Daniel Ulloa EDI Electrónica Industrial 16/04/2012

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Daniel Ulloa EDI Electrónica Industrial 16/04/2012"

Transcripción

1 Índice General Capacitor... 2 I. Partes de un capacitor... 2 II. Capacitancia... 2 III. Material Dieléctrico... 4 Polarización Eléctrica... 4 Constante dieléctrica... 4 IV. Tipos de capacitores... 5 Capacitores Fijos... 5 Capacitores Variables... 7 V. Tolerancia de Capacitores... 8 VI. Corriente de Fuga... 9 Medición de Corriente de Fuga... 9 VII. ESR... 9 Medición de ESR VIII. Simbología de Capacitores IX. Comportamiento en Corriente Continua X. Comportamiento en Corriente Alterna XI. Carga y Descarga de un Capacitor XII. Asociación de capacitores Serie Paralelo Bobinas I. Autoinducción II. Ley de Faraday III. Efecto de Autoinducción Coeficiente de autoinducción IV. Inductancia de una bobina V. Simbología de Bobinas Permeabilidad Magnética VI. Comportamiento en Corriente Continua VII. Comportamiento en Corriente Alterna VIII. Tensiones inducidas en la conexión-desconexión IX. Asociación de Bobinas Serie Paralelo Bibliografía... 23

2 Capacitor Es un dispositivo capaz de almacenar energía en forma de un campo eléctrico. La habilidad de los capacitores para almacenar energía se conoce como capacitancia o capacidad, y es la cantidad de cargas eléctricas que puede almacenar. I. Partes de un capacitor Las partes que componen un capacitor son: terminales o bornes, placas, material dieléctrico, aislante y encapsulado. Algunas dependen si el capacitor es polarizado o no polarizado. Partes de un capacitor no polarizado y uno polarizado II. Capacitancia La capacitancia es la capacidad que tienen los cuerpos para mantener una carga eléctrica. Está determinada por la cantidad de energía eléctrica almacenada para un potencial electrico dado. Su unidad es el Faradio. La capacidad puede ser obtenida mediante la relación entre la diferencia de potencial entre las placas y la carga eléctrica almacenada en el capacitor. Q C = V Página 2 de 23

3 Donde: C: Capacidad, en Faradios Q: Carga electrica almacenada, en Coulomb V: Diferencia de potencial, en Volts Tambien podemos determinar la capacidad de un capacitor si el área de sus placas, la distancia entre placas y el material dieléctrico utilizado. La formula para determinar la capacitancia es la siguiente: C = Er * A d Donde: C: Capacitancia Er: Permitividad Relativa A: Área de la placa d: Distancia entre placas Dimensiones necesarias para calcular la capacidad de un capacitor Página 3 de 23

4 III. Material Dieléctrico El Dieléctrico a veces es confundido con los materiales aislantes, pero se diferencian de estos debido a que al ser sometidos por un campo eléctrico externo producen un campo eléctrico interno. Todos los materiales dieléctricos son aislantes, pero no todos los materiales aislantes son dieléctricos. Polarización Eléctrica Es el campo vectorial que expresa la densidad de los momentos eléctricos dipolares permanentes o inducidos en un material dieléctrico. En algunas sustancias podemos encontrar moléculas llamadas moléculas polares, en las cuales las cargas eléctricas se encuentran distribuidas de forma asimétrica. En condiciones naturales, sin estar excitado por un campo eléctrico externo, un material dieléctrico posee sus moléculas polares dispersas y desordenadas. De modo que un cuerpo electrizado inducirá a que las moléculas se ordenen según la polaridad de las cargas del cuerpo externo. Ahora que estas moléculas se encuentran ordenadas producen un campo eléctrico opuesto al que lo excita. Si lo vemos desde el punto de vista de un capacitor, estaríamos aumentando el umbral para que se produzca un arco eléctrico entre las placas (ruptura dieléctrica) Las consecuencias de introducir un material dieléctrico en un capacitor son: Disminuye el campo eléctrico entre las placas del condensador. Disminuye la diferencia de potencial entre las placas del condensador, en una relación k Vi. Aumenta la diferencia de potencial máxima que el condensador es capaz de resistir sin que salte una chispa entre las placas (ruptura dieléctrica). Aumenta la capacitancia del condensador en k veces. Constante dieléctrica Cada material dieléctrico tiene una constante dieléctrica k o permitividad relativa Er Material k Ácido acético 6,2 Agua a 20ºC 80,2 Aire Alcohol etílico 24,55 Algodón 1,3 Baquelita 4,8 Cuarzo 4,6 Diamante 5,87 Epoxy 3,6 Fluor 3 a 5 Página 4 de 23

5 Germanio 16 Mica 5,4 Neoprene 6,6 Niobato de Magnesio de Plomo Niobato de Potasio de Tantalio a 0ºC Nylon 3,5 Papel 3,3 ; 3,5 Papel encerado 3,7 Parafina 2,1 a 2,5 Pentóxido de Tantalio 27 Porcelana 6 a 8 Sal 5,9 Silicona 3,2 Teflón 2,1 Vacío 1 Vidrio 4 a 7 IV. Tipos de capacitores Los capacitores se clasifican en capacitores con capacitancia fija y capacitancia variable y a su vez en el material con el que están construidos. Capacitores Fijos Capacitores de Cerámica Estos capacitores tienen la característica de tener valores casi nulos de inductancias parasitas y perdidas o fugas de corriente. Son utilizados en circuitos que necesitan alta estabilidad y bajas perdidas en altas frecuencias. Capacitores Electrolíticos Grandes valores de capacitancia en tamaño reducido gracias a la forma en la que las placas y el dieléctrico se encuentran enrollados. Un gran inconveniente en este tipo de capacitores es la gran corriente de ruptura y un bajo voltaje de ruptura. Normalmente tienen polaridad, pero también los hay no polarizados. Los no polarizados son utilizados como solución económica en los filtros de cruce de sistemas de audio. Los polarizados son para bloquear la componente de corriente continua presente en la corriente alterna. Página 5 de 23

6 Capacitores de Lámina de Plástico Poseen gran resistencia de aislamiento, volumen reducido y excelente comportamiento a la humedad y variación de temperatura. Los materiales más utilizados son: poliestireno, poliéster, policarbonato y teflón. Capacitores de Papel El dieléctrico es de celulosa impregnada con resinas o parafinas. Destaca su reducido volumen y gran estabilidad frente a cambios de temperatura. Tienen la propiedad de autor regeneración en caso de perforación. Se emplean en electrónica de potencia y energía para acoplamiento, protección de impulsos y aplanamiento de ondulaciones en frecuencias no superiores a 50Hz. Capacitores de Mica Capacitores que consisten de hojas de mica y aluminio colocados de manera alternada y protegidos por un plástico moldeado. Son de costo elevado. Tiene baja corriente de fuga y alta estabilidad. Capacitores de Tantalio Son más flexibles y confiables, y presentan mejores características que los electrolíticos de aluminio, pero también su costo es mucho más elevado. Página 6 de 23

7 Capacitores Variables Capacitores variables giratorios Muy utilizados para la sintonía de aparatos de radio. La idea de estos es variar con la ayuda de un eje (que mueve las placas del capacitor) el área efectiva de las placas que están frente a frente y de esta manera se varía la capacitancia. Estos capacitores se fabrican con dieléctrico de aire, pero para reducir la separación entre las placas y aumentar la constante dieléctrica se utiliza plástico. Esto hace que el tamaño del capacitor sea menor. Capacitores ajustables Trimmer Se utiliza para ajustes finos, en rangos de capacitancias muy pequeños. Normalmente éstos, después de haberse hecho el ajuste, no se vuelven a tocar. A continuación una tabla con los tipos de capacitores mas conocidos y disponibles en el mercado, su material dieléctrico, armadura, rango de valores y rango de tensiones máximas. Página 7 de 23

8 V. Tolerancia de Capacitores Son los límites en los que puede variar la capacidad de un capacitor según su valor nominal, son determinados por el fabricante. Página 8 de 23

9 VI. Corriente de Fuga Si mantenemos cargado un condensador durante largo tiempo, a través del dieléctrico hay un paso de electrones llamado corriente de fuga, disminuyendo así la capacidad del condensador. Por ello, el dieléctrico debe tener gran resistencia de aislamiento, que disminuye con el aumento de la humedad y de la temperatura. Los más afectados son los de papel, mica y cerámicos, por este orden. Medición de Corriente de Fuga Se realiza con una fuente de alimentación de corriente continua que se ajusta a la tensión nominal de trabajo del capacitor y se aplica al mismo a través de un resistor de, por ejemplo, 1K ohms. La caída de tensión sobre el resistor, medida con un voltímetro, o el valor de corriente continua medido con un microamperímetro, luego de producirse la carga inicial, dará idea de la corriente de fuga, que deberá compararse con la especificada por el fabricante en su hoja de datos. Este tipo de medición resulta útil en los capacitores conectados como acoplo entre etapas de amplificadores de audio. VII. ESR Un capacitor ideal solo tiene capacidad pura, pero un capacitor real tiene resistencias e inductancias. Por el lado de las resistencias tenemos la Resistencia Equivalente Serie (ESR) y la Resistencia Equivalente Paralela (EPR). La resistencia equivalente paralela (EPR) causa una corriente de fuga que, además, calienta el condensador. Si el valor de esta resistencia disminuye aumenta la corriente de fuga pero esto no suele ser un problema común en condensadores electrolíticos excepto cuando se cortocircuitan y la resistencia paralela cae a un valor muy bajo, casi cero. La ESR también causa que el condensador se caliente ya que la corriente de rizado carga y descarga el condensador a través de esta resistencia. El valor de la ESR se ha convertido en un parámetro muy importante en los últimos años ya que la miniaturización de los condensadores ha hecho que se incremente su valor además de que las fuentes conmutadas, al funcionar a mayor frecuencia, requieren menores capacidades lo que resulta en mayor corriente de rizado por microfaradio. Las fuentes conmutadas funcionan a frecuencias mucho más altas lo cual significa que requieren valores de capacidad para los filtros mucho más reducidos pero esto implica valores de ESR más altos y más calentamiento. Al calentarse el condensador se seca el electrolito lo cual incrementa la ESR y esto lleva a una espiral destructiva. Página 9 de 23

10 Medición de ESR Puede realizarse con un generador de RF generalmente ajustado a una frecuencia de unos 50 a 100 KHz. En serie con el capacitor se debe conectar un resistor igual a la impedancia de salida del generador y en paralelo con él, un milivoltímetro de RF o bien, un osciloscopio. Cuanta más diferencia de potencial exista sobre el resistor, mejor será el estado del capacitor. Las lecturas tomadas sólo servirán para la frecuencia elegida, perdiendo sentido el realizar comparaciones entre valores de ESR medidos a diferentes frecuencias. También puede utilizarse un medidor especializado de Resistencia Serie Equivalente, como el CAPACheck. Un instrumento de este tipo combina todos los instrumentos de laboratorio mencionados en la medición de ESR, ya conectados y ajustados adecuadamente a la misma frecuencia. Esta comprobación permitirá medir la resistencia serie de sus terminales, su unión a las placas, el estado de sequedad del electrolito interno y de la capa de óxido, es decir, cuán lejos está un capacitor de su condición inicial, y será muy útil para determinar rápidamente el estado dinámico de los capacitores. VIII. Simbología de Capacitores Página 10 de 23

11 IX. Comportamiento en Corriente Continua Si se conecta una batería a un capacitor, circulará por él una corriente continua. Circula una corriente de los terminales de la fuente hacia las placas del capacitor El terminal positivo de la fuente saca electrones de la placa superior y la carga positivamente. El terminal negativo llena de electrones la placa inferior y la carga negativamente. Esta situación se mantiene hasta que el flujo de electrones se detiene (la corriente deja de circular) comportándose el capacitor como un circuito abierto para la corriente continua. (no permite el paso de corriente). Normalmente se dice que un capacitor no permite el paso de la corriente continua. La corriente que circula es una corriente que varía en el tiempo (corriente que si puede atravesar un capacitor), desde un valor máximo a un valor de 0 amperios, momento en que ya no hay circulación de corriente. Esto sucede en un tiempo muy breve y se llama "transitorio" X. Comportamiento en Corriente Alterna En CA, un capacitor ideal ofrece una resistencia al paso de la corriente que recibe el nombre de reactancia capacitiva, XC, cuyo valor viene dado por la inversa del producto de la pulsación ( ) por la capacidad, C: Si la pulsación se expresa en radianes por segundo (rad/s) y la capacidad en faradios (F), la reactancia resultará en ohmios. La Corriente Alterna puede pasar por un capacitor, pero al hacerlo el voltaje se encuentra desfasado 90º hacia atrás con respecto a la corriente que lo atraviesa. Página 11 de 23

12 Donde el trazo azul es la corriente y el trazo rojo la tensión. Para saber el valor de corriente instantánea aplicamos: i ( t) = Io * Sen *( ωt + β + 90º ) Y para conocer el valor de tensión instantáneo u ( t) = Vo * Sen( ω t + β ). La simulación fue realizada en Multisim 12 y el circuito de pruebas fue el siguiente: XI. Carga y Descarga de un Capacitor En el siguiente circuito, cuando el interruptor S1 permite el paso de la corriente al circuito, formado por un Capacitor y Resistencia en serie con la fuente de alimentación, podemos apreciar que la corriente aumenta hasta su valor máximo y luego cae lentamente. Matemáticamente podemos expresar que la corriente máxima es: V 12V I = = = 12µ A y el tiempo que tarda el capacitor en cargarse al 63.2% de su R 1000Ω valor nominal de tensión es: τ = R * C = 1000Ω *10µ F = 10ms y el tiempo que tarda en cargarse al 99.3% es 5 τ = 10ms *5 = 50ms. El proceso de descarga se produce al abrir el circuito, donde la tensión en el capacitor cae hasta los 0V y se produce un transitorio de corriente negativa. Página 12 de 23

13 En el oscilograma podemos observar que el trazo azul es la corriente y el trazo rojo es la tensión. Se ve que al conectar la tensión se produce un pico de corriente transitorio y el comienzo de carga del capacitor, que responden a los tiempos de la formula anterior. Página 13 de 23

14 XII. Asociación de capacitores Serie Un conjunto de capacitores conectados en serie forman un único capacitor, llamado CT Para asociar capacitores en serie aplicamos la formula: = CT C1 C2 C3 Cn Paralelo Un conjunto de capacitores conectados en paralelo forman un único capacitor, llamado CT. Para asociar capacitores en paralelo aplicamos la formula: CT = C1 + C2 + C Cn Página 14 de 23

15 Bobinas La bobina o inductor es conocida por estar comprendida por espiras de alambre arrolladas. Son componentes que almacenan energía en forma de campo magnético debido al fenómeno de la autoinducción. En todo material conductor en el cual circula una corriente se produce a su alrededor un campo magnético. Al estar el inductor hecho de espiras de cable, el campo magnético circula por el centro del inductor y cierra su camino por su parte exterior. I. Autoinducción Es un fenómeno por el cual en un circuito eléctrico una corriente eléctrica variable en el tiempo genera otra fuerza electromotriz o voltaje inducido, que se opone al flujo de la corriente inicial inductora, es decir, tiene sentido contrario. El fenómeno de autoinducción surge cuando el inductor y el inducido constituyen el mismo elemento. Cuando por un circuito circula una corriente eléctrica, alrededor se crea un campo magnético. Si varía la corriente, dicho campo también varía y, según la ley de inducción electromagnética, de Faraday, en el circuito se produce una fuerza electromotriz o voltaje inducido, denominado fuerza electromotriz autoinducida. II. Ley de Faraday La Ley de inducción electromagnética de Faraday se basa en los experimentos que Michael Faraday realizó en 1831 y establece que la magnitud de la f.e.m generada en una espira es proporcional a la rapidez de variación del flujo magnético en la unidad de tiempo. Quiere decir que, cuanto mayor sea la cantidad de líneas de fuerza cortadas por la espira y mas rápido sea el movimiento, mayor es la magnitud de f.e.m inducida. Su expresión matematica es: Donde: Φ fem = t Fem: Fuerza Electromotriz Φ : Tasa de variación temporal del flujo magnetico. t El signo negativo (-) es para indicar que la f.e.m inducida será siempre de signo tal que se opondra a la causa que la origina De forma más simple podemos determinar que: Φ fem = t

16 Siendo: Φ : Variación de flujo magnético t : Variación de tiempo III. Efecto de Autoinducción La circulación de un valor constante de corriente a traves de una bobina da lugar a un valor constante de campo magnético. Si se produce una variación de la intensidad de la corriente ( I ), produce una variación del campo magnético ( Φ ), y la variación de lineas de flujo hace que se induzca f.e.m en las espiras que corte, que pueden ser las de otra bobina o las de ella misma. La inducción de una f.e.m en una bobina, provocada por la variación de flujo en esa misma bobina se denomina autoinduccion. Este fenómeno fisico ocurre siempre en las bobinas cuando se producen variaciones de corriente. Las variaciones de campo magnetico que se producen en una bobina pueden hacer que se induzcan corrientes en otras bobinas cercanas, pero tambien en ella misma (se autoinduce). Los efectos sobre inducción electromagnetica obedecen a la ley de Lenz, la f.e.m autoinducida aparece siempre con un sentido tal que se opone a la causa que la origina. Prácticamente, esto se traduce en un efecto que tiende a: Aumentar la corriente cuando ésta tiende a disminuir (oposición a que disminuya la corriente). Disminuir la corriente cuando ésta tiende a aumentar (oposición a que aumente la corriente). Página 16 de 23

17 Coeficiente de autoinducción El flujo magnetico generado por una bobina tiene su origen en la corriente que circula por ella. A la constante de proporcionalidad entre el flujo magnético que genera ( Φ ) y la corriente que por ella circula (I) es lo que se denomina coeficiente de autoinducción o inductancia, y se simboliza con L. Φ = L * I Φ L = I El coeficiente de inductancia, L, de una bobina se puede ver como la capacidad que tiene una bobina para generar flujo magnetico cuando por ella circula una corriente. Cuanto mas cantidad de flujo magnetico genere una bobina para una cierta intensidad de corriente más inductancia tiene. El valor de inductancia se mide en Henrios, que se simboliza H. Una bobina tiene la inductancia de 1H si genera un flujo magnetico de 1 Weber cuando por ella circula la intensidad de 1A: Φ L = I 1Wb 1 H = 1A Asi, la f.e.m (E), combinando formulas anteriores, se puede expresar por: Φ = L * I I Φ E = L E = t t Página 17 de 23

18 Indicando que la fuerza electromotriz (E) inducida es proporcional a la velocidad de I variación de la corriente ( ) y al valor de la inductancia (L). A partir de esta formula t también podemos decir, prescindiendo del signo, que la inductancia se puede expresar por: I E E = L L = t I t De donde podemos decir que, una bobina tiene una inductancia de 1 henrio (1H) si se induce en ella una fem de 1 voltio (E = 1V) cuando la variación de corriente que la recorre es de 1 amperio ( I =1A) en 1 segundo ( t = 1s). 1 H 1V = 1A 1s IV. Inductancia de una bobina La inductancia de una bobina es proporcional al cuadrado del número de espiras y de la sección, e inversamente proporcional a su longitud. Donde: µ : Permeabilidad del núcleo n: Numero de espiras S: Sección l: Longitud 2 n * S L = µ l Es una fórmula aproximada, porque en ella se supone que todas las líneas de flujo enlazan todas las espiras pero, en la realidad, algunas líneas de flujo no enlazan las espiras finales. Como en los extremos de la bobina es donde se produce una mayor dispersión de flujo, la aproximación será mejor en una bobina larga que en una corta. Página 18 de 23

19 V. Simbología de Bobinas Permeabilidad Magnética Es la capacidad de una sustancia o medio para atraer y hacer pasar a través de los campos magnéticos, la cual está dada por la relación entre la inducción magnética existente y la intensidad de campo magnético que aparece en el interior de dicho material. Material Permeabilidad Inicial Permeabilidad maxima Acero laminado en frio Hierro Hierro Purificado Hipernik Monimax Permalloy Supermalloy Permedur Hiperco Ferroxcube III Hierro Carbonyl Página 19 de 23

20 VI. Comportamiento en Corriente Continua Una bobina ideal en corriente continua se comporta como un cortocircuito (conductor ideal), ya que al ser i(t) constante, es decir, no varía con el tiempo, no hay autoinducción de ninguna f.e.m. Una bobina real en régimen permanente se comporta como una resistencia cuyo valor será el de su devanado. En régimen transitorio, esto es, al conectar o desconectar un circuito con bobina, suceden fenómenos electromagnéticos que inciden sobre la corriente VII. Comportamiento en Corriente Alterna En corriente alterna, una bobina ideal ofrece una resistencia al paso de la corriente eléctrica que recibe el nombre de reactancia inductiva,, cuyo valor viene dado por el producto de la pulsación ( ) por la inductancia, L: Si la pulsación está en radianes por segundo (rad/s) y la inductancia en henrios (H) la reactancia resultará en ohmios. El efecto de una bobina conectada en un circuito de CA es que retrasa 90º a la corriente respecto a la tensión. i ( t) = Io * Sen *( ωt + β 90º ) El trazo Rojo es la tensión y el trazo Azul es la corriente. Se puede observar que la corriente se encuentra atrasada con respecto a la tensión 90º Página 20 de 23

21 VIII. Tensiones inducidas en la conexión-desconexión Cuando no circula corriente por la bobina no existe flujo magnético, pero en el momento de aplicarle tensión aparece dicho flujo y hay una variación del mismo, que da lugar a una fem inducida que se opondrá a que la corriente aumente en la bobina. Otro caso es cuando por la bobina esta circulando una corriente constante, el flujo es constante y no se induce fem en la bobina, pero en el momento de desconectar la fuente de tension, el flujo se extingue y, por lo tanto, varia y en consecuencia da lugar a una fem autoinducida que se opondra a que la corriente cese. Entonces las corrientes de conexión y desconexion de la bobina dan lugar siempre a unos impulsos de fem cuyo valor depende del valor de la inductancia y de la rapidez de variación de la corriente. En el circuito de pruebas podemos producir el fenómeno antes dicho, pudiéndolo observar en el osciloscopio. Página 21 de 23

22 El trazo rojo corresponde a la tensión, pudiéndose observar un pico transitorio en su conexión y desconexion. El trazo azul es la corriente, se puede observar como se carga la corriente eléctrica para luego ser descargada. IX. Asociación de Bobinas Serie Un conjunto de bobinas conectadas en serie forman una única bobina, llamada LT. Para asociar bobinas en serie aplicamos la formula: LT = L1 + L2 + L Ln Paralelo Un conjunto de bobinas conectadas en serie forman una única bobina, llamada LT. Para asociar bobinas en serie aplicamos: = LT L1 L2 L3 Ln Página 22 de 23

23 Bibliografía Principios de Electricidad y Electrónica II. Antonio Hermosa Donate. Editorial Marcombo. ISBN: es.wikipedia.org Página 23 de 23

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en CAPACITORES Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en su campo eléctrico. Construcción Están

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

TEMA 4 CONDENSADORES

TEMA 4 CONDENSADORES TEMA 4 CONDENSADORES CONDENSADORES Un condensador es un componente que tiene la capacidad de almacenar cargas eléctricas y suministrarlas en un momento apropiado durante un espacio de tiempo muy corto.

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

Resistencias. Resistencias. Resistencias variables. Tolerancia. Potencia de disipación

Resistencias. Resistencias. Resistencias variables. Tolerancia. Potencia de disipación Elementos Pasivos Un elemento pasivo es aquel que no es capaz de entregar potencia al circuito en el cual está conectado esistencia Condensador Bobina esistencia Clasificación según el elemento resistivo

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

1. Fenómenos de inducción electromagnética.

1. Fenómenos de inducción electromagnética. 1. Fenómenos de inducción electromagnética. Si por un circuito eléctrico, en forma de espira, por donde no circula corriente, se aproxima un campo magnético originado por la acción de un imán o un solenoide

Más detalles

Figura 1. Tipos de capacitores 1

Figura 1. Tipos de capacitores 1 CAPACITOR EN CIRCUITO RC OBJETIVO: REGISTRAR GRÁFICAMENTE LA DESCARGA DE UN CAPACITOR Y DETERMINAR EXPERIMENTALMENTE LA CONSTANTE DE TIEMPO RC DEL CAPACITOR. Ficha 12 Figura 1. Tipos de capacitores 1 Se

Más detalles

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Componentes Pasivos CATEDRA: Mediciones Electricas I Y II Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Año 2011 Resistencias Resistencia es la oposición que presenta un conductor

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

TRANSFORMADORES TRANSFORMADORES

TRANSFORMADORES TRANSFORMADORES Sean dos bobinas N 1 y N 2 acopladas magnéticamente. Si la bobina N 1 se conecta a una tensión alterna sinusoidal v 1 se genera en la bobina N 2 una tensión alterna v 2. Las variaciones de flujo en la

Más detalles

Transformador. Transformador

Transformador. Transformador E L E C T R I C I D A D Y M A G N E T I S M O Transformador Transformador ELECTRICIDAD Y MAGNETISMO Bajo ciertas condiciones un campo magnético puede producir una corriente eléctrica. Este fenómeno, conocido

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

Capítulo 3. Magnetismo

Capítulo 3. Magnetismo Capítulo 3. Magnetismo Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. 3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las

Más detalles

FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010

FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Proyecto: Transformador Casero

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica La función amplificadora consiste en elevar el nivel de una señal eléctrica que contiene una determinada información. Esta señal en forma de una tensión y una corriente es aplicada

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

Los transformadores. Inducción en una bobina

Los transformadores. Inducción en una bobina Los transformadores Los transformadores eléctricos han sido uno de los inventos más relevantes de la tecnología eléctrica. Sin la existencia de los transformadores, sería imposible la distribución de la

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Qué diferencia existe entre 110 ó 220 volts?

Qué diferencia existe entre 110 ó 220 volts? Qué diferencia existe entre 110 ó 220 volts? La diferencia en cuestión es el voltaje, como mejor es la 220v, ya que para una potencia determinada, la intensidad necesaria es menor, determinada por la siguiente

Más detalles

Módulo 1: Electrostática Condensadores. Capacidad.

Módulo 1: Electrostática Condensadores. Capacidad. Módulo 1: Electrostática Condensadores. Capacidad. 1 Capacidad Hemos visto la relación entre campo eléctrico y cargas, y como la interacción entre cargas se convierte en energía potencial eléctrica Ahora

Más detalles

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,

Más detalles

Unidad 2 - Corriente Alterna Conceptos:

Unidad 2 - Corriente Alterna Conceptos: Unidad 2 - Corriente Alterna Conceptos: 1. Campo Magnético 2. Ley de inducción de Faraday 3. Inductor Campo Magnético (B) carga eléctrica E carga eléctrica Cargas eléctricas generan un campo eléctrico

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos.

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos. 1 La electricidad Es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática,

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 01-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 06 NOMBRE DE LA PRACTICA: Análisis de Circuitos en Corriente Alterna

Más detalles

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente.

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. 2.1 Inductancia Mutua. Inductancia mutua. Sabemos que siempre que fluye una corriente por un conductor, se genera un campo magnético a través

Más detalles

MARCOS OMAR CRUZ ORTEGA 08/12/2009

MARCOS OMAR CRUZ ORTEGA 08/12/2009 Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4

Más detalles

CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR

CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR Un transformador es un elemento que transfiere energía de un circuito a otro mediante inducción electromagnética. Es un dispositivo eléctrico que sirve para bajar

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total

Más detalles

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY

LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA

Más detalles

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156 nductancia Auto-nductancia, Circuitos R X X XX X X XXXX X X XX a b R a b e 1 e1 /R B e ( d / dt) 0.0183156 1 0 1 2 3 4 Vx f( ) 0.5 0 t A NERCA Y A NDUCTANCA a oposición que presentan los cuerpos al intentar

Más detalles

ELEL10. Fuerza contraelectromotriz (fcem)

ELEL10. Fuerza contraelectromotriz (fcem) Los motores de corriente directa transforman la energía eléctrica en energía mecánica. Impulsan dispositivos tales como malacates, ventiladores, bombas, calandrias, prensas, preforadores y carros. Estos

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta

Más detalles

UNICA Facultad de Ingeniería Mecánica

UNICA Facultad de Ingeniería Mecánica UNICA Facultad de Ingeniería Mecánica y Eléctrica CURSO Dibujo Electrónico Alumno Porras Dávalos Alexander Darwin Paginas de estudio porrasdavalosa1.wikispaces.com porrasdavalosa.wordpress.com porrasdavalosa.blogger.com

Más detalles

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO DPTO. TECNOLOGÍA (ES SEFAAD) UD 4.-ELECTCDAD UD 4.- ELECTCDAD. EL CCUTO ELÉCTCO. ELEMENTOS DE UN CCUTO 3. MAGNTUDES ELÉCTCAS 4. LEY DE OHM 5. ASOCACÓN DE ELEMENTOS 6. TPOS DE COENTE 7. ENEGÍA ELÉCTCA.

Más detalles

Apéndice B Construcción de Bobinas

Apéndice B Construcción de Bobinas Apéndice B Construcción de Bobinas B.1 Características de una Bobina. El diseño de los inductores se basa en el principio de que un campo magnético variable induce un voltaje en cualquier conductor en

Más detalles

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A)

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A) Flujo magnético Φ El campo magnético se representa a través de las líneas de fuerza. La cantidad de estas líneas se le denomina flujo magnético. Se representa por la letra griega Φ; sus unidades son weber

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

Contenido del módulo 3 (Parte 66)

Contenido del módulo 3 (Parte 66) 3.1 Teoría de los electrones Contenido del módulo 3 (Parte 66) Localización en libro "Sistemas Eléctricos y Electrónicos de las Aeronaves" de Paraninfo Estructura y distribución de las cargas eléctricas

Más detalles

1.1 Qué es y para qué sirve un transformador?

1.1 Qué es y para qué sirve un transformador? TRANSFORMADORES_01_CORR:Maquetación 1 16/01/2009 10:39 Página 1 Capítulo 1 1.1 Qué es y para qué sirve un transformador? Un transformador es una máquina eléctrica estática que transforma la energía eléctrica

Más detalles

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad... TEMA 4: CAPACITORES E INDUCTORES 4.1. Índice del tema 4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...4

Más detalles

Tema: Dispositivos de control de motores.

Tema: Dispositivos de control de motores. Tema: Dispositivos de control de motores. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Control Industrial. I. Objetivos. Que el estudiante: Conozca las diferentes partes de un contactor. Desarrolle

Más detalles

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Circuitos Magnéticamente Acoplados Contenidos Desfase de una señal. Inductancia. Inductancia Mutua.

Más detalles

Práctica #2. By K. Ing.kieigi@misena.edu.co

Práctica #2. By K. Ing.kieigi@misena.edu.co Práctica #2 By K. Ing.kieigi@misena.edu.co Práctica #2. Transformadores e Inductores Integrantes: Gissette Ivonne Cortés Alarcón Presentado a: Instructor Leider Gaitán Tecnólogo en Mantenimiento Electrónico

Más detalles

Transformadores de Pulso

Transformadores de Pulso 1/42 Transformadores de Pulso Universidad Nacional de Mar del Plata Facultad de Ingeniería 2/42 Aplicaciones Se usan en transmisión y transformación de pulsos con anchuras desde fracciones de nanosegundos

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

MÁQUINAS ELECTRICAS DE C.C y C.A.. ELECTROMECANICA UNIDAD 4 Generadores de Corriente Continua. Partes de una maquina eléctrica de corriente continua.

MÁQUINAS ELECTRICAS DE C.C y C.A.. ELECTROMECANICA UNIDAD 4 Generadores de Corriente Continua. Partes de una maquina eléctrica de corriente continua. Página19 UNIDAD 4 Generadores de Corriente Continua. Introducción En la actualidad, la generación de C.C. se realiza mediante pilas y acumuladores o se obtiene de la conversión de C.A. a C.C. mediante

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial CAPACITORES INTRODUCCIÓN Los capacitores son componentes eléctricos y electrónicos capaces de almacenar energía eléctrica, la cantidad de energía almacenada dependerá de las características del mismo componente.

Más detalles

Principio del Transformador

Principio del Transformador Transformadores Oil tank High voltage bushing Low voltage bushing Profesor: Ing. César Chilet Cooling radiators Principio del Transformador La bobina primaria crea un flujo magnético variable, que circula

Más detalles

Seminario de Electricidad Básica

Seminario de Electricidad Básica Seminario de Electricidad Básica Qué es la Electricidad? Es una forma de energía natural que puede ser producida artificialmente y que se caracteriza por su poder de transformación; ya que se puede convertir

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts)

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts) Medidas de tensión e intensidad. daptadores de medida: Práctica y Práctica y : Medidas de tensión e intensidad. daptadores de medida. Conceptos generales La corriente eléctrica que circula por un instrumento

Más detalles

MÁQUINAS ELÉCTRICAS: MOTORES

MÁQUINAS ELÉCTRICAS: MOTORES MÁQNAS ELÉCTRCAS: MOTORES Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía eléctrica. Según esto podemos clasificar las máquinas eléctricas en tres

Más detalles

ELEL10. Generadores de CC. Dinamos

ELEL10. Generadores de CC. Dinamos . Dinamos los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

Resistencia y resistividad

Resistencia y resistividad Resistencia y resistividad 2 Conductancia y conductividad Variación de la resistencia con la temperatura EE10Medicioneseléctricas Unidadeseléctricas Culombio(C,unidaddecargaeléctrica) Conexióndeunamperímetroenuncircuito.

Más detalles

CENTRO INDUSTRIAL Y DEL DESARROLLO TECNÓLOGICO. Ingeniero Electrónico. Julio César Bedoya Pino

CENTRO INDUSTRIAL Y DEL DESARROLLO TECNÓLOGICO. Ingeniero Electrónico. Julio César Bedoya Pino Clasificación de las resistencias.??? RESISTORES Lineales No lineales Variables Termistores Varistores (VDR) Fotoresistencias (LDR) Fijos NTC PTC Una Resistencia es.??? La oposición que ofrece un cuerpo

Más detalles

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO Objetivos: Utilización de un voltímetro y de un amperímetro, caracterización de aparatos analógicos y digitales, y efecto de carga. Material: Un voltímetro

Más detalles

Circuito de Encendido. Encendido básico

Circuito de Encendido. Encendido básico Circuito de Encendido Encendido básico Objetivos del Circuito de Encendido 1º Generar una chispa muy intensa entre los electrodos de las bujías para iniciar la combustión de la mezcla Objetivos del Circuito

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

UNIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos. TEMA 6: Análisis de circuitos acoplados magnéticamente

UNIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos. TEMA 6: Análisis de circuitos acoplados magnéticamente UIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos TEMA 6: Análisis de circuitos acoplados magnéticamente TEMA 6 6. Inductancia mutua. Criterio del punto. Autoinducción Hasta ahora hemos

Más detalles

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA Introducción En la gran mayoría de las industrias, hoteles, hospitales, tiendas departamentales, etc. existen gran cantidad de motores; en equipo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

MODULO Nº12 TRANSISTORES MOSFET

MODULO Nº12 TRANSISTORES MOSFET MODULO Nº12 TRANSISTORES MOSFET UNIDAD: CONVERTIDORES CC - CC TEMAS: Transistores MOSFET. Parámetros del Transistor MOSFET. Conmutación de Transistores MOSFET. OBJETIVOS: Comprender el funcionamiento del

Más detalles

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES 1) CONCEPTOS BÁSICOS DE ELECTRICIDAD 1.1 TEORÍA ELECTRÓNICA Los físicos distinguen cuatro diferentes tipos de fuerzas que son comunes en todo el Universo.

Más detalles

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser:

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser: CAPITULO 3 GNRADORS LÉCTRICOS 3. 1 Generalidades y clasificación de los generadores. Se llama generador eléctrico todo aparato o máquina capaz de producir o generar energía eléctrica a expensas de otra

Más detalles

ASOCIACIÓN DE RESISTORES

ASOCIACIÓN DE RESISTORES ASOCIACIÓN DE RESISTORES Santiago Ramírez de la Piscina Millán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. INTRODUCCIÓN. Con esta práctica el alumno aprenderá a identificar los elementos

Más detalles

Polo positivo: mayor potencial. Polo negativo: menor potencial

Polo positivo: mayor potencial. Polo negativo: menor potencial CORRIENTE ELÉCTRICA Es el flujo de carga a través de un conductor Aunque son los electrones los responsables de la corriente eléctrica, está establecido el tomar la dirección de la corriente eléctrica

Más detalles

TRANSFORMADOR NÚCLEOS

TRANSFORMADOR NÚCLEOS TRANSFORMADOR El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA TEMA 6 CORRIENTE ALTERNA TRIÁSICA VI.1 Generación de la CA trifásica VI. Configuración Y-D VI.3 Cargas equilibradas VI.4 Cargas desequilibradas VI.5 Potencias VI.6 actor de potencia Cuestiones 1 VI.1 GENERACIÓN

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

1.1. Sección del núcleo

1.1. Sección del núcleo 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario

Más detalles

Condensador con tensión alterna sinusoidal

Condensador con tensión alterna sinusoidal Capacitancia e Inductancia en Circuito de Corriente Alterna 1.- OBJETIVO: Experiencia Nº 10 El objetivo fundamental en este experimento es el estudio de la corriente alterna en un circuito RC y RL. 2.-

Más detalles

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA 3º ESO Tecnologías Tema Electrónica página 1 de 11 TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA Índice de contenido 1 Electrónica...2 2 Pilas en los circuitos electrónicos...2 3 DIODO...2 4 LED (diodo emisor de

Más detalles

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2 GUIA DE LABORATORIO Nº2 Universidad Nacional de Misiones MÉTODOS CLÁSICOS PARA MODELACIÓN DE SISTEMAS 1. Objetivo de la práctica. Modelación a través de la Respuesta en frecuencia Este laboratorio tiene

Más detalles

Clasificación y Análisis de los Convertidores Conmutados PWM

Clasificación y Análisis de los Convertidores Conmutados PWM Apéndice A Clasificación y Análisis de los Convertidores Conmutados PWM Objetivos del Apéndice Para introducir las topologías clásicas, se clasifican someramente las topologías básicas y sus propiedades

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

Corriente Alterna: actividades complementarias

Corriente Alterna: actividades complementarias Corriente Alterna: actividades complementarias Transformador Dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna. Para el caso de un transformador

Más detalles

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO "Contenido adscrito a la Licéncia "Creative Commons" CC ES en las opciones "Reconocimiento -No Comercial- Compartir Igual". Autor: Ángel Mahiques Benavent ÍNDICE

Más detalles

CONCEPTOS BÁSICOS DE ELECTRICIDAD

CONCEPTOS BÁSICOS DE ELECTRICIDAD CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Experimentos con Máquinas Eléctricas Didácticas 2 ÍNDICE 1 Introducción...3 2 Máquinas de Corriente Continua...4

Más detalles

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA

TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA ÓPTIMO RENDIMIENTO Y FLEXIBILIDAD DE USO TRANSFORMADOR DE ALTA FRECUENCIA CON CONMUTACIÓN AUTOMÁTICA Una de las muchas exigencias de los inversores modernos son unos rangos de entrada y de tensión MPP

Más detalles

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE aboratorio de Electricidad PACTCA - 10 CAACTEÍSTCAS DE NA NDCTANCA EN N CCTO SEE - Finalidades 1.- Estudiar el efecto en un circuito de alterna, de una inductancia y una resistencia conectadas en serie.

Más detalles

Los Circuitos Eléctricos

Los Circuitos Eléctricos Los Circuitos Eléctricos 1.- LA CORRIENTE ELÉCTRICA. La electricidad es un movimiento de electrones, partículas con carga eléctrica negativa que giran alrededor del núcleo de los átomos. En los materiales

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA ELECTRONICA DE POTENCIA Compilación y armado: Sergio Pellizza Dto. Apoyatura Académica I.S.E.S. Los tiristores son una familia de dispositivos semiconductores de cuatro capas (pnpn), que se utilizan para

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 APARATOS DE MEDIDA ANALOGICOS Esencialmente el principio de funcionamiento

Más detalles

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que

Más detalles