QUÉ ES UNA FUNCIÓN? G.E. Shílov (*)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "QUÉ ES UNA FUNCIÓN? G.E. Shílov (*)"

Transcripción

1 QUÉ ES UNA FUNCIÓN? G.E. Shílov (*) La definición general de función, que ahora llamamos clásica, se formó en la matemática no hace mucho, solamente a principios del siglo XIX. Aunque los matemáticos manejaban funciones concretas casi en cada paso del largo desarrollo de la ciencia, tuvo que ser recorrido un largo camino de la cristalización paulatina de los conceptos elementales y de sus generalizaciones, hasta que los científicos llegaron a la necesidad de tener una definición general de función y la hallaron. Así es el camino general del surgimiento de nuevos conceptos. Recordemos, por ejemplo, cómo surgió y cómo se desarrollaba el concepto de número (no del número irracional o del número complejo, sino el concepto del número más sencillo, del número natural). Los historiadores han establecido que los nombres de los números naturales el uno, el dos, el tres, etc. son del origen relativamente tardío. En los tiempos inmemoriables, en todas las lenguas expresiones tales como tres dedos o tres árboles se denotaban con palabras totalmente diferentes (aún ahora en las lenguas de algunas tribus no existen numerales abstractos) (1). De esta forma el hecho de que entre las expresiones tres dedos, tres árboles, tres personas, etc. haya algo común, fue observado y fijado en la lengua en forma de numerales abstractos como resultado de un período extenso del desarrollo histórico. Se puede decir que la formación de los numerales abstractos en la lengua, es la primera abstracción matemática creada por el hombre. La siguiente abstracción en esta dirección que apareció ya en un tiempo histórico más próximo, de dos a tres mil años atrás, estuvo relacionada con la formación del concepto general del número. Resultó ser que se puede pensar y hablar no solo sobre números concretos, sobre el tres o sobre el cuatro, sino sobre cualquier número natural en general. El enunciado: Al intercambiar el orden de los sumandos la suma de dos números no varía, se refiere no a unos números concretos, sino a los números en general. Tal enunciado exige una definición previa de un número. Los antiguos dieron tal definición, pero para la nueva matemática ésta resultó ser inaceptable y muchas veces se daba de una forma nueva. En general, la definición definitiva del número natural, con la que estuviesen de acuerdo todos los matemáticos, no existe incluso en nuestros días (2 ). Un proceso análogo sucedió con el concepto de una función arbitraria. Los matemáticos de la antigüedad, así como los matemáticos de la Edad Moderna hasta fines del siglo XVII, cuando debido a los trabajos de Newton y de Leibniz fue terminada la construcción del cálculo diferencial e integral, no tenían la definición general de la función. En aquel tiempo todavía no tenían necesidad de tal definición, y algunas funciones concretas representaban un campo grande de investigación. (*) Artículo publicado en la revista rusa Matematika v shkole (Matemática en la Escuela Nº1,2003. Traducción del ruso del artículo por Antonio Aparicio Cortés, Profesor de Enseñanza Secundaria del Instituto de Enseñanza Secundaria de Cruces- Baracaldo (Vizcaya). Nota del equipo redactor de la revista Matematika v shkole (Matemática en la escuela): El autor de este artículo Gueorguiy Evguéniyevich Shílov ( ), Doctor de Estado en Ciencias Físico-Matemáticas, es autor de muchos artículos de teoría de funciones, análisis funcional, ecuaciones diferenciales, álgebra y otros apartados de las matemáticas. A su pluma pertenecen aríticulos interesantes de la historia y de la metodología de las matemáticas. Reeditamos uno de estos artículos, que fue publicado en el primer número de nuestra revista del año Se le puede llamar, con derecho, una perla de la cultura matemática. Noviembre ko Azaroa 137

2 G. E. Shílov Si a Newon o a Leibniz le preguntasen qué es una función en general, la respuesta, por lo visto, sería que una función en general es el resultado de ciertas operaciones (algebraicas o transcendentes elementales) con las variables independientes. Semejante definición apareció por primera vez en un trabajo del alumno y colaborador de Leibniz Johan Bernoulli, en En este trabajo la función se definía como una expresión analítica. El primer problema, en el que los matemáticos tuvieron la necesidad de tener una definición general de función, fue el problema de la cuerda vibrante. A este problema se dedicaban los más grandes matemáticos de los mediados del siglo XVIII D Alembert y Euler. Fig. 1 El problema consiste en lo siguiente: A una cuerda elástica, fijada en dos puntos del eje de las abscisas x = 0 y x = l, le dan una forma inicial determinada (fig.1) y después la sueltan sin velocidad inicial. La cuerda empieza a vibrar y se necesita determinar su forma en cualquier instante de un tiempo posterior. Como saben los estudiantes universitarios de los cursos 3º y 4º, esta cuestión se reduce a la búsqueda de una función u(t,x), que satisface la ecuación 2 u (t,x) t = 2 u (t,x) 2 x 2 con las condiciones iniciales u (0,x) = u 0 (x), u (0,x) t Tanto D Alembert como Euler (un año más tarde) señalaron la siguiente regla para la resolución de este problema: la función u 0 (x), que determina la forma inicial de la cuerda, hay que prolongarla del segmento 0 x l al segmento -l x 0 como una función impar. A continuación, la función obtenida, definida ya en el segmento -l x -l, hay que prolongarla a todo el eje x como una función periódica de período 2l. Si la función periódica obtenida se designa por el mismo símbolo u 0 (x), entonces la solución buscada u (t,x) se puede obtener por la fórmula u (t,x) = u 0 (x + t) + u 0 (x - t) (0 x l, t 0) (1) 2 Aunque ambos matemáticos obtuvieron la solución en la misma forma, cada uno de ellos consideraba que su propia solución tiene un carácter más general que la de su colega. Precisamente la resolución se expresa mediante u 0 (x), que determina la forma inicial de la cuerda y es una función arbitraria. Sin embargo cada uno entendía a su manera qué es una función arbitraria. Para D Alembert, que era seguidor de la escuela de J. Bernoulli, una función arbitraria significaba una expresión analítica arbitraria, además desde el mismo comienzo impar y que posee el período 2l. Para Euler una función arbitraria significaba una curva trazada arbitrariamente. Qué concepto es más amplio, cuál es más estrecho? La discusión entre D Alembert y Euler (que duró varios años) puede ser expresada por el siguiente diálogo: = SIGMA Nº 25 SIGMA 25 zk.

3 Euler. Claro está que una curva trazada arbitrariamente, es un concepto más general que una expresión analítica arbitraria. En efecto, cualquier expresión analítica se representa mediante cierta curva; sin embargo, no cualquier curva puede ser representada por una expresión analítica. Por ejemplo, una curva arbitraria se puede tomar con picos, sin embargo la curva que corresponde a una expresión analítica, nunca tiene picos. D Alembert. Esto es sólo la apariencia de la generalidad. No se trata de curvas arbitrarias, sino de las soluciones de las ecuaciones en las que figuran segundas derivadas. Antes de comprobar si su curva es solución, hay que escribir su expresión analítica, de lo contrario cómo la va a derivar? Pero una curva con picos, en general, no puede ser solución de una ecuación en derivadas parciales. Además desde el punto de vista físico, la fuerza de elasticidad en los picos tendría que ser infinita, lo que es absurdo. Euler. Mi curva puede estar compuesta por varios arcos, que corresponden a distintas expresiones analíticas. D Alembert. Los arcos de las curvas que corresponden a distintas expresiones analíticas de las que supuestamente puede estar compuesta la solución, no pueden ser unidos nunca de una forma lisa. En la discusión tomó parte un joven matemático, Daniel Bernoulli (hijo de Johann Bernoulli). Él inventó un argumento que, en su opinión, podría apaciguar a los polemizantes. Precisamente, de la misma manera que las oscilaciones compuestas se componen de las oscilaciones sinusoidales simples, es posible expresar cualquier curva de Euler en forma de la serie u 0 (x) = a 1 sen x + a 2 sen 2x a n sen nx +... (2) l l l y así escribirla en forma de una expresión analítica? Sin embargo los dos maestros, D Alembert y Euler, rechazaron con indignación la propuesta de Daniel Bernoulli. D Alembert dijo que no cualquier expresión analítica puede ser expresada por la serie (2). La suma de tal serie tiene que ser continua y tener la curvatura continua, sin embargo una expresión analitica, por ejemplo, no posee obligatoriamente estas propiedades. Euler dijo que no cualquier curva puede ser representada mediante la serie (2). La curva que yo dibujo puede ir arbitrariamente en cada punto, pero la expresión (2), una vez escrita, ya no admite ninguna arbitrariedad. En particular, desde el principio esta expresión representa claramente una función impar y periódica. Después, dos curvas pueden coincidir en un intervalo y ser diferentes en otro. Las expresiones analíticas de D. Bernoulli, compuestas para estas dos curvas, coincidirían en un intervalo y serían diferentes en otro, lo que es absolutamente imposible para las expresiones analíticas. Bernoulli señalaba en vano que a su disposición hay un número infinito de coeficientes libres: a 1, a 2,.... Puesto que no sabía calcularlos, su argumentación no fue admitida como válida. Lagrange escribía más tarde, refiriéndose a Bernoulli: Es lástima que una teoría tan ingeniosa no resulte válida. De esta forma la discusión seguía sin ser resuelta. Hay que notar que bajo la influencia de las argumentaciones de D Alembert, Euler dio pronto otra definición de función que es más matemática que la anterior en apariencia, pero no en esencia: Cuando ciertas cantidades dependen de otras de tal forma que, al variar las últimas, varían también las primeras, entonces las primeras se llaman funciones de las segundas. Esta nueva definición contiene tanto la definición de D Alembert, como la anterior definición mecánica del mismo Euler. Al mismo Noviembre ko Azaroa 139

4 G. E. Shílov tiempo, puesto que en ella no se habla nada sobre la naturaleza permisible de la dependencia de las primeras cantidades de las segundas, la definición sigue siendo bastante difusa, así que cada uno de los posteriores matemáticos del siglo XVIII tenía libertad para interpretarla a su manera. En el gran curso de cálculo diferencial e integral, escrito por La Croix para la Escuela Politécnica de París (1797), está aceptada de hecho esta misma definición. Adicionalmente está introducida una indicación para decir que la naturaleza de la dependencia puede no ser conocida de antemano. Pero el sentido de esta indicación no consiste en la ampliación del concepto de función, sino simplemente en dar los derechos de ciudadanía a los problemas donde la incógnita es una función. Qué concepto es más amplio y cuál es el más estrecho: el que utiliza la expresión analítica o el que utiliza la curva? Esta cuestión seguía sin resolverse hasta el trabajo de Jean Fourier (1807). Para asombro de todo el mundo, Fourier señaló la regla de cálculo de los coeficientes en la serie de Bernoulli; ésta es conocida ahora para cualquier estudiante: a n = 1 l l -l u 0 (x) sen nx dx, n = 1, 2,... (3) El descubrimiento de Fourier asestó un golpe demoledor a los dogmas del siglo XVIII, con los que argumentaban en sus discusiones D Alembert y Euler y que hasta hace poco parecían indiscutibles. Resultó ser que los valores de la función en unos intervalos pueden no estar relacionados con sus valores en otros intervalos; que dos expresiones analíticas distintas pueden dar resultados iguales en un intervalo y distintos en otro; que cualquier curva, incluso la compuesta por partes heterogéneas, puede estar escrita por una expresión analítica única; que la curva que corresponde a una expresión analítica no está obligada a ser continua y a tener la curvatura continua. Es verdad que Fourier no pudo fundamentar, como es debido, la convergencia de la serie (2) con los coeficientes (3) hacia la función u 0 (x). Para esto le faltaban las definiciones exactas de límite y de la continuidad. Estos conceptos fueron formulados con precisión por primera vez y puestos como base del análisis por Cauchy (en 1821 salió a la luz su famoso Curso de análisis algebraico ). Basándose en los resultados de Cauchy, la demostración necesaria de convergencia la obtuvo sin mayores dificultades Dirichlet en Después del trabajo de Fourier quedó claro que en la definición de función cualquier referencia a la naturaleza analítica de la dependencia es solo un freno. La función tiene que ser definida de alguna forma para cada valor, se exige solamente esto. Lobachevski en su conocida definición de la función (1834) señala la necesidad de la regla (condición), que permite probar cada valor de x. Dirichlet renuncia incluso a la regla entre los valores de la x y de la y: no es importante el método con el que ha sido establecida la correspondencia. La definición de función dada por Dirichlet parecía tan clara e impecable, que fue aceptada por todos los matemáticos sin restricciones. De hecho, todo el desarrollo de las matemáticas en el siglo XIX iba en la dirección del descubrimiento de las posibilidades, dadas en esta definición. Fueron introducidos diferentes tipos de funciones: continuas, diferenciables, analíticas. El propio análisis matemático recibió un nuevo nombre: la teoría de funciones. Una base sólida obtuvo la teoría de funciones de variable compleja y la teoría de ecuaciones diferenciales. Los matemáticos del siglo XIX suponían que los límites del desarrollo del análisis matemático habían sido establecidos por la definición de Dirichlet de una vez y para siempre. 140 SIGMA Nº 25 SIGMA 25 zk.

5 Pero a finales del siglo, los matemáticos constataron con sorpresa que la definición de Dirichlet, que parecía indiscutiblemente clara y precisa, contiene en sí inesperadas dificultades de principio, serias hasta tal punto, que muchos empezaron a negarse a admitir en ella algún sentido. Para aclarar esta cuestión, comparemos la definición de Lobachevski y la definición de Dirichlet aplicándolas al objeto siguiente. Supongamos que a cada número natural N = 1,2,... le corresponde el número (N) que es igual a 1, si en el desarrollo decimal del número hay N nueves seguidos; y es igual a cero en el caso contrario. Se trata de una función de N o no? Dirichlet diría: Está claro que esto es una función. Para cada N, o existen N nueves seguidos en el desarrollo del número, o no existen; la tercera posibilidad se excluye. Puesto que no impongo condiciones a la naturaleza de la dependencia, ante mí hay efectivamente una función definida con exactitud. Lobachevski diría: No conozco la regla que da para cada N la posibilidad de saber si en el desarrollo del número hay N nueves seguidos. Puede ser que esta regla no exista (3). Por consiguiente aquí no hay función. DEFINICIÓN DE FUNCIÓN Una función de una magnitud variable es una expresión analítica, compuesta por esta magnitud y por constantes. J. Bernoulli, Una función es una curva, dibujada por un movimiento libre de la mano. L. Euler, Cuando unas cantidades dependen de otras de tal forma que al variar las últimas también varían las primeras, entonces las primeras se llaman funciones de las segundas. L. Euler, Cualquier cantidad, cuyo valor depende de una o de otras varias cantidades, se llama función de estas últimas, independientemente de si se conocen o no las operaciones que hay que realizar para pasar de éstas a la primera. S. La Croix, Una función de x es un número que se da a cada x y que varía constantemente con la x. El valor de la función puede estar dado o por una expresión analítica o por una condición que da el procedimiento para probar todos los números. La dependencia puede existir y quedarse desconocida. L.I. Lobachevski, y es función de x, si a cada valor de x le corresponde un valor completamente determinado de la y; además no es importante el método con el que ha sido establecida la correspondencia señalada. P. Dirichlet, 1837 Precisamente este punto es importante o no es importante el modo por el que se define la correspondencia entre la x y la y de nuevo suscitó las pasiones en torno a la definición de función ya a principios del siglo XX. Efectivamente, según el sentido literal de la definición de Dirichlet, para definir una función hay que definir sus valores para cada x; además los valores de la función para distintos valores de x no están relacionados entre sí de ninguna manera. Pero de qué forma se puede definir una función? Los valores del Noviembre ko Azaroa 141

6 G. E. Shílov argumento x forman un conjunto infinito y se tratará de un conjunto infinito de condiciones no relacionadas entre sí. Cómo pueden ser formuladas todas? Para la enumeración de un conjunto infinito de condiciones que definen una única función, no bastaría ni sitio ni tiempo. (Precisamente en tal situación se encuentran las así llamadas funciones inconmensurables según Lebesgue, hasta ahora no ha sido señalada ninguna función individual de tal tipo.) Nadie duda que las funciones definidas por una regla, formada por un conjunto finito de palabras, tienen todos los derechos; sin embago tiene sentido una función sin regla? Pero puede ser que las funciones sin regla, como inútiles, se puedan excluir por completo del análisis? Fue emprendida especialmente una revisión con el fin de comprobar qué papel juegan las funciones sin regla en la construcción del análisis de funciones. Los resultados no fueron tranquilizantes. En realidad las funciones sin regla son tan esenciales en la fundamentación del análisis que excluyéndolas no podríamos reconstruir su base armoniosa. (4) Los matemáticos se dividieron en dos tendencias: los partidarios de la definición de función según Dirichlet, que no exigían una regla obligatoria; y los partidarios de la definición de función según Lobachevski, que exigían una regla obligatoria, formada por un número finito de palabras. Los representantes de la segunda corriente, llamados intuicionistas, renunciaban a la mayor parte de análisis clásico y formaban la matemática intuicionista propia. Los representantes de la primera corriente, que no deseaban renunciar a los logros del análisis clásico, se resignaron a aceptar la existencia de muchos hechos paradójicos, que resultaban de la existencia de las funciones sin regla. (5) Actualmente se puede constatar que el posterior desarrollo de las matemáticas no había seguido el camino de los intuicionistas y al fin de cuentas los logros del análisis clásico se quedaron firmes. (6) Sin embargo algunos resultados concretos de los intuicionistas encontraron en nuestros tiempos una aplicación inesperada en la teoría de las computadoras. El tratamiento informático solo pueden tener funciones que se definen mediante reglas con una cantidad finita de palabras y además esta cantidad tiene que ser relativamente pequeña. A finales de los años veinte, sobre la definición de la función se ha cernido otra amenaza, esta vez por parte de los físicos. Los físicos tienen desde hace mucho tiempo un punto de vista singular sobre las matemáticas. Desde su punto de vista, la matemática tiene que ser una herramienta exacta, cómoda y sin fallos, que les permita a ellos, a los fisicos, penetrar más profundamente en los secretos de la naturaleza. Junto con la matemática tales herramientas son el experimento y la intuición física. Para los físicos la matemática clásica es una herramienta respetable, pero bastante voluminosa. En la matemática clásica, por ejemplo, antes de derivar una función hay que convencerse de que esta función posee la derivada, antes de derivar una serie convergente de funciones hay que aclarar si converge uniformemente la serie de las derivadas etc. Todas estas precauciones, desde el punto de vista de los físicos, son innecesarias. Con todo esto el arsenal de la matemática clásica, que comprende los métodos de resolución de las ecuaciones diferenciales e integrales y un conjunto grande de funciones especiales etc., es bastante apreciable en su integridad. Pero en 1930 salió el libro de P. Dirac, Los fundamentos de la mecánica cuántica, donde por primera vez fue expuesta la teoría de nuevos fenómenos en la física del micromundo que los físicos descubrieron en los años 20. Este libro ha marcado época en el desarrollo de la nueva física. Pero la matemática clásica no fue suficiente para Dirac. Introdujo un objeto nuevo y lo llamó función delta. Según la definición de Dirac, la función delta es una función y =(x) que se anula para todos los x, < x < salvo para x = 0; y para x = 0 se convierte en infinito, además de tal forma que 142 SIGMA Nº 25 SIGMA 25 zk.

7 - (x) dx = 1. Desde el punto de vista de un matemático de la corriente clásica, armado de las teorías más nuevas y que no tiene miedo a los infinitos, tal definición es un cúmulo de despropósitos. Imaginémonos el diálogo que podrían mantener Dirac y uno de los matemáticos más vanguardistas de nuestros tiempos Henri Lebesgue, cuyos trabajos determinaron en gran medida el desarrollo de la teoría moderna de funciones de variable real y de otras ramas de las matemáticas. Dirac. La función delta se inscribe maravillosamente en el sistema general de las funciones del análisis matemático. Por ejemplo, para cualquier función clásica (x) que es continua en x=0, es fácil hallar la integral - (x) (x) dx. (4) Teniendo en cuenta la continuidad, se puede considerar que (x) mantiene su valor (0) en un entorno pequeño del punto x=0. Fuera de este entorno (x) vale cero, así que se puede considerar que la integral se extiende solo a este entorno. Sacando (0) fuera del signo de integral, obtenemos la integral de la propia (x) que según la condición vale 1. De esta forma la integral (4) vale (0). Lebesgue. Tanto la definición de la función delta, como el razonamiento expuesto no tienen ningún sentido. Una función que es igual a cero en todos los puntos salvo en uno, tiene que tener la integral igual a cero. Esto es la piedra angular de cualquier teoría de la integral. Dirac. La función delta se puede construir como límite de una sucesión de funciones. Por ejemplo: Tomemos la sucesión de funciones h 1 (x), h 2 (x),..., que se representan por los triángulos isósceles, cuyas bases están situadas en el eje x y se concentran hacia el punto x = 0 y cuyas alturas aumentan indefinidamente de tal forma que las áreas siguen siendo iguales a 1 (fig. 2). Está claro que... lim h n (x) = 0 n- para x> 0 y para x < 0; y también lim h n (x)d(x) = lim - - h n (x) = lim1 =1 Por consiguiente el límite de la sucesión de las funciones h n (x) es precisamente la función delta. Fig. 2 Noviembre ko Azaroa 143

8 G. E. Shílov Lebesgue. Estos razonamientos contienen un error: hablando en general no se puede intercambiar los signos del límite y de la integral. Precisamente fue demostrado por mí un teorema más general, que permite, bajo ciertas condiciones, efectuar esta operación; pero las condiciones de este teorema no se cumplen aquí. Dirac. Se puede obtener la función delta siguiendo otro camino: Tome la función (x) que vale 0 para x < 0 y que vale 1 para x 0 y considere su derivada (x). Está claro que (x) tiene que ser igual a cero para x < 0 y para x > 0, igual a para x = 0, y la integral de (x), que da el incremento de su primitiva, o sea, de la propia (x), vale 1. De esta forma la derivada de (x) es precisamente la función delta. Lebesgue. Otra vez hay un error en el razonamiento. La derivada de una función puede existir o no existir no en general, sino solamente en cada uno de los puntos. La derivada de (x) existe efectivamente para x < 0 y para x > 0 y es igual a cero. En esto Vd. tiene razón, pero para x = 0 la derivada no existe en absoluto. Desde los tiempos de Cauchy se sabe que una función que tiene derivada en algún punto, tiene que ser continua en este punto. Sin embargo la función (x) es discontinua en x = 0. El teorema que dice que la integral de la derivada da el incremento de la primitiva es válido solo para las funciones cuya derivada existe en cada punto. Dirac. Sin embargo, la función delta da unos resultados bastante fructíferos en Física. Sin ella yo no podría resolver el problema más sencillo de la mecánica cuántica, el problema sobre los niveles de energía del átomo de hidrógeno. Por otra parte la solución teórica hallada por mí con la ayuda de la función delta ha recibido confirmación experimental. Lebesgue. Con todo mi respeto hacia la Física no puedo admitir la argumentación de este tipo; ésta está fuera de la Matemática. En la Matemática no existe la función delta. La Matemática no puede tomar parte en el desarrollo teórico de las cuestiones en las que participa la función delta. Como vemos, la situación empezó a ponerse seria. Surgió el peligro de la pérdida del entendimiento mutuo entre los físicos y los matemáticos. Para prevenirla habría que crear una nueva definición de función que poseyera las propiedades siguientes: 1. Las funciones ordinarias del análisis clásico también son funciones en el nuevo sentido de la palabra. 2. La función delta ( y otras funciones singulares de los físicos) también pertenecen al conjunto de las nuevas funciones. 3. Todas las funciones nuevas poseen derivadas que a su vez también son funciones en el nuevo sentido de la palabra. 4. La serie convergente de las nuevas funciones se puede derivar término a término; la serie compuesta por las derivadas siempre tendrá como suma la derivada de la suma de la serie inicial. A primera vista las condiciones son irreconciliables! Tanto mayor es el mérito del matemático soviético S.L. Sóbolev quien inventó una clase de objetos que satisfacen todas las condiciones citadas; posteriormente éstos fueron llamados funciones generalizadas. Veamos cómo se construye la definición de la función generalizada. Designemos mediante K el conjunto de las funciones ordinarias (según Dirichlet), definidas en el eje < x < Estas funciones tienen que ser finitas, o sea, aquellas que se anulan fuera de algun intervalo, continuas y que poseen derivadas continuas de cualquier orden. Estas funciones ordinarias las 144 SIGMA Nº 25 SIGMA 25 zk.

9 vamos a llamar funciones de prueba. Teniendo una función clásica f(x), se puede definir para cada función de prueba (x) el número (x) f(x)dx (5) - que vamos a denotar mediante (,f) y vamos a llamarlo resutado de la influencia de la función f(x) sobre la función prueba (x). Resulta que la función f(x) puede ser restaurada de una forma unívoca, si conocemos solamente los resultados de su influencia sobre cualquier función prueba. En otras palabras, en un principio una función clásica se puede definir tanto mediante sus valores en algunos puntos del eje x, como por los resultados de su influencia sobre las funciones prueba. Ahora se puede dar la definición de la función generalizada. Se dice que está definida una función generalizada f, si a cada función prueba (x) se le pone en correspondencia un número, denotado por el signo (,f) y llamado resultado de influencia de la función f sobre la función prueba (x). No cualquier función generalizada está relacionada con la función clásica mediante una expresión del tipo (5). Supongamos, por ejemplo, que a cada función prueba (x) se le ha puesto en corespondencia un número igual a (0), o sea, igual al valor de la función (x) en el punto x = 0. Se puede demostrar que ninguna función clásica f(x) puede satisfacer la igualdad (x) f(x) dx = (0) - para cualquier función prueba (x). Recordemos que Dirac demostraba la igualdad (x) (x) dx = (0) - En otras palabras, la función delta (x), influyendo sobre cualquier función prueba (x), conduce precisamente al resultado (0). El razonamiento de Dirac, claro está, no es una demostración; sin embargo, hace natural la siguiente definición: la función delta es una función generalizada que aplicada a cualquier función prueba (x) da como resultado (0). De esta forma la función delta, no siendo una función clásica (en esto Lebesgue tiene razón), pertenece al conjunto de las funciones generalizadas. Ahora consideremos la cuestión de la derivabilidad de las funciones generalizadas. Si f(x) es una función ordinaria con una derivada ordinaria f (x), entonces, integrando por partes, se puede obtener fácilmente la fórmula: (,f ) = - f (x) (x) dx = f(x) (x) f(x) (x)dx = (,f) (6) además el término que está fuera de la integral se anula debido a que la función prueba (x) es finita. Noviembre ko Azaroa 145

10 G. E. Shílov La igualdad (6) demostrada para la función ordinaria f(x) con una derivada ordinaria f (x) puede servir de definición de la derivada para cualquier función generalizada. Precisamente la función generalizada f (x) se llama derivada de la función generalizada f, si para cualquier función prueba (x) el valor de la función generalizada f está dado por la igualdad (,f ) = -(, f) De esta forma, cualquier función generalizada tiene derivada que a su vez también es una función generalizada. Puesto que la operación de derivación se puede repetir, vemos que las funciones generalizadas tienen derivadas de cualquier orden. Por ejemplo: si una función ordinaria f(x) no tiene una derivada ordinaria, entonces desde el punto de vista de las funciones generalizadas esto significa que la derivada de la función f(x) ya no es una función ordinaria, sino generalizada. Demostremos ahora que la serie convergente de las funciones generalizadas se puede derivar término a término. Según la definición, la serie de las funciones generalizadas f 1 + f es convergente y tiene como suma la función generalizada f, si para cualquier función prueba (x) la serie numérica (, f 1 ) + (, f 2 ) +... converge y tiene lugar la igualdad (, f 1 ) + (, f 2 ) +... = (, f) De acuerdo con la definición de la derivada de la función generalizada f tenemos o sea, (, f ) = -(, f) = -(, f 1 ) - (, f 2 ) -... = (,f 1 ) + (,f 2 ) +..., f = f 1 + f , lo que se pedía demostrar. De esta forma en el campo de las funciones generalizadas se cumplen las cuatro condiciones que se exigían a la nueva definición de la función que satisface tanto a los matemáticos como a los físicos. Desde los tiempos en los que S.L. Sóbolev introdujo las funciones generalizadas ( ), han pasado muchos años. En todo este tiempo, la teoría de las funciones generalizadas se ha desarrollado ampliamente y se ha hecho necesaria en muchas cuestiones del análisis matemático y en otras ramas de las matemáticas, y así mismo en una serie de problemas físicos. Hemos visto cómo se iba perfeccionando la definición de la función a lo largo de los más de doscientos años. Su última forma no significa el final de su historia. Sin duda en el futuro bajo la influencia de nuevas exigencias tanto de la propia Matemática como de otras ciencias (de la Física, posiblemante de la Biología, pede ser de la Sociología), la definición de la función va a variar, y cada siguiente variación, como antes, va a abrir nuevos horizontes de la ciencia y va a conducir a nuevos e importantes descubrimientos. 146 SIGMA Nº 25 SIGMA 25 zk.

11 NOTAS (1) Véase Gnedenko B.V. Los primeros pasos en el desarrollo del cálculo. Matematika v shkole Nº4. (2) Véase Bourbaki N. Ensayos sobre la historia de las matemáticas (3) Teniendo en cuenta los resultados de los últimos años sobre la existencia de algoritmos para la resolución de ciertos problemas (A.A. Markov y otros), podemos añadir que la consideración de Lobachevski puede ser que no esté exenta de razón. (4) Hablando en lenguaje de la teoría de los conjuntos, las funciones definidas por las reglas, compuestas por un número finito de palabras, forman solamente un conjunto numerable; sin embargo las funciones sin regla, incluso solo las continuas (e incluso sólo las constantes!), forman un conjunto cuya potencia es la del continuo. De esta forma hay muchísimas más funciones sin regla que funciones con regla. Los teoremas fundamentales del análisis, tales como los teoremas de la existencia del supremo de un conjunto acotado, nos conducen enseguida a la necesidad de utilización de funciones sin regla. (5) Está claro que en los tiempos de Lobachevski y de Dirichlet la cuestión "exigir la regla o no exigirla" todavía no podía haber surgido; por consiguiente, solo se puede hablar condicionalmente de que las dos corrientes mencionadas arrancan de Lobachevski y de Dirichlet. (6) La escuela intuicionista es recordada en la matemática como una especie de curiosidad histórica (Bourbaki N. Elementos de la historia de las matemáticas.1963). Noviembre ko Azaroa 147

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS La física es la más fundamental de las ciencias que tratan de estudiar la naturaleza. Esta ciencia estudia aspectos tan básicos como el movimiento,

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Liderazgo se genera en el lenguaje

Liderazgo se genera en el lenguaje Liderazgo se genera en el lenguaje Para nosotros, un buen punto de partida para comprender el liderazgo está en el reconocimiento de que éste se da en el lenguaje. El liderazgo es un fenómeno producido

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Aplicaciones Lineales y Multilineales Continuas

Aplicaciones Lineales y Multilineales Continuas Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

1. MEDIDAS DE TENDENCIA CENTRAL

1. MEDIDAS DE TENDENCIA CENTRAL 1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas

Más detalles

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO - 1 - UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO Tema 1: Operaciones financieras: elementos Tema 2: Capitalización y descuento simple Tema 3: Capitalización y descuento compuesto Tema

Más detalles

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse.

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse. TABLA DE DECISION La tabla de decisión es una herramienta que sintetiza procesos en los cuales se dan un conjunto de condiciones y un conjunto de acciones a tomar según el valor que toman las condiciones.

Más detalles

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad

Más detalles

El rincón de los problemas

El rincón de los problemas Marzo de 2010, Número 21, páginas 165-172 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe De lo particular a lo general, usando grafos Problema En

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde

Más detalles

Estudio de ceros de ecuaciones funcionales

Estudio de ceros de ecuaciones funcionales Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)

Más detalles

Porcentajes. Cajón de Ciencias. Qué es un porcentaje?

Porcentajes. Cajón de Ciencias. Qué es un porcentaje? Porcentajes Qué es un porcentaje? Para empezar, qué me están preguntando cuando me piden que calcule el tanto por ciento de un número? "Porcentaje" quiere decir "de cada 100, cojo tanto". Por ejemplo,

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012 ORIENTACIÓN.1ºESO Carreras de Orientación Una Carrera de Orientación consiste en recorrer en el menor tiempo posible una ruta situada en un terreno desconocido pasando por unos puntos obligados en un orden

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

MATEMÁTICAS. TEMA 5 Límites y Continuidad

MATEMÁTICAS. TEMA 5 Límites y Continuidad MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie

Más detalles

ECUACIÓN QUE OBTIENE CON BUENA APROXIMACIÓN LA SUMA DE LOS PRIMEROS ENTEROS A CUALQUIER POTENCIA ENTERA POSITIVA

ECUACIÓN QUE OBTIENE CON BUENA APROXIMACIÓN LA SUMA DE LOS PRIMEROS ENTEROS A CUALQUIER POTENCIA ENTERA POSITIVA DESDE LA ACADEMIA ECUACIÓN QUE OBTIENE CON BUENA APROXIMACIÓN LA SUMA DE LOS PRIMEROS ENTEROS A CUALQUIER POTENCIA ENTERA POSITIVA LUIS MANUEL MONTAÑO ZETINA* En este trabajo se presenta un análisis numérico

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Suponga que, conversando con su cuate, surge la idea de hacer una apuesta simple. Cada uno escoge decir cara ó sello. Se lanza una moneda al aire, y si sale cara, quien dijo sello le paga a quien dijo

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,

Más detalles

Nota 2. Luis Sierra. Marzo del 2010

Nota 2. Luis Sierra. Marzo del 2010 Nota 2 Luis Sierra Marzo del 2010 Cada mecanismo de definición de conjuntos que hemos comentado sugiere mecanismos para definir funciones y probar propiedades. Recordemos brevemente qué son las funciones

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u

Más detalles

1. INTRODUCCIÓN 1.1 INGENIERÍA

1. INTRODUCCIÓN 1.1 INGENIERÍA 1. INTRODUCCIÓN 1.1 INGENIERÍA Es difícil dar una explicación de ingeniería en pocas palabras, pues se puede decir que la ingeniería comenzó con el hombre mismo, pero se puede intentar dar un bosquejo

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

PROBLEMAS DE ECUACIONES SIMULTÁNEAS

PROBLEMAS DE ECUACIONES SIMULTÁNEAS PROBLEMAS DE ECUACIONES SIMULTÁNEAS Por: ELÍAS LOYOLA CAMPOS 1. En un recinto del zoológico se tienen dos tipos de animales: avestruces y jirafas. Hay 30 ojos y 44 patas, cuántos animales hay de cada tipo?

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION CHIQUINQUIRA (BOYACA) 2015 1 CONTENIDO Pág. QUE ES UN SISTEMA BINARIO. 3 CORTA HISTORIA DE LOS

Más detalles

APRENDIZAJE DEL CONCEPTO DE LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN

APRENDIZAJE DEL CONCEPTO DE LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN APRENDIZAJE DEL CONCEPTO DE LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN AUTORÍA ANTONIO JESÚS MARTÍNEZ RUEDA TEMÁTICA MATEMÁTICAS ETAPA BACHILLERATO Resumen La introducción del concepto de límite en bachillerato

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2 Los vectores Los vectores Distancia entre dos puntos del plano Dados dos puntos coordenados del plano, P 1 = (x 1, y 1 ) y P = (x, y ), la distancia entre estos dos puntos, d(p 1,P ), se calcula de la

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Función exponencial y Logaritmos

Función exponencial y Logaritmos Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN Ejercicio 1. Diseñar una planilla EXCEL que tome como dato de entrada un número entero y devuelva la representación en base 2. Testearla con los números 23, 245, 673,

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Por ello, también será importante la estructura del juego constituyente para efectuar una predicción del resultado.

Por ello, también será importante la estructura del juego constituyente para efectuar una predicción del resultado. 8.5 Juegos repetidos con horizonte finito. Los equilibrios en los juegos repetidos con horizonte finito serán sustancialmente diferentes de los obtenidos en los juegos repetidos con horizonte infinito.

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

NewsLetter Asesoría Financiera, S.A.

NewsLetter Asesoría Financiera, S.A. NewsLetter Asesoría Financiera, S.A. NEWSLETTER Nº 27/2014 (29 de septiembre 2014). ACTUALIDAD FISCAL José Mª Sánchez Alborch. Socio Fundador Repercusión de la Reforma Fiscal en las inversiones financieras

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

El concepto de integral con aplicaciones sencillas

El concepto de integral con aplicaciones sencillas El concepto de integral con aplicaciones sencillas Eliseo Martínez Marzo del 24 Abstract Este artículo trata de ejemplos sencillos del concepto de integral con aplicaciones a la Física, la Teoría de la

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles