ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales."

Transcripción

1 ELECTRÓNICA DIGITAL El tratamiento de la información en electrónica se puede realizar de dos formas, mediante técnicas analógicas o mediante técnicas digitales. El analógico requiere un análisis detallado de las señales, ya que éstas pueden tener un gran cantidad de valores, mientras que, el concepto digital de las señales las limita a niveles o valores (el cero y el uno lógicos). La electrónica digital analiza y estudia los criterios para procesar estos niveles de forma que permitan el diseño de sistemas electrónicos que sustituyan o complementen a los analógicos. Estos dispositivos generalmente se encontrarán en forma de circuitos integrados. Sistemas analógicos y digitales. Existen una gran cantidad de sistemas para interaccionar con el medio. Estos sistemas generalmente perciben magnitudes físicas, tales como temperatura, humedad, posición, intensidad de luz, tiempo, etc. y generan un cambio en ellas. Muchos de estos sistemas emplean circuitos electrónicos porque resulta muy sencillo representar magnitudes físicas mediante señales eléctricas y, además, estas señales eléctricas son fáciles de procesar mediante circuitos electrónicos. Los sistemas electrónicos se clasifican en analógicos y digitales: Los primeros trabajan con señales analógicas, que son señales continuas. Los sistemas digitales trabajan con señales digitales, que son señales discretas. Señales continuas son aquellas que pueden tomar un número infinito de valores y cambian interrumpidamente sin escalonamientos ni discontinuidades. La mayoría de magnitudes físicas de la naturaleza varían de forma continua. Por ejemplo, la temperatura no varía de 10ºC a 15ºC de forma instantánea, sino que alcanza los infinitos valores que hay en ese rango. Señales discretas son aquellas que no cambian de forma uniforme, presentan discontinuidades (varían bruscamente de un instante a otro) y sólo pueden adquirir un número finito de valores. En algunos casos interesa representar las magnitudes analógicas de forma digital. Si simplemente medimos la temperatura cada hora, obtenemos muestras que representan la temperatura a lo largo de intervalos de tiempo (cada hora). De esta forma, se ha convertido la magnitud continua en una magnitud discreta, que se puede digitalizar, representando cada valor muestreado mediante un código digital. La electrónica digital emplea sistemas binarios, en los que sólo existen dos estados posibles, un nivel de tensión alto, llamado 1 (5 Volts ) y un nivel de tensión bajo, llamado 0 (a veces 0 Volt) En los sistemas digitales la combinación de estos dos estados se denomina código y se utiliza para representar números e información en general. Un dígito se denomina bit. La información binaria que manejan los sistemas digitales aparece en forma de señales que representan secuencias de bits. Códigos de numeración. La necesidad de establecer cantidades para poder ponderar magnitudes, contar y operar con ellas, hace que se establezcan unos sistemas de numeración a través de códigos perfectamente estructurados que facilitarán dichas tareas. Sistemas Numéricos Posicionales

2 En el sistema de números decimales se dice que la base o raíz es 10 debido a que usa 10 dígitos, y los coeficientes se multiplican por potencias de 10. El sistema binario unicamente posee dos valores posibles que son 0 y 1. Por lo tanto tenemos que un número en un sistema de base(r) tiene coeficientes multiplicados por potencias de (r) y quedaría representado de la siguiente manera : a n *r n + a n *r n a 2 *r 2 + a 1 *r 1 + a 0 *r 0 + a -1 *r a -m *r -m Sistema decimal. El sistema de numeración más utilizado es el sistema numérico decimal, que presenta las siguientes características: Tiene base 10. Usa 10 símbolos para representar los valores numéricos, que son los dígitos del 0 al 9. Es un sistema dependiente del orden, el valor numérico se obtiene sumando los productos de cada dígito por la base (10) elevada a la posición que ocupa ese dígito. El valor del número decimal 7438 se calcula como: 7 x x x x 10 0 Sistema binario. Los sistemas lógicos binarios basan su funcionamiento en dos estados ( 0 y 1 ), por ello es necesario construir un código basado en dos dígitos que permita ponderar magnitudes y operar con ellas. Al código binario más empleado se le denomina binario natural y posee las siguientes características: Tiene base o raíz 2. Usa solamente dos dígitos, 0 y 1. Se incluye con el número el subíndice 2, para diferenciar las formas binarias de las decimales. A los dígitos binarios se les llama bits (del inglés binary digit). Al igual que en los números decimales, el valor depende de la posición de sus bits, y es igual a la suma de los productos de cada dígito por dos elevado a la posición relativa del bit. El bit más a la derecha es el menos significativo, es decir, el de menor peso. El bit más a la izquierda es el más significativo, es decir, el de mayor peso. Se puede establecer una regla para pasar siempre de cualquier código al decimal: Se multiplica cada número por la base elevada a la posición que ocupa y posteriormente se suma todo. De igual forma existe una regla que permite pasar de un código en sistema decimal a cualquier otro sistema: Se dividirá sucesivamente el código decimal por la base del nuevo sistema, hasta que el cociente ya no sea divisible. Entonces se tomará como dígito mayor el último cociente y los siguientes dígitos lo formarán los restos obtenidos hasta el primero. Tamaño de los números binarios. A los números binarios se les llama palabras binarias, por ejemplo el número 1012 es una palabra binaria de tres bits. A las palabras binarias de 8 bits se les llama byte y a las de 4, nibble. La mayoría de equipos digitales utilizan tamaños de palabra múltiplos de 8 bits. Con un número binario de n bits se pueden representar 2 n valores distintos. Para: n = 8, tenemos 2 8 = 256 valores. n = 16, tenemos 2 16 = valores.

3 n = 32, tenemos 2 32 = valores. El mayor número decimal que podemos representar con n bits es 2 n 1 (restamos uno por empezar en cero). En el ejemplo anterior, para n = 3 podemos representar 8 números decimales distintos (del 0 al 7). Para 8 bits el valor máximo sería = 2552 ( ). Un número binario x puede convertirse en decimal efectuando la suma de las potencias cuyo valor es uno. Ejemplo : (1010) 2 = 1*2 3 +0*2 2 +1*2 1 +0*2 0 = = 10 Para los números expresados en base r podríamos efectuar su conversión a decimal multiplicando cada coeficiente por la potencia correspondiente de r y sumando. Ejemplo : (630) 8 = 6*8 2 +3*8 1 +0*8 0 = = 408 Código hexadecimal. Cualquier entero se puede usar como base de un sistema numérico. Entre los sistemas de numeración más comunes, además del código binario, se encuentra el código hexadecimal. Los números hexadecimales requieren de 16 símbolos, empleando 0,1,...,9, A,B,C,D,E y F. Para convertir un número hexadecimal en decimal empleamos la regla genérica expuesta con anterioridad, es decir, multiplicaremos cada cifra por potencias de 16. Por ejemplo 123 h = 1x x x16 0 = 1x x = 291. Para realizar la transformación inversa también aplicamos la regla general, dividimos sucesivamente por 16. Para obtener el equivalente hexadecimal de un número expresado en forma binaria agruparemos los bits de cuatro en cuatro comenzando por el bit de menor peso (más a la derecha) y codificaremos cada grupo. Por ejemplo = (1101)(0001) 2 = D1 h Dado que esta transformación es muy sencilla, para convertir un número decimal a hexadecimal lo expresaremos primero en binario y a partir de este último en hexadecimal. En el proceso inverso (hexadecimal a binario) sustituiremos cada dígito hexadecimal por el código binario de cuatro bits correspondiente. Las conversiones entre código binario, octal y hexadecimal es muy importante en las comparaciones digitales, ya que cada dígito octal corresponde a tres dígitos binarios y a cada dígito hexadecimal corresponde cuatro dígitos binarios. ( ) 2 -> (26153) 8 Cuando deseamos convertir un número binario a hexadecimal, el proceso es similar excepto que el número binario se divide en grupos de 4. ( ) 2 -> (2C6B) 16

4 La conversión a hexadecimal en binario se realiza con un procedimiento inverso al anterior esto es ; cada dígito octal se convierte en su equivalente binario de tres dígitos y cada dígito hexadecimal se convierte en su equivalente binario de cuatro dígitos. Los números binarios son difíciles de manejar ya que se requiere dos o cuatro veces mas dígitos que su equivalente decimal. Ejemplo : ( ) 2 -> (4095) 10 Una forma de reducir esta deficiencia es emplear la relación entre el sistema de números binarios con el sistema octal o hexadecimal. El número binario ( ) 2 tiene 12 dígitos y los podemos expresar en octal (7777) 8 (cuatro dígitos) o en hexadecimal como (FFF) 16 (tres dígitos), la representación octal o hexadecimal es mas deseable ya que se representa en forma mas compacta, como un tercio o un cuarto del número de dígitos requeridos por el número binario equivalente. Ventajas e inconvenientes de las técnicas digitales frente a las analógicas. Existe una creciente dependencia de las técnicas digitales más que de las analógicas debido a que presentan: 1) Facilidad para transmitir, procesar y almacenar información, y de forma más fiable y eficiente. 2) Mayor exactitud y precisión. La representación de una magnitud analógica que puede tomar un número infinito de valores, mediante una digital que puede tomar sólo un número finito, supone siempre una aproximación. Sin embargo el proceso de medición siempre representa una aproximación, por lo que si se realiza la aproximación digital con la definición suficiente (empleando un número alto de dígitos de precisión), las señales digitales obtenidas no deben reducir la precisión de la medición. En los sistemas analógicos la precisión está limitada, a tres o cuatro dígitos, ya que los valores de los voltajes y corrientes dependen de los componentes del circuito. 3) Los sistemas digitales son más fáciles de diseñar. Esto se debe a que los circuitos empleados son circuitos de conmutación, donde no son importantes los valores exactos de corriente y voltaje, sino el rango donde se encuentran (ALTO o BAJO). 4) Mayor estabilidad. Se ven menos afectados por ruidos, mientras que los sistemas analógicos varían con la temperatura, por la tolerancia de los componentes, etc. 5) Flexibilidad. El comportamiento de un circuito digital se puede reprogramar fácilmente. Como inconveniente cabe destacar, que dado que las variables reales (temperatura, presión, humedad, etc.) son de carácter continuo y por tanto analógico, para realizar el procesamiento digital es necesario incorporar al sistema convertidores analógicos-digitales (A/D) y/o digitalesanalógicos (D/A) que encarecen el coste del sistema. Clasificación de los circuitos digitales. Los circuitos digitales según su funcionamiento los podemos dividir en combinacionales y secuenciales 1. Los sistemas combinacionales son aquellos en los cuales la salida sólo depende de la combinación de las entradas. 2. En los sistemas secuenciales la salida depende no sólo de la combinación de las entradas sino también del estado anterior. Son sistemas con memoria. Texto Extractado de IT&T

5 CIRCUITOS LÓGICOS Un ejemplo es el hecho de que la música actualmente se graba en discos compactos (CD's), que es convertida a formato digital de su formato original que es analógico. El equipo creado para reproducir la música grabada de esta manera está llena de circuitos lógicos digitales. Un circuito lógico es aquel que maneja la información en forma de "1" y "0", dos niveles de voltaje fijos. "1" nivel alto y "0" nivel bajo. Estos circuitos están compuestos por elementos digitales como las compuertas: AND (Y), OR (O), NOT (NO) y combinaciones poco o muy complejas de estos. Estas combinaciones dan lugar a otros tipos de elementos digitales como: - compuerta nand (No Y) - compuerta nor (No O) - compuerta or exclusiva (O exclusiva) - mutiplexores o multiplexadores - demultiplexores o demultiplexadores - decodificadores - codificadores - memorias - flip-flops - microprocesadores - etc. En un circuito digital se transmite información binaria (ceros y unos), y se consigue un circuito complejo con la combinación de bloques de circuitos simples. La información binaria se representa en la forma de "0" y "1", un interruptor "abierto" o "cerrado", "On" y "Off", "falso" o "verdadero", en donde "0" representa falso y "1" verdadero. Los circuitos lógicos se pueden representar de muchas maneras. Una lámpara puede estar encendida o apagada ("on" o "off"), dependiendo de la posición del interruptor. (apagado o encendido) Los posibles estados del interruptor o interruptores que afectan un circuito se pueden representar en una tabla de verdad. Las tablas de verdad pueden tener muchas columnas, pero todas las tablas funcionan de igual forma. Hay siempre una columna de salida que representa el resultado de todas las posibles combinaciones de las entradas. Tabla de verdad Columna(s) de entrada Columna de salida Entrada (interruptor) Salida (lámpara) Abierto Apagado Cerrado Encendido El Número de columnas en una tabla de verdad depende de cuantas entradas hay + 1 (la columna de la salida), el número de filas representa la cantidad de combinaciones en las entradas Número de combinaciones = 2 n, donde n es el número de columnas de la tabla de verdad (menos la columna de salida) Ejemplo: en la siguiente tabla hay 3 columnas de entrada, entonces habrá: 2 3 = 8 combinaciones (8 filas)

6 Un circuito con 3 interruptores de entrada uno a continuación del otro (en serie, con estados binarios "0" o "1"), tendrá 8 posibles combinaciones. Siendo el resultado (la columna salida) determinado por el estado de los interruptores de entrada. Si están en serie, la salida será uno, sólo cuando los 3 interruptores están cerrados. (estado 1) Tabla de verdad LLave 1 LLave 2 LLave 3 Salida 0 0 0? ? ? ? ? ? ? ? 1 Los circuitos lógicos son básicamente un arreglo de interruptores, conocidos como "compuertas lógicas" (compuertas AND, NAND, OR, NOR, NOT, etc) Cada compuerta lógica tiene su tabla de verdad. Y, si pudiéramos ver en mas detalle la construcción de éstas, veríamos que es un circuito comprendido por transistores, resistencias, diodos, etc. conectados de manera que se obtienen salidas específicas para entradas específicas. Construya la tabla de verdad de las compuertas OR, AND, e inversor. La utilización extendida de las compuertas lógicas, simplifica el diseño y análisis de circuitos complejos. La tecnología moderna actual permite la construcción de circuitos integrados (IC s) que se componen de miles (o millones) de compuertas lógicas. - Propiedades del álgebra de Boole. 1) Conmutativa: a + b = b + a ab = ba 2) Distributiva: a + ( b c ) = ( a + b ) (a + c ) a ( b + c ) = ab + ac 3) Asociativa: a + ( b + c ) = a + b + c a ( b c ) = a b c 4) Idempotente: a + a = a a a = a 5) Complemento: a + a = 1 a. a = 0 6) 1 + a = 1 0 a = 0 a.1= a 7) Involución: a = a 8) Absorción: a + ab = a a (a + b) = a Leyes de De Morgan: A+B= A. B A.B =A+B y luego A+A.B=A+B A.(A+B)=A.B

TEMA 1: Control y programación de sistemas automáticos

TEMA 1: Control y programación de sistemas automáticos Esquema: TEMA : Control y programación de sistemas automáticos TEMA : Control y programación de sistemas automáticos....- Introducción.....- Representación de las señales digitales...2 2.- Sistemas de

Más detalles

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN Un sistema de numeración es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos o cantidades. Un sistema de numeración se caracteriza

Más detalles

Notas de Diseño Digital

Notas de Diseño Digital Notas de Diseño Digital Introducción El objetivo de estas notas es el de agilizar las clases, incluyendo definiciones, gráficos, tablas y otros elementos que tardan en ser escritos en el pizarrón, permitiendo

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950).

Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950). Código binario en Sistemas Digitales Historia Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950). Circuitos integrados

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

1. Representación de la información en los sistemas digitales

1. Representación de la información en los sistemas digitales Oliverio J. SantanaJaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2005 2006 1. Representación de la información en los sistemas digitales Durante Hoy Los digital tipo muchos

Más detalles

CIRCUITOS DIGITALES -

CIRCUITOS DIGITALES - CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:

Más detalles

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte)

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA... 1 1. Representación interna de datos.... 1 1.2. Sistemas de numeración.... 2 1.3. Aritmética binaria...

Más detalles

OR (+) AND( ). AND AND

OR (+) AND( ). AND AND Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas

Más detalles

Electrónica digital IES GUADIANA 4º ESO

Electrónica digital IES GUADIANA 4º ESO Departamento de tecnología Electrónica digital IES GUADIANA 4º ESO Mª Cruces Romero Vallbona. Curso 2012-2013 Electrónica digital 4º ESO 1. Señales y tipos... 2 2. Ventajas y desventajas de los sistemas

Más detalles

Tema 2. La Información y su representación

Tema 2. La Información y su representación Tema 2. La Información y su representación 2.1 Introducción. Un ordenador es una máquina que procesa información. La ejecución de un programa implica la realización de unos tratamientos, según especifica

Más detalles

Naturaleza binaria. Conversión decimal a binario

Naturaleza binaria. Conversión decimal a binario Naturaleza binaria En los circuitos digitales sólo hay 2 voltajes. Esto significa que al utilizar 2 estados lógicos se puede asociar cada uno con un nivel de tensión, así se puede codificar cualquier número,

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

Tema 1. SISTEMAS DE NUMERACION

Tema 1. SISTEMAS DE NUMERACION Tema 1. SISTEMAS DE NUMERACION SISTEMAS DE NUMERACION Sistemas de numeración Sistema decimal Sistema binario Sistema hexadecimal Sistema octal. Conversión entre sistemas Códigos binarios SISTEMAS DE NUMERACION

Más detalles

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos: ELECTRÓNICA DIGITAL INDICE 1. TIPOS DE SEÑALES... 3 1.1. SEÑALES ANALÓGICAS... 3 1.2. SEÑALES DIGITALES... 3 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES... 3 2.1. CRONOGRAMAS... 3 2.2. TABLA DE VERDAD...

Más detalles

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8 Dpto. de ATC, Universidad de Sevilla - Página de Capítulo : INTRODUCCIÓN SISTEMAS DE REPRESENTACIÓN NUMÉRICA Introducción Bases de numeración Sistema decimal Sistema binario Sistema hexadecimal REPRESENTACIÓN

Más detalles

SISTEMAS Y CÓDIGOS DE NUMERACIÓN

SISTEMAS Y CÓDIGOS DE NUMERACIÓN INTRODUCCIÓN SISTEMAS Y CÓDIGOS DE NUMERACIÓN Una señal analógica es aquella que puede tomar infinitos valores para representar la información. En cambio, en una señal digital se utiliza sólo un número

Más detalles

DE SISTEMAS: ANALÓGICOS:

DE SISTEMAS: ANALÓGICOS: Fundamentos de Electrónica 1 Sistema Digital Paso de mundo analógico a digital Tipos de Sistemas Digitales Representación de la información Sistemas de Numeración Cambios de Base Sistema Binario, hexadecimal

Más detalles

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos). 1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir

Más detalles

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a:

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a: Contenidos Objetivos En esta quincena aprenderás a: Distinguir entre una señal analógica y una digital. Realizar conversiones entre el sistema binario y el decimal. Obtener la tabla de la verdad de un

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

Tema 1. Representación de la información MME 2012-20131

Tema 1. Representación de la información MME 2012-20131 Tema 1 Representación de la información 1 Índice Unidad 1.- Representación de la información 1. Informática e información 2. Sistema de numeración 3. Representación interna de la información 2 Informática

Más detalles

Representación de Datos. Una Introducción a los Sistemas Numéricos

Representación de Datos. Una Introducción a los Sistemas Numéricos Representación de Datos Una Introducción a los Sistemas Numéricos Tipos de Datos Datos Texto Número Imagen Audio Video Multimedia: Información que contiene números, texto, imágenes, audio y video. Como

Más detalles

13/10/2013. Clase 02: Sistemas de Numeración. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar.

13/10/2013. Clase 02: Sistemas de Numeración. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar. Clase 02: Sistemas de Numeración Ing. Christian Lezama Cuellar Semestre 2013-I Sistemas Digitales y Arquitectura de Computadoras 1 Conjunto de números que se relacionan para expresar la relación existente

Más detalles

Clase 1 Sistemas de numeración

Clase 1 Sistemas de numeración Administración y Configuración de Redes Clase Sistemas de numeración Contenidos Importancia del Sistema de Numeración Sistema de Numeración Decimal Sistema de Numeración Conversión Decimal Binaria Conversión

Más detalles

Instituto Tecnológico de Celaya

Instituto Tecnológico de Celaya LOS SISTEMAS DE REPRESENTACIÓN NUMÉRICA Es común escuchar que las computadoras utilizan el sistema binario para representar cantidades e instrucciones. En esta sección se describen las ideas principales

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES.

CIRCUITOS DIGITALES 1. INTRODUCCIÓN. 2. SEÑALES Y TIPOS DE SEÑALES. TEMA 7: CIRCUITOS DIGITALES 1. INTRODUCCIÓN. La utilización creciente de circuitos digitales ha dado lugar en los últimos tiempos a una revolución sin precedentes en el campo de la tecnología. Basta observar

Más detalles

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU)

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU) Agenda 0 Tipos de datos 0 Sistemas numéricos 0 Conversión de bases 0 Números racionales o Decimales 0 Representación en signo-magnitud 0 Representación en complemento Unidad Central de Procesamiento (CPU)

Más detalles

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola

Más detalles

INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL ELECTRÓNICA: CIRCUITOS Y SISTEMAS ELECTRÓNICOS ELECTRÓNICA: Ciencia aplicada de la familia de la electricidad, que aprovecha las propiedades eléctricas de los materiales

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2

Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL. Fundamentos de Electrónica.2 Fundamentos de Electrónica.1 ELECTRÓNICA DIGITAL Fundamentos de Electrónica.2 Sistema Digital. Paso de mundo analógico a digital. Tipos de Sistemas Digitales. Representación de la información. Sistemas

Más detalles

UNIVERSIDAD BOLIVARIANA DE VENEZUELA

UNIVERSIDAD BOLIVARIANA DE VENEZUELA Introducción: El análisis de la LOGICA DIGITAL precisa la consideración de dos aspectos diferentes: el proceso lógico, que es la base teórica de los computadores, calculadoras, relojes digitales, etc.

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

Clase 02: Representación de datos

Clase 02: Representación de datos Arquitectura de Computadores y laboratorio Clase 02: Representación de datos Departamento de Ingeniería de Sistemas Universidad de Antioquia 2015-2 Contenido 1 2 Representación de la Información Y sistemas

Más detalles

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información TEMA 1: SISTEMAS INFORMÁTICOS Parte 2: representación de la información Qué vamos a ver? Cómo se representa y almacena la información en un ordenador Cómo podemos relacionar la información que entendemos

Más detalles

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS

GUIA DE CIRCUITOS LOGICOS COMBINATORIOS GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION CHIQUINQUIRA (BOYACA) 2015 1 CONTENIDO Pág. QUE ES UN SISTEMA BINARIO. 3 CORTA HISTORIA DE LOS

Más detalles

1. SISTEMAS DIGITALES

1. SISTEMAS DIGITALES 1. SISTEMAS DIGITALES DOCENTE: ING. LUIS FELIPE CASTELLANOS CASTELLANOS CORREO ELECTRÓNICO: FELIPECASTELLANOS2@HOTMAIL.COM FELIPECASTELLANOS2@GMAIL.COM PAGINA WEB MAESTROFELIPE.JIMDO.COM 1.1. INTRODUCCIÓN

Más detalles

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5.

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Representación de la información Contenidos 1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Conversiones

Más detalles

TEMA 5. ELECTRÓNICA DIGITAL

TEMA 5. ELECTRÓNICA DIGITAL TEMA 5. ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN Los ordenadores están compuestos de elementos electrónicos cuyas señales, en principio, son analógicas. Pero las señales que entiende el ordenador son digitales.

Más detalles

Matemática de redes Representación binaria de datos Bits y bytes

Matemática de redes Representación binaria de datos Bits y bytes Matemática de redes Representación binaria de datos Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender

Más detalles

UNIDAD 2: ELECTRÓNICA DIGITAL

UNIDAD 2: ELECTRÓNICA DIGITAL UNIDAD 2: ELECTRÓNICA DIGITAL 2.1. Señales analógicas y digitales Señales analógicas son aquellas que pueden variar de una forma progresiva o gradual sobre un intervalo continuo: Ejemplo: luz, temperatura,

Más detalles

TEMA 3 Representación de la información

TEMA 3 Representación de la información TEMA 3 Representación de la información Álvarez, S., Bravo, S., Departamento de Informática y automática Universidad de Salamanca Introducción Para que el ordenador ejecute programas necesita dos tipos

Más detalles

Materia Introducción a la Informática

Materia Introducción a la Informática Materia Introducción a la Informática Unidad 1 Sistema de Numeración Ejercitación Prof. Alejandro Bompensieri Introducción a la Informática - CPU Ejercitación Sistemas de Numeración 1. Pasar a base 10

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

TEMA 4. Sistema Sexagesimal. Sistema Octal (base 8): sistema de numeración que utiliza los dígitos 0, 1, 2, 3, 4, 5,

TEMA 4. Sistema Sexagesimal. Sistema Octal (base 8): sistema de numeración que utiliza los dígitos 0, 1, 2, 3, 4, 5, TEMA 4 Sistema Sexagesimal 4.0.- Sistemas de numeración Son métodos (conjunto de símbolos y reglas) ideados por el hombre para contar elementos de un conjunto o agrupación de cosas. Se clasifican en sistemas

Más detalles

TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS

TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS TEMA III Circuitos Digitales Electrónica II 9- TEMA III Circuitos Digitales 3. REPRESENTACIÓN DE LA INFORMACIÓN 3. ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS 3. REPRESENTACIÓN DE LA INFORMACIÓN.

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2014

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2014 Ingeniería Electrónica Asignatura: Informática I 1R Trabajo Práctico N 1 - Año 014 Numeración Binaria, Hexadecimal y Octal 1.- Introducción a los números binarios, hexadecimal y octal: Conversión de Decimal

Más detalles

Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal

Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal Unidad 1 Sistemas de numeración Binario, Decimal, Hexadecimal Artículo adaptado del artículo de Wikipedia Sistema Binario en su versión del 20 de marzo de 2014, por varios autores bajo la Licencia de Documentación

Más detalles

TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA.

TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. TEMA II REPASO. SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. INTRODUCCIÓN. Entendemos por sistema de numeración, la forma de representar cantidades mediante un sistema de valor posicional. Los ordenadores

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO

Más detalles

CIRCUITOS COMBINACIONALES

CIRCUITOS COMBINACIONALES Escuela Universitaria de Ingeniería Técnica Industrial de Bilbao Universidad del País Vasco / Euskal Herriko Unibertsitatea ELECTRONICA INDUSTRIAL CIRCUITOS COMBINACIONALES SANCHEZ MORONTA, M - UGALDE

Más detalles

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 2 REPRESENTACIÓN DE LOS DATOS 1 OBJETIVOS Entender cómo la computadora

Más detalles

CAPITULO II SISTEMAS DE NUMERACIÓN Y CÓDIGOS

CAPITULO II SISTEMAS DE NUMERACIÓN Y CÓDIGOS SISTEMA DE NUMERACIÓN Y CÓDIGOS CAPITULO II SISTEMAS DE NUMERACIÓN Y CÓDIGOS CÓDIGO Un código es un grupo de símbolos que representan algún tipo de información reconocible. En los sistemas digitales, los

Más detalles

Introducción a Códigos

Introducción a Códigos Introducción a Página 1 Agenda Página 2 numéricos posicionales numéricos no posicionales Construcción de cantidades Sistema decimal Sistema binario binarios alfanuméricos Conversión decimal a binario Conversión

Más detalles

Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal FCFA Febrero 2012

Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal FCFA Febrero 2012 Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal CONVERSIONES DE UN SISTEMA A OTRO Para la realización de conversiones entre números de bases diferentes se efectúan operaciones aritméticas

Más detalles

Sistemas Electrónicos Industriales II EC2112

Sistemas Electrónicos Industriales II EC2112 Sistemas Electrónicos Industriales II EC2112 Prof. Julio Cruz Departamento de Electrónica Trimestre Enero-Marzo 2009 Sección 2 Previamente Fundamentos de los circuitos eléctricos Análisis de redes resistivas

Más detalles

Unidad Didáctica. Códigos Binarios

Unidad Didáctica. Códigos Binarios Unidad Didáctica Códigos Binarios Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES

GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES GUÍA DE APRENDIZAJE CIRCUITOS LOGICOS COMBINACIONALES COMPETENCIA GENERAL Construye circuitos digitales básicos en base a circuitos integrados MSI. COMPETENCIAS PARTICULARES 1. Emplea los sistemas numéricos

Más detalles

ELO311 Estructuras de Computadores Digitales. Números

ELO311 Estructuras de Computadores Digitales. Números ELO311 Estructuras de Computadores Digitales Números Tomás Arredondo Vidal Este material está basado en: material de apoyo del texto de David Patterson, John Hennessy, "Computer Organization & Design",

Más detalles

INDICE PALOMA GUADALUPE MENDOZA VILLEGAS CYNTHIA PATRICIA GUERRERO SAUCEDO 1

INDICE PALOMA GUADALUPE MENDOZA VILLEGAS CYNTHIA PATRICIA GUERRERO SAUCEDO 1 INDICE UNIDAD 1: SISTEMAS NUMERICOS 1 SISTEMA BINARIO...3 1.1 CONVERSION DE DECIMAL A BINARIO...4 1.2 CONVERSION DE BINARIO A DECIMAL...6 2 SISTEMA HEXADECIMAL...7 2.1 CONVERSION DE DECIMAL A HEXADECIMAL...7

Más detalles

Sistemas numéricos. Aurelio Sanabria Taller de programación

Sistemas numéricos. Aurelio Sanabria Taller de programación Sistemas numéricos Aurelio Sanabria Taller de programación II semestre, 2015 Sistemas numéricos Son un conjunto de reglas y símbolos que permiten construir representaciones numéricas. Los símbolos son

Más detalles

TECNOLOGÍA 4º ESO. 20 2 Realizando la lectura como indica la flecha 0 10 2 obtenemos: 20 10) =10100 2) 0 5 2 1 2 2 0 1 Lectura

TECNOLOGÍA 4º ESO. 20 2 Realizando la lectura como indica la flecha 0 10 2 obtenemos: 20 10) =10100 2) 0 5 2 1 2 2 0 1 Lectura Ejercicio Nº1 : La electrónica digital trabaja con dos niveles de tensión 0 V ó 5 voltios, equivalentes a 0 y 1, es decir, ausencia de tensión y presencia de tensión. Al trabajar sólo con dos niveles de

Más detalles

SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12)

SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12) SISTEMAS DE NUMERACIÓN 1. Expresa en base decimal los siguientes números: (10011) ; ( 11001,011 ) 4 (10011) = 1. + 0. + 0. + 1. + 1. = 16 + + 1 = 19 (11001, 011) 1. 1. 0. 0. 1. 0. 1. 1. 4 1 = + + + + +

Más detalles

Por ejemplo convertir el número 131 en binario se realiza lo siguiente: Ahora para convertir de un binario a decimal se hace lo siguiente:

Por ejemplo convertir el número 131 en binario se realiza lo siguiente: Ahora para convertir de un binario a decimal se hace lo siguiente: Como convertir números binarios a decimales y viceversa El sistema binario es un sistema de numeración en el que los números se representan utilizando 0 y 1. Es el que se utiliza en los ordenadores, pues

Más detalles

Cualquier número de cualquier base se puede representar mediante la siguiente ecuación polinómica:

Cualquier número de cualquier base se puede representar mediante la siguiente ecuación polinómica: SISTEMAS DE NUMERACIÓN Los números se pueden representar en distintos sistemas de numeración que se diferencian entre si por su base. Así el sistema de numeración decimal es de base 10, el binario de base

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

153 = 1x100 + 5x10 + 3x1

153 = 1x100 + 5x10 + 3x1 ELECTRÓNICA DIGITAL Introducción Hemos visto hasta ahora algunos componentes muy utilizados en los circuitos de electrónica analógica. Esta tecnología se caracteriza porque las señales físicas (temperatura,

Más detalles

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN.

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. INDICE. CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. TÉRMINOS BÁSICOS DE LA INFORMÁTICA. REPRESENTACIÓN INTERNA DE LA INFORMACIÓN. El SISTEMA BINARIO DE NUMERACION. El sistema decimal

Más detalles

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica.

El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. 5.2 SISTEMAS DE NUMERACIÓN. DECIMAL El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. La base de un sistema indica el número de caracteres

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO TRABAJO REALIZADO COMO APOYO PARA LA CATEDRA INFORMATICA I Autora: Ing. Ing. Sylvia

Más detalles

SISTEMAS NUMERICOS. Ing. Rudy Alberto Bravo

SISTEMAS NUMERICOS. Ing. Rudy Alberto Bravo SISTEMAS NUMERICOS SISTEMAS NUMERICOS Si bien el sistema de numeración binario es el más importante de los sistemas digitales, hay otros que también lo son. El sistema decimal es importante porque se usa

Más detalles

Electrónica Digital. Conceptos Digitales. Dr. Oscar Ruano 2011-2012 1

Electrónica Digital. Conceptos Digitales. Dr. Oscar Ruano 2011-2012 1 Electrónica Digital Conceptos Digitales Dr. Oscar Ruano 2011-2012 1 Magnitudes analógicas y digitales Magnitud Analógica: toma valores continuos: Por ejemplo la temperatura no varía de entre 20ºC y 25ºC

Más detalles

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES SISTEMA DE NUMERACIÓN BASE 2 El sistema de numeración binario es el conjunto de elementos {0, 1} con las operaciones aritméticas (suma, resta,

Más detalles

1 LA INFORMACION Y SU REPRESENTACION

1 LA INFORMACION Y SU REPRESENTACION 1 LA INFORMACION Y SU REPRESENTACION 1.1 Sistemas de numeración Para empezar a comprender cómo una computadora procesa información, debemos primero entender cómo representar las cantidades. Para poder

Más detalles

Tema 1 - Sistemas numéricos y códigos

Tema 1 - Sistemas numéricos y códigos - y códigos Eduardo Rodríguez Martínez Departamento de Electrónica División de Ciencias Básicas e Ingeniería Universidad Autónoma Metropolitana Unidad Azcapotzalco Email: erm@correo.azc.uam.mx Oficina:

Más detalles

SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN)

SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN) SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN) INTRODUCCIÓN Desde hace mucho tiempo, el hombre en su vida diaria se expresa, comunica, almacena información, la manipula, etc. mediante letras y números. Para

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Sistema binario 0,1 Sistema octal 0, 1, 2, 3, 4, 5, 6, 7 Sistema decimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Sistema hexadecimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Una señal

Más detalles

Unidad didáctica: Electrónica Digital

Unidad didáctica: Electrónica Digital Unidad didáctica: Electrónica Digital CURSO 4º ESO versión 1.0 1 Unidad didáctica: Electrónica Digital ÍNDICE 1.- Introducción. 2.- Sistemas de numeración. 2.1.- Sistema binario. 2.2.- Sistema hexadecimal.

Más detalles

Unidad didáctica: Electrónica Digital

Unidad didáctica: Electrónica Digital 1 de 36 07/09/2012 0:59 Autor: Antonio Bueno Unidad didáctica: "Electrónica Digital" CURSO 4º ESO Autor: Antonio Bueno ÍNDICE Unidad didáctica: "Electrónica Digital" 1.- Introducción. 2.- Sistemas de numeración.

Más detalles

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Informática Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Temas O Sistema de Numeración O Conversión entre números decimales y binarios. O El tamaño de las cifras binarias

Más detalles

Representación de la Información

Representación de la Información Representar: Expresar una información como una combinación de símbolos de un determinado lenguaje. Trece -> símbolos 1 y 3 Interpretar: Obtener la información originalmente representada a partir de una

Más detalles

Hardware I - Datos e información en el ordenador

Hardware I - Datos e información en el ordenador Hardware I - 1. El tratamiento de la información. Datos e información. Conviene, en primer lugar, diferenciar el significado de los términos datos e información. La información es un concepto muy amplio,

Más detalles

SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN DE DECIMAL A BINARIO

SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN DE DECIMAL A BINARIO SISTEMS DE NUMERIÓN Y ODIFIIÓN DE DEIML INRIO Sistema decimal: es un sistema de numeración en base 0, tiene 0 posibles dígitos (p i ). En cada número, el valor que toman sus dígitos depende de la posición

Más detalles

Universidad autónoma de Guerrero Unidad Académica de Ingeniería. Eric Rodríguez Peralta. erodriguez@uagro.mx. Sistemas numéricos

Universidad autónoma de Guerrero Unidad Académica de Ingeniería. Eric Rodríguez Peralta. erodriguez@uagro.mx. Sistemas numéricos istemas numéricos Circuitos Lógicos esión : istemas numéricos y códigos istema numérico: Es un sistema que emplea un conjunto determinado de símbolos o dígitos para representar cantidades numéricas. Existen

Más detalles