento de una compuerta NND: Compuerta NND El símbolo de la compuerta NND se muestra en la siguiente figura: Compuerta NOR El símbolo de la compuerta NOR se muestra en la siguiente figura: La compuerta NND tiene el comportamiento de una compuerta ND cuya salida ha sido complementada. Esto es lo que representa el círculo en el símbolo, por lo tanto una compuerta NND es equivalente a la combinación entre una compuerta ND y una compuerta NOT, como se muestra en la siguiente figura: En forma análoga a la compuerta NND, una compuerta NOR equivale a la conexión entre una compuerta OR y una compuerta NOT: + + El comportamiento de la función NND se expresa en la siguiente tabla de verdad: La expresión algebraica de la compuerta NND es: El comportamiento de la función NOR se expresa en la siguiente tabla de verdad: = Página 7 de 44

18 El siguiente circuito lógico de contactos tiene el comportamiento de una compuerta NOR: Compuerta XNOR Compuerta XOR El símbolo esquemático de la compuerta OR exclusiva ó simplemente XOR se muestra en la siguiente figura: El comportamiento de la función XOR se expresa en la siguiente tabla de verdad: XNOR equivale a la conexión entre una compuerta XOR y una compuerta NOT: El comportamiento de la función XOR se expresa en la siguiente tabla de verdad: La siguiente figura muestra un circuito de lógica de contactos que realiza la función XOR: La siguiente figura muestra un circuito de lógica de contactos que realiza la función XNOR: Página 8 de 44

19 Lógica combinacional En los circuitos de lógica combinacional, la respuesta a la salida de un circuito está en función de los estados lógicos presentes en las entrada y de la función lógica realizada. ND dentro de OR Circuito en lógica de contactos: C continuación se muestran circuitos lógicos básicos que valen la pena reconocer para un mejor estudio de los Sistemas Digitales: OR dentro de ND Circuito en lógica de contactos: Expresión boleana: = + C C Circuito lógico con compuertas: C + C Expresión boleana: = ( + ) C Circuito lógico con compuertas: Tabla de verdad: + C ( + ) C Tabla de verdad: C + C ( ) C C NOT dentro de ND Circuito en lógica de contactos: Página 9 de 44

20 Expresión boleana: Compuertas lógicas comerciales = 7408 uad 2-input ND gate Circuito lógico con compuertas: Tabla de verdad: VCC=4, GND=7 408 uad 2-input ND gate NOT dentro de OR Circuito en lógica de contactos: VCC=4, GND= uad 2-input OR gate Expresión boleana: = + Circuito lógico con compuertas: VCC=4, GND=7 407 uad 2-input OR gate + Tabla de verdad: VCC=4, GND= Página 20 de 44

21 7404 Hex inverter 7402 uad 2-input NOR gate VCC=4, GND=7 VCC=4, GND= Hex inverter 400 uad 2-input NOR gate VCC=4, GND=7 VCC=6, GND= uad 2-input XOR gate 7400 uad 2-input NND gate VCC=4, GND=7 VCC=4, GND= uad 2-input XOR gate 40 uad 2-input NND gate VCC=4, GND=7 VCC=4, GND=7 Página 2 de 44

22 4077 uad 2-input XOR gate input NOR gate VCC=4, GND=7 VCC=4, GND=7 74 Triple 3-input ND gate input NND gate VCC=4, GND=7 VCC=4, GND=7 740 Triple 3-input NND gate VCC=4, GND=7 Equivalencias Con el fin de reducir la cantidad de circuitos integrados que conforman un circuito lógico, es válido reemplazar algunas compuertas por otras que puedan cumplir la misma función. continuación se muestran algunas equivalencias que son válidas para considerar en el diseño de circuitos lógicos digitales:. ( ) C = C 742 Dual 4-input NND gate 2. ( + ) + C = + + C VCC=4, GND= uad 3-input ND gate 3. = VCC=4, GND=7 Página 22 de 44

23 = + VCC 2. + = 5. = VCC = + 7. = VCC 8. 0 = 9. = 0. + =. = Página 23 de 44

24 Mapas de Karnaugh Los mapas de Karnaugh es un método gráfico para simplificar ecuaciones de forma maxterm y minterm, a partir de una tabla de verdad. Mapa de Karnaugh minterm de 3 variables C C Mapa de Karnaugh maxterm de 4 variables C + D C + D Ejemplos de agrupaciones C + D C + D Mapa de Karnaugh minterm de 4 variables C D C D C D C D Mapa de Karnaugh maxterm de 3 variables C C Página 24 de 44

25 Códigos binarios Código CD Los números CD (inary Coded Decimal) ó decimal codificado en binario, son ampliamente usado en los Sistemas Digitales con el fin de simplificar la conversión e interpretación de números decimales convertidos en binario y viceversa. Conversión decimal a CD Para convertir un número decimal en CD, se reemplaza cada dígito decimal por 4 dígitos binarios equivalentes de acuerdo a la siguiente tabla, de forma análoga a la conversión de hexadecimal a binario. Decimal CD Nótese que en la tabla anterior, no existen los binarios 00, 0, 00, 0, 0 y. Ejemplo Conviértase el número 69 0 en su equivalente CD: CD Conversión de CD a decimal La conversión de un número CD a decimal se realiza en forma análoga a la conversión de un número binario en hexadecimal, es decir: Se forman grupos de 4 bits y luego se reemplaza cada grupo por un dígito decimal. Ejemplo Conviértase el siguiente número binario en su equivalente CD: CD Nótese en el ejemplo, que si el grupo más significativo no completa 4 dígitos, éste se debe completar con dígitos igual a cero. Código de Gray Existen algunas situaciones dentro de los Sistemas Digitales en donde es necesario que en una cuenta binaria cambie un solo bit de estado entre números consecutivos. Esto no sucede al usar los números binarios estudiados hasta ahora. Como ejemplo, los siguientes números binarios son consecutivos pero entre uno y otro existen 3 bits que cambian de estado: 00 2 a En el código de Gray entre números consecutivos cambia de estado solamente un bit a la vez, como se muestra en la siguiente tabla: inario Gray Un ejemplo de aplicación del código de Gray es en el Control de posicionamiento de máquinas ó motores, en Página 25 de 44

26 donde un sistema de detectores llamados encoders informan al Sistema de Control la posición de la máquina ó posición angular de un servomotor. Codificadores 7447 Decimal to CD priority encoder Tabla de verdad Inputs Outputs Out Out2 Out3 Out4 L L H L L L L H L H L L H L L L H L H H L L L H 7442 CD to decimal decoder Inputs Outputs D C H H H H H H H H H H H H H X X X X X X X X L L H H L X X X X X X X L H L H H H X X X X X X L H H H L L L X X X X X L H H H H L L H X X X X L H H H H H L H L X X X L H H H H H H L H H X X L H H H H H H H H L L X L H H H H H H H H H L H L H H H H H H H H H H H L Decodificadores Decodificador básico de 2 a 4 líneas Out Out2 Out3 Out4 Tabla de verdad CD inputs Decimal outputs L L L L L H H H H H H H H H L L L H H L H H H H H H H H L L H L H H L H H H H H H H L L H H H H H L H H H H H H L H L L H H H H L H H H H H L H L H H H H H H L H H H H L H H L H H H H H H L H H H L H H H H H H H H H H L H H H L L L H H H H H H H H L H H L L H H H H H H H H H H L H L H L H H H H H H H H H H H L H H H H H H H H H H H H H H L L H H H H H H H H H H H H L H H H H H H H H H H H H H H L H H H H H H H H H H H H H H H H H H H H H H H H Página 26 de 44

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN Un sistema de numeración es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos o cantidades. Un sistema de numeración se caracteriza

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles

Tabla de verdad. La función lógica es aquella que relaciona las entradas y salidas de un circuito lógico. Puede expresarse mediante:

Tabla de verdad. La función lógica es aquella que relaciona las entradas y salidas de un circuito lógico. Puede expresarse mediante: T-2 Álgebra de oole. ógica combinacional TM - 2 ÁGR D OO. ÓGI OMINION. l control digital, y en particular el binario, está presente en todos los campos de la vida, desde los sistemas de refrigeración hasta

Más detalles

Circuitos lógicos MSI Combinacionales

Circuitos lógicos MSI Combinacionales Departamento de Electrónica Electrónica Digital Circuitos lógicos MSI Combinacionales Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos 1 Temario Decodificadores / Conversores de

Más detalles

SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN DE DECIMAL A BINARIO

SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN DE DECIMAL A BINARIO SISTEMS DE NUMERIÓN Y ODIFIIÓN DE DEIML INRIO Sistema decimal: es un sistema de numeración en base 0, tiene 0 posibles dígitos (p i ). En cada número, el valor que toman sus dígitos depende de la posición

Más detalles

Temario de Electrónica Digital

Temario de Electrónica Digital Temario de Electrónica Digital TEMA 1. INTRODUCCIÓN A LOS SISTEMAS DIGITALES. Exponer los conceptos básicos de los Fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre Sistemas

Más detalles

PROGRAMA DE CURSO Modelo 2009

PROGRAMA DE CURSO Modelo 2009 REQUISITOS: HORAS: 3 Horas a la semana CRÉDITOS: PROGRAMA(S) EDUCATIVO(S) QUE LA RECIBE(N): IETRO PLAN: 2009 FECHA DE REVISIÓN: Mayo de 2011 Competencia a la que contribuye el curso. DEPARTAMENTO: Departamento

Más detalles

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales.

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales. ELECTRÓNICA DIGITAL El tratamiento de la información en electrónica se puede realizar de dos formas, mediante técnicas analógicas o mediante técnicas digitales. El analógico requiere un análisis detallado

Más detalles

OR (+) AND( ). AND AND

OR (+) AND( ). AND AND Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas

Más detalles

TEMA 3: Control secuencial

TEMA 3: Control secuencial TEMA 3: Control secuencial Esquema: Índice de contenido TEMA 3: Control secuencial...1 1.- Introducción...1 2.- Biestables...3 2.1.- Biestables asíncronos: el Biestable RS...4 2.1.1.- Biestable RS con

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

CONTADORES Y REGISTROS

CONTADORES Y REGISTROS Capítulo 7 CONTADORES Y REGISTROS 7.. CONTADORES Un contador es un circuito secuencial cuya función es seguir una cuenta o conjunto predeterminado de estados como consecuencia de la aplicación de un tren

Más detalles

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas Fecha: 1 er semestre de 2011 INTRODUCCIÓN El sistema

Más detalles

INDICE CYNTHIA P.GUERRERO SAUCEDO PALOMA G. MENDOZA VILLEGAS 1

INDICE CYNTHIA P.GUERRERO SAUCEDO PALOMA G. MENDOZA VILLEGAS 1 INDICE UNIDAD 1: SISTEMAS NUMERICOS 1 SISTEMA BINARIO...3 1.1 CONVERSION DE DECIMAL A BINARIO...4 1.2 CONVERSION DE BINARIO A DECIMAL...6 1.3 ARITMETICA BINARIA.. 102 2. SISTEMA HEXADECIMAL......7 2.1

Más detalles

ELECTRÓNICA DIGITAL.

ELECTRÓNICA DIGITAL. ELECTRÓNIC DIGITL. Una señal analógica es aquella que puede tener infinitos valores, positivos y/o negativos. Mientras que la señal digital sólo puede tener dos valores 1 o 0. En el ejemplo de la figura,

Más detalles

Registros y Contadores

Registros y Contadores Registros y Contadores Mario Medina C. mariomedina@udec.cl Registros Grupos de flip-flops con reloj común Almacenamiento de datos Desplazamiento de datos Construcción de contadores simples Como cada FF

Más detalles

Tema 5: Sistemas secuenciales

Tema 5: Sistemas secuenciales Tema 5: Circuitos secuenciales 5.1 Introducción: tablas de transición, cronogramas. Hemos visto como en los circuitos combinacionales, las salidas sólo dependen de las entradas en el mismo instante de

Más detalles

CIRCUITOS COMBINACIONALES

CIRCUITOS COMBINACIONALES Escuela Universitaria de Ingeniería Técnica Industrial de Bilbao Universidad del País Vasco / Euskal Herriko Unibertsitatea ELECTRONICA INDUSTRIAL CIRCUITOS COMBINACIONALES SANCHEZ MORONTA, M - UGALDE

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

CIRCUITOS SECUENCIALES

CIRCUITOS SECUENCIALES LABORATORIO # 7 Realización: 16-06-2011 CIRCUITOS SECUENCIALES 1. OBJETIVOS Diseñar e implementar circuitos utilizando circuitos multivibradores. Comprender los circuitos el funcionamiento de los circuitos

Más detalles

TEMA - 3 LÓGICA SECUENCIAL. REGISTROS DE DESPLAZAMIENTO Y CONTADORES. 1.- Introducción.

TEMA - 3 LÓGICA SECUENCIAL. REGISTROS DE DESPLAZAMIENTO Y CONTADORES. 1.- Introducción. T-3 Lógica ecuencial. egistros de Desplazamiento y Contadores TEMA - 3 LÓGICA ECUENCIAL. EGITO DE DEPLAZAMIENTO Y CONTADOE..- Introducción. Hemos visto que en la lógica combinacional las salidas están

Más detalles

SISTEMAS NATURALES.. ARTIFICIALES.. ELÉCTRICOS.. ELECTRÓNICOS ANALÓGICOS DIGITALES COMBINACIONALES SECUENCIALES

SISTEMAS NATURALES.. ARTIFICIALES.. ELÉCTRICOS.. ELECTRÓNICOS ANALÓGICOS DIGITALES COMBINACIONALES SECUENCIALES UNIDAD 3: Circuitos lógicos y digitales Introducción Un Sistema es un conjunto de elementos que guardan una relación entre sí, a su vez un elemento del sistema puede ser otro sistema (subsistema). Los

Más detalles

TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS

TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS TEMA III Circuitos Digitales Electrónica II 9- TEMA III Circuitos Digitales 3. REPRESENTACIÓN DE LA INFORMACIÓN 3. ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS 3. REPRESENTACIÓN DE LA INFORMACIÓN.

Más detalles

TEMA 1: Control y programación de sistemas automáticos

TEMA 1: Control y programación de sistemas automáticos Esquema: TEMA : Control y programación de sistemas automáticos TEMA : Control y programación de sistemas automáticos....- Introducción.....- Representación de las señales digitales...2 2.- Sistemas de

Más detalles

Electrónica digital IES GUADIANA 4º ESO

Electrónica digital IES GUADIANA 4º ESO Departamento de tecnología Electrónica digital IES GUADIANA 4º ESO Mª Cruces Romero Vallbona. Curso 2012-2013 Electrónica digital 4º ESO 1. Señales y tipos... 2 2. Ventajas y desventajas de los sistemas

Más detalles

FUNCIONES ARITMÉTICAS Y

FUNCIONES ARITMÉTICAS Y Tema 3 FUNCIONES ARITMÉTICAS Y LÓGICAS 3.. INTRODUCCIÓN Hasta ahora hemos visto como se podían minimizar funciones booleanas, y como se podían implementar a partir de puertas discretas. En los temas siguientes

Más detalles

GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES

GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES COMPETENCIA GENERAL Construye circuitos digitales básicos en base a circuitos integrados MSI. COMPETENCIAS PARTICULARES 1. Emplea los sistemas numéricos

Más detalles

INDICE 1. Conceptos Introductorias 2. Sistemas Numéricos y Códigos 3. Compuertas Lógicas y Álgebras Booleana 4. Circuitos Lógicos Combinatorios

INDICE 1. Conceptos Introductorias 2. Sistemas Numéricos y Códigos 3. Compuertas Lógicas y Álgebras Booleana 4. Circuitos Lógicos Combinatorios INDICE 1. Conceptos Introductorias 1 1.1. Representaciones numéricas 3 1.2. Sistemas digitales y analógicos 4 1.3. Sistemas numéricos digitales 6 1.4. Representación de cantidades binarias 10 1.5. Circuitos

Más detalles

Tema 4: Circuitos combinacionales

Tema 4: Circuitos combinacionales Estructura de computadores Tema 4: Circuitos combinacionales Tema 4: Circuitos combinacionales 4.0 Introducción Los circuitos lógicos digitales pueden ser de dos tipos: combinacionales secuenciales. Circuitos

Más detalles

Tema 7. SISTEMAS SECUENCIALES SISTEMAS SECUENCIALES SÍNCRONOS

Tema 7. SISTEMAS SECUENCIALES SISTEMAS SECUENCIALES SÍNCRONOS Fundamentos de Computadores. Sistemas Secuenciales. T7-1 INDICE: Tema 7. SISTEMAS SECUENCIALES INTRODUCCIÓN SISTEMAS SECUENCIALES SÍNCRONOS TIPOS DE BIESTABLES o TABLAS DE ECITACIÓN DE LOS BIESTABLES o

Más detalles

13/10/2013. Clase 02: Sistemas de Numeración. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar.

13/10/2013. Clase 02: Sistemas de Numeración. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar. Clase 02: Sistemas de Numeración Ing. Christian Lezama Cuellar Semestre 2013-I Sistemas Digitales y Arquitectura de Computadoras 1 Conjunto de números que se relacionan para expresar la relación existente

Más detalles

FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES : SISTEMAS DIGITALES I SÍLABO

FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES : SISTEMAS DIGITALES I SÍLABO I.-DATOS GENERALES SÍLABO CARRERA PROFESIONAL : INGENIERÍA ELECTRÓNICA Y CÓDIGO CARRERA PROFESIONAL : 29 ASIGNATURA : CÓDIGO DE ASIGNATURA : 2902-29213 CÓDIGO DE SÍLABO : 2921330072014 Nº DE HORAS TOTALES

Más detalles

Sistemas Digitales y el Entrenador Lógico CE300.

Sistemas Digitales y el Entrenador Lógico CE300. Sistemas Digitales y el Entrenador Logico CE3. Sistemas Digitales y el Entrenador Lógico CE3. Marco Antonio Pérez Cisneros * y Mark Readman + * División de Electrónica y Computación, CUCEI, Universidad

Más detalles

Tema I Lógica Combinacional

Tema I Lógica Combinacional Tema I Lógica Combinacional Departamento de Ingeniería Electrónica de Sistemas Informáticos y utomática 2 1.1. Sistema de numeración La rama Digital de la Electrónica utiliza el sistema de numeración binario,

Más detalles

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2008

ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2008 ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2008 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd Borriello and Randy Katz. Prentice Hall,

Más detalles

SISTEMAS DIGITALES JOSE LUIS RAMOS GONZALEZ RED TERCER MILENIO

SISTEMAS DIGITALES JOSE LUIS RAMOS GONZALEZ RED TERCER MILENIO SISTEMAS DIGITALES SISTEMAS DIGITALES JOSE LUIS RAMOS GONZALEZ RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO S.C. Viveros de Asís 96, Col. Viveros de la Loma, Tlalnepantla,

Más detalles

5.1 Sistemas de numeración: decimal, binario y hexadecimal. Numeración Sistema de símbolos o signos utilizados para expresar los números.

5.1 Sistemas de numeración: decimal, binario y hexadecimal. Numeración Sistema de símbolos o signos utilizados para expresar los números. 1 CAPITULO 5 ELECTRONICA DIGITAL DISCRETA Y PROGRAMABLE (10 Hrs) Objetivo: El estudiante enunciará los fundamentos del diseño de circuitos lógicos y sus aplicaciones más comunes. Conocerá y aplicara la

Más detalles

CIRCUITOS DIGITALES -

CIRCUITOS DIGITALES - CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:

Más detalles

38.1. Principios de electrónica digital. 38.1.1. Sistemas digitales y analógicos

38.1. Principios de electrónica digital. 38.1.1. Sistemas digitales y analógicos Tema 8. Principios de electrónica digital. Álgebra de Boole. Puertas lógicas. Funciones básicas combinacionales: decodificadores, codificadores, multiplexores y otras. Simbología, tipología, función y

Más detalles

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos: ELECTRÓNICA DIGITAL INDICE 1. TIPOS DE SEÑALES... 3 1.1. SEÑALES ANALÓGICAS... 3 1.2. SEÑALES DIGITALES... 3 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES... 3 2.1. CRONOGRAMAS... 3 2.2. TABLA DE VERDAD...

Más detalles

Latches, flipflops y registros

Latches, flipflops y registros Departamento de Electrónica Electrónica Digital Latches, flipflops y registros Facultad de Ingeniería Bioingeniería Universidad Nacional de Entre Ríos Circuitos secuenciales 1 Circuitos secuenciales Salida

Más detalles

REGISTROS DE DESPLAZAMIENTO

REGISTROS DE DESPLAZAMIENTO REGISTROS DE DESPLAZAMIENTO Es un circuito digital que acepta datos binarios de una fuente de entrada y luego los desplaza, un bit a la vez, a través de una cadena de flip-flops. Este sistema secuencial

Más detalles

MONOGRAFÍA CIENTÍFICA

MONOGRAFÍA CIENTÍFICA Diseño y Síntesis de Sistemas de Lógica Secuencial Autor: Jorge Portillo Meniz Profesor Titular de Escuela Universitaria Universidad de Las Palmas de Gran Canaria 2006 Jorge Portillo Meniz, 2006 SISTEMAS

Más detalles

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES.

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES. TEMA 7: CIRCUITOS DIGITALES 1. INTRODUCCIÓN. La utilización creciente de circuitos digitales ha dado lugar en los últimos tiempos a una revolución sin precedentes en el campo de la tecnología. Basta observar

Más detalles

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola

Más detalles

Sistemas de Numeración Operaciones - Códigos

Sistemas de Numeración Operaciones - Códigos Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la

Más detalles

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN.

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. INDICE. CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. TÉRMINOS BÁSICOS DE LA INFORMÁTICA. REPRESENTACIÓN INTERNA DE LA INFORMACIÓN. El SISTEMA BINARIO DE NUMERACION. El sistema decimal

Más detalles

1000 + 900 + 90 + 7 = 1997

1000 + 900 + 90 + 7 = 1997 ases Matemáticas I - Pagina 1 de 20 Tema 2: ases Matemáticas I. 2.1.- Números utilizados en los sistemas digitales. 2.1.1 Introducción. El sistema de numeración decimal es familiar a todo el mundo. Este

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

PARTE II LÓGICA COMPUTACIONAL

PARTE II LÓGICA COMPUTACIONAL PARTE II LÓGICA COMPUTACIONAL Lógica de proposiciones INTRODUCCION Teniendo en mente que queremos presentar los sistemas deductivos de la lógica como una herramienta práctica para los informáticos, vamos

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

Circuitos secuenciales

Circuitos secuenciales UNIDAD 6 Circuitos secuenciales Introducción a la unidad En los capítulos anteriores hemos manejado los elementos básicos que conforman un sistema digital. Por un lado el manejo binario de la información

Más detalles

Un contador es un circuito secuencial que genera una secuencia ordenada de salidas que se repite en el tiempo. La salida coincide con el estado de

Un contador es un circuito secuencial que genera una secuencia ordenada de salidas que se repite en el tiempo. La salida coincide con el estado de CONTADORES Un contador es un circuito secuencial que genera una secuencia ordenada de salidas que se repite en el tiempo. La salida coincide con el estado de sus biestables. Los contadores son circuitos

Más detalles

A continuación se mostrarán ejemplos de tres clases de códigos: numéricos, alfanuméricos y de despliegue.

A continuación se mostrarán ejemplos de tres clases de códigos: numéricos, alfanuméricos y de despliegue. Capítulo 3 1 Codificación binaria 3.1. Codificación En un ambiente de sistemas digitales se denomina codificación a la asignación de un significado a una configuración de bits. Al modelar problemas es

Más detalles

Electrónica Digital (Parte 1)

Electrónica Digital (Parte 1) Electrónica Digital (Parte 1) Dr. C. Evaristo González Milanés 1, Ing. Carlos Molina 2 1. Universidad de Matanzas Camilo Cienfuegos, Vía Blanca Km.3, Matanzas, Cuba. 2. Profesor Adjunto Universidad de

Más detalles

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0 Clase 5 Un registro es un conjunto de n latch o Flip-Flops asociados que permiten almacenar temporalmente una palabra o grupo de n bit. Hay dos clases de registros típicos sincrónicos 1. el registro de

Más detalles

Notas de Diseño Digital

Notas de Diseño Digital Notas de Diseño Digital Introducción El objetivo de estas notas es el de agilizar las clases, incluyendo definiciones, gráficos, tablas y otros elementos que tardan en ser escritos en el pizarrón, permitiendo

Más detalles

ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ

ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ ASIGNATURA: ARQUITECTURA DE COMPUTADORAS PROFRA. ING. ROCÍO ROJAS MUÑOZ Sistemas Numéricos 1.-Sistema Numérico. a) Definición: Llamaremos sistema numéricos base M el conjunto de M símbolos que nos sirven

Más detalles

Naturaleza binaria. Conversión decimal a binario

Naturaleza binaria. Conversión decimal a binario Naturaleza binaria En los circuitos digitales sólo hay 2 voltajes. Esto significa que al utilizar 2 estados lógicos se puede asociar cada uno con un nivel de tensión, así se puede codificar cualquier número,

Más detalles

EJERCICIOS RESUELTOS DE SECUENCIALES

EJERCICIOS RESUELTOS DE SECUENCIALES EJERCICIOS RESUELTOS DE SECUENCIALES 1) El sistema de apertura de una caja fuerte está compuesto por dos teclas A y B, un circuito secuencial a diseñar y un temporizador que mantiene la caja fuerte abierta

Más detalles

TEMA 5. SISTEMAS COMBINACIONALES MSI.

TEMA 5. SISTEMAS COMBINACIONALES MSI. Fundamentos de Computadores. Circuitos Combinacionales MSI T5-1 TEMA 5. SISTEMAS COMBINACIONALES MSI. INDICE: INTRODUCCIÓN DECODIFICADORES o REALIZACIÓN DE FUNCIONES CON DECODIFICADORES CONVERTIDORES DE

Más detalles

Simulín. Qué es Simulín? Características. Simulador de circuitos digitales para uso docente. v5.60 (Julio 2014) Función lógica (expresión algebraica)

Simulín. Qué es Simulín? Características. Simulador de circuitos digitales para uso docente. v5.60 (Julio 2014) Función lógica (expresión algebraica) Folleto de presentación Simulín Simulín Simulador de circuitos digitales para uso docente v5.60 (Julio 2014) Características Circuitos Combinacionales Puertas lógicas básicas (NOT, AND, OR, XOR, NAND,

Más detalles

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2 Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL Fundamentos de Electrónica.2 Sistema Digital. Paso de mundo analógico a digital. Tipos de Sistemas Digitales. Representación de la información. Sistemas

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

CAPITULO 7.- DISEÑO DE CIRCUITOS LOGICOS

CAPITULO 7.- DISEÑO DE CIRCUITOS LOGICOS CAPITULO 7.- DISEÑO DE CIRCUITOS LOGICOS 7. INTRODUCCION El diseño de los circuitos de combinación comienza con la descripción verbal del problema y termina en un diagrama de circuito lógico. El procedimiento

Más detalles

1 LA INFORMACION Y SU REPRESENTACION

1 LA INFORMACION Y SU REPRESENTACION 1 LA INFORMACION Y SU REPRESENTACION 1.1 Sistemas de numeración Para empezar a comprender cómo una computadora procesa información, debemos primero entender cómo representar las cantidades. Para poder

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

Tema 5: Álgebra de Boole Funciones LógicasL

Tema 5: Álgebra de Boole Funciones LógicasL Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las

Más detalles

TEMA7. SISTEMAS SECUENCIALES

TEMA7. SISTEMAS SECUENCIALES Sistemas Secuenciales 1 TEMA7. SISTEMAS SECUENCIALES Los circuitos lógicos se clasifican en dos tipos: Combinacionales, aquellos cuyas salidas sólo dependen de las entradas actuales. Secuenciales, aquellos

Más detalles

Análisis de circuitos combinacionales MSI

Análisis de circuitos combinacionales MSI Análisis de circuitos combinacionales MSI En esta unidad aprenderás a: Identificar y caracterizar las funciones digitales más relevantes de carácter combinacional. Analizar funciones y circuitos combinacionales,

Más detalles

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 2 REPRESENTACIÓN DE LOS DATOS 1 OBJETIVOS Entender cómo la computadora

Más detalles

ÍNDICE 1. EL SISTEMA DE NUMERACIÓN BINARIO, BASE DE LA ELECTRÓNICA DIGITAL............................. 1 Introducción.......................................... 1 Sistemas de numeración decimal y binario..................

Más detalles

Introducción a Códigos

Introducción a Códigos Introducción a Página 1 Agenda Página 2 numéricos posicionales numéricos no posicionales Construcción de cantidades Sistema decimal Sistema binario binarios alfanuméricos Conversión decimal a binario Conversión

Más detalles

Turno Electrónico. Montaje de un circuito contador ascendente de 00 a 99 con aviso acústico.

Turno Electrónico. Montaje de un circuito contador ascendente de 00 a 99 con aviso acústico. Montaje de un circuito contador ascendente de 00 a 99 con aviso acústico. José Miguel Castillo Castillo 14/02/2013 1 1. INTRODUCCIÓN Los sistemas de gestión de turnos se utilizan principalmente en los

Más detalles

UD 1. Representación de la información

UD 1. Representación de la información UD 1. Representación de la información 1.1 INTRODUCCION... 1 1.2 SISTEMAS DE REPRESENTACIÓN... 2 1.2.1 El Sistema Decimal.... 2 1.2.2 Teorema Fundamental de la Numeración. (TFN)... 2 1.2.3 El Sistema Binario....

Más detalles

Tema I. Sistemas Numéricos y Códigos Binarios

Tema I. Sistemas Numéricos y Códigos Binarios Tema I. Sistemas Numéricos y Códigos Binarios Números binarios. Aritmética binaria. Números en complemento-2. Códigos binarios (BCD, alfanuméricos, etc) Números binarios El bit. Representación de datos

Más detalles

Materia Introducción a la Informática

Materia Introducción a la Informática Materia Introducción a la Informática Unidad 1 Sistema de Numeración Ejercitación Prof. Alejandro Bompensieri Introducción a la Informática - CPU Ejercitación Sistemas de Numeración 1. Pasar a base 10

Más detalles

CIRCUITOS ARITMÉTICOS

CIRCUITOS ARITMÉTICOS LABORATORIO # 6 Realización: 26-05-2011 CIRCUITOS ARITMÉTICOS 1. OBJETIVOS Comprender los circuitos aritméticos dentro de la lógica binaria Utilizar sumadores totales de cuatro bits dentro de un Circuito

Más detalles

Electrónica Digital. Conceptos Digitales. Dr. Oscar Ruano 2011-2012 1

Electrónica Digital. Conceptos Digitales. Dr. Oscar Ruano 2011-2012 1 Electrónica Digital Conceptos Digitales Dr. Oscar Ruano 2011-2012 1 Magnitudes analógicas y digitales Magnitud Analógica: toma valores continuos: Por ejemplo la temperatura no varía de entre 20ºC y 25ºC

Más detalles

Flip Flops, Multivibradores y Contadores

Flip Flops, Multivibradores y Contadores Flip Flops, Multivibradores y Contadores INTRODUCCION Los circuitos lógicos se clasifican en dos categorías: circuitos lógicos combinacionales y circuitos lógicos secuenciales. Los bloques básicos para

Más detalles

Matemática de redes Representación binaria de datos Bits y bytes

Matemática de redes Representación binaria de datos Bits y bytes Matemática de redes Representación binaria de datos Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender

Más detalles

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ ELECTRÓNICA DIGITAL DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ IES TRINIDAD ARROYO DPTO. DE ELECTRÓNICA ÍNDICE ÍNDICE... 1 1. LIMITACIONES DE LOS CONTADORES ASÍNCRONOS... 2 2. CONTADORES SÍNCRONOS...

Más detalles

Índice general. 1. Introducción a la técnica digital... 1. 1.1 Introducción... 1 1.2 Señales analógicas y digitales... 1

Índice general. 1. Introducción a la técnica digital... 1. 1.1 Introducción... 1 1.2 Señales analógicas y digitales... 1 Índice general 1. Introducción a la técnica digital... 1 1.1 Introducción... 1 1.2 Señales analógicas y digitales... 1 1.2.1 Señales analógicas... 1 1.2.2 Señales digitales... 2 1.3 Procesos digitales...

Más detalles

* En una computadora el microprocesador se comunica con uno de los siguientes dispositivos:

* En una computadora el microprocesador se comunica con uno de los siguientes dispositivos: Funciones incompletas Son funciones cuyo valor puede ser indistintamente 0 ó 1 para algunas combinaciones de las variables de entrada, bien porque dichas combinaciones no vayan a darse nunca en la práctica

Más detalles

Figura 1: Símbolo lógico de un flip-flop SR

Figura 1: Símbolo lógico de un flip-flop SR FLIP-FLOPS Los circuitos lógicos se clasifican en dos categorías. Los grupos de puertas descritos hasta ahora, y los que se denominan circuitos lógicos secuenciales. Los bloques básicos para construir

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Electrónica digital 2. Competencias Supervisar el reemplazo

Más detalles

TECNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA

TECNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA TECNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Sistemas digitales 2. Competencias Desarrollar y conservar sistemas automatizados

Más detalles

La forma de manejar esta controladora es mediante un ordenador utilizando algún lenguaje de programación (Por ejemplo.: C, Visual Basic, Logo,...).

La forma de manejar esta controladora es mediante un ordenador utilizando algún lenguaje de programación (Por ejemplo.: C, Visual Basic, Logo,...). Instituto de Tecnologías Educativas Circuito de control El circuito de control es la parte más delicada de la controladora, ya que se encarga de controlar las entradas (Puerto LPT, Entradas Analógicas,

Más detalles

ELECTRONICS WORKBENCH

ELECTRONICS WORKBENCH PRÁCTICA 1: INTRODUCCIÓN A LA SIMULACIÓN DE CIRCUITOS ELECTRÓNICOS DIGITALES CON ELECTRONICS WORKBENCH Ingeniería Técnica en Informática de Sistemas. Miguel Martínez Iniesta Juan Antonio Ruiz Palacios

Más detalles

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Informática Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Temas O Sistema de Numeración O Conversión entre números decimales y binarios. O El tamaño de las cifras binarias

Más detalles

APÉNDICE APEENDIX SISTEMAS NUMÉRICOS. En este apéndice...

APÉNDICE APEENDIX SISTEMAS NUMÉRICOS. En este apéndice... SSTEMS NUMÉROS PEENX PÉNE J En este apéndice... ntroducción a sistemas numéricos.......................... Sistema numérico decimal................................ Sistema numérico octal...................................

Más detalles

UNIVERSIDAD VERACRUZANA

UNIVERSIDAD VERACRUZANA UNIVERSIDAD VERACRUZANA Facultad de Ingeniería en Electrónica y Comunicaciones LABORATORIO VIRTUAL DE LÓGICA DIGITAL COMBINACIONAL TRABAJO PRÁCTICO EDUCATIVO QUE PARA OBTENER EL TÍTULO DE: INGENIERO EN

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN CONVERSION ANALÓGICO A DIGITAL Con el paso del tiempo, las comunicaciones electrónicas han experimentado algunos cambios tecnológicos notables. Los sistemas tradicionales de comunicaciones electrónicas

Más detalles

TEMA 11. CIRCUITOS ARITMÉTICOS TICOS DIGITALES

TEMA 11. CIRCUITOS ARITMÉTICOS TICOS DIGITALES TEM. CIRCUITOS RITMÉTICOS TICOS DIGITLES http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 niversary: http://www.flickr.com/photos/ieee25/with/2809342254/ TEM. CIRCUITOS

Más detalles

Aritmética del computador. Departamento de Arquitectura de Computadores

Aritmética del computador. Departamento de Arquitectura de Computadores Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética

Más detalles

Tema 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES 1.1. SISTEMAS DIGITALES

Tema 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES 1.1. SISTEMAS DIGITALES Tema 1 INTRODUCCIÓN A LOS SISTEMAS DIGITALES 1.1. SISTEMAS DIGITALES Se puede definir un sistema digital como cualquier sistema de transmisión o procesamiento de información en el cual la información se

Más detalles

Electrónica Digital (Electrónica II)

Electrónica Digital (Electrónica II) Departamento de Electrónica Electrónica Digital (Electrónica II) Facultad de Ingeniería - Bioingeniería Universidad Nacional de Entre Ríos Contenido del programa 1 Objetivos 2 Bibliografía (disponible

Más detalles

Ejercicio 1. Solución.

Ejercicio 1. Solución. Unidad 3. Control y Programación de istemas Automáticos. Problemas. Tema 3. Circuitos Combinacionales. jercicio. l circuito de la figura es un comparador binario de dos números A (A o, A ) y B (B o, B

Más detalles