Escuela Náutica ALAVELA: Curso Capitán de Yate / Derrota Loxodrómica LOXODROMICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Escuela Náutica ALAVELA: Curso Capitán de Yate / Derrota Loxodrómica LOXODROMICA"

Transcripción

1 LOXODROMICA

2 2. GENERALIDADES DERROTA LOXODROMICA La derrota es el camino seguido por un buque sobre la superficie marina del globo, cuando tiene que trasladarse de un punto a otro. La derrota puede ser loxodrómica y ortodrómica, siendo la primera aquella que se efectúa siguiendo un rumbo constante y la segunda la que recorre un arco de círculo máximo, el cual, por otro lado, determina la mínima distancia entre esos dos puntos de una esfera. El elegir entre una u otra derrota dependerá de la clase de navegación que se vaya a realizar. En este capítulo se verá la primera de las derrotas definida, la loxodrómica, dejando para el siguiente la derrota ortodrómica. 2.2 DERROTA LOXODROMICA Se Define la derrota loxodrómica como aquella curva que trazada sobre la esfera terrestre corta a todos los meridianos bajo el mismo ángulo, es decir, aquella que se realiza siguiendo un rumbo constante. Es de doble curvatura debido a que no está contenida en un plano y si se pudiese seguir sobre la esfera terrestre sería una derrota que iría dando vueltas a la Tierra acercándose gradualmente al Polo, alcanzándolo después de un número infinito de ellas. Esta derrota queda representada en la carta mercatoriana como una recta. Evidentemente, dos puntos de la tierra podrían unirse por infinitas derrotas loxodrómicas, sin más que ir variando los ángulos de corte de cada una de ellas con los meridianos, sin embargo la que interesa es la que une los dos puntos directamente. De esta forma, se definirán el rumbo directo (Rd) y la distancia directa (Dd) entre dos puntos. 2

3 2.3 ECUACION DE LA LOXODROMICA Se definirá la ecuación de la loxodrómica como aquella que relaciona la longitud (L) y la latitud aumentada (la) de cualquier punto de la derrota loxodrómica con dos constantes, que son, la longitud del punto de corte de la derrota loxodrómica con el Ecuador, que denominamos (Lo) y el rumbo (R). Esta ecuación es de la forma (y = ax + b), lo que justifica que la derrota loxodrómica quede representada por una recta en la carta mercatoriana. Fig. Loxodromica en una Carta Mercatoriana En la figura anterior se puede observar una loxodrómica sobre la Carta Mercatoriana en la que se representa el punto de corte de la misma con el Ecuador (A) y otros dos puntos de dicha derrota, el X y el B. El punto A tiene una longitud (Lo). Del triángulo ABC se obtiene que: tgr = AC BC Si se tiene en cuenta que la longitud del punto B es (L) se podrá establecer la ecuación de la loxodrómica despejando en la expresión anterior: AC = BC tgr L Lo = BC tgr L = Lo + la tgr 3

4 Expresión esta última que es la ecuación de la loxodrómica que tambien se puede escribir poniendo la latitud aumentada de acuerdo a su valor analítico, en cuyo caso quedará: L = Lo + sen l logtg 45º + tgr 2 Si se particulariza esta ecuación para algunos casos determinados, se podrá ver cuales son las peculiaridades de dicha derrota loxodrómica: Cuando l=0º resultará que la la=0, con lo que el punto se encontrará en el Ecuador y además L=Lo. Cuando l=90º, sucederá que la=, con lo que la longitud L= y habrá infinitas soluciones posibles. Cuando R=0º, entonces L=Lo, y cualquiera que sea la latitud (l), la loxodrómica será el meridiano de longitud (Lo). Es decir, todos los meridianos son loxodrómicas. L Lo Cuando R=90º, se cumplirá que la = 0 90 º =, con lo que la latitud será 0, tg lo que implica que el Ecuador es una loxodrómica. Si se particulariza la ecuación de la loxodrómica para dos puntos de la misma se obtendría: L = Lo + la tgr L = Lo + la tgr Restando ambas ecuaciones resulta: L L L L = ( la la) tgr ( la la = tgr ) Cuando el rumbo sea 90º se cumplirá que ( la la) = l = l. 0 Esto quiere decir que todos los paralelos son loxodrómicas ya que sobre ellos se navega bien al rumbo 90º o bien al 270º. Para calcular el rumbo loxodrómico entre dos puntos de coordenadas dadas se aplicará la expresión: 4

5 L tgr = la Trabajando la ecuación anterior para valores de L que vayan aumentando de 360º en 360º, que es lo mismo que continuar sobre el mismo meridiano, se obtendrán los correspondientes de rumbo, lo que verifica que entre dos puntos pueden trazarse infinitas loxodrómicas. 2.4 NAVEGANDO POR ESTIMA Se dice que se navega por estima cuando la situación del buque se halla a partir de las coordenadas del punto de salida y las distancias y rumbos a los que se ha navegado. Se utilizará el rumbo verdadero, el rumbo de superficie, si existe viento o el rumbo efectivo si existe corriente y se tendrá en cuenta que el buque navega a la velocidad del propulsor sobre el rumbo verdadero y el superficial, mientras que se moverá con la velocidad efectiva sobre el rumbo efectivo. Los rumbos verdaderos y las velocidades del propulsor se obtienen de la aguja y de la corredera. Los rumbos de superficie y efectivos, así como la velocidad efectiva se obtienen aplicando técnicas ya conocidas por el alumno. Cada tramo de estima que se navega a un rumbo fijo es un trozo de loxodrómica, siendo la carta mercatoriana la más adecuada para dibujarla y resolver los problemas planteados. Si se desea más exactitud, la estima se resolverá por tratamiento analítico. La navegación de estima no deja de ser un medio auxiliar de posicionamiento del buque que da situaciones probables, aunque su empleo es necesario y se usa continuamente. La situación de estima es aquella que se obtiene cuando se utilizan técnicas de navegación por estima y representa el centro de un círculo de situación probable cuyo radio dependerá de los errores cometidos en la navegación, como pueden ser malas apreciaciones de rumbos, desvíos, velocidades, etc., y de las causas externas que hayan afectado al buque y que sean desconocidas o conocidas erróneamente, como pueden ser corrientes mal calculadas, etc. Sea A un punto de salida y B el de llegada, separados por una distancia D. La línea AB será la loxodrómica que los une y (Be) y (cd) serán, respectivamente, la diferencia en latitud ( l) y la diferencia en longitud ( L) entre dichos puntos A y B. 5

6 Fig. 2 División de la lóxodrómica en un número infinito de partes Es evidente que habida cuenta que la loxodrómica corta a todos los meridianos bajo el mismo ángulo, el rumbo (R) para ir de A a B será constante y tendrá como valor el ángulo formado entre cualquiera de los meridianos a los que corta la loxodrómica y ésta. Si se divide la loxodrómica AB en un número infinito de partes cuyo tamaño sea (dd), y por tanto infinitesimal, se podrá trazar por los extremos de cada una de las partes los paralelos y meridianos que pasen por sus extremos, quedando definidos así triángulos elementales que, debido a ser infinitésimamente pequeños, se podrán considerar planos. Se podrán establecer, si se observa la figura siguiente, las siguientes expresiones: dl = dd cos R da = dd senr da = dl tgr 6

7 Fig. 3 Triángulo elemental en una loxodrómica Expresiones que integradas dan: l A = = D cos R D senr A = l tgr Siendo el apartamiento, que se representa por (A), la suma de todos los catetos infinitesimales situados sobre los infinitos paralelos trazados por cada uno de los infinitos tramos en que se dividió la loxodrómica. Si se tiene en cuenta, de acuerdo a lo que se estudió en el capítulo de proyecciones, que cada arco de paralelo se correspondía con uno de Ecuador, al que se multiplicaba por el cosl, o lo que es lo mismo, que para representar correctamente la proyección cilíndrica de una esfera circunscrita, tangente al cilindro en el Ecuador, era necesario estirar los paralelos en función de un coeficiente igual a la sec l =, se podrá relacionar el apartamiento, que se cosl mide en un paralelo, con el ( L), sin más que multiplicar aquél por la secante de la latitud. 7

8 En el caso que nos ocupa resultará que la suma de todos los catetos elementales corresponderá a un apartamiento que se ha medido no en un solo paralelo sino en un número infinito de ellos. Pues bien, se podrá hacer la suposición de que el valor obtenido para (A) es igual al tamaño del arco de paralelo de latitud media entre los puntos (A) y (B). Dicha suposición es suficientemente exacta ya que dicho arco en su primera mitad (AM) es menor que la suma de los apartamientos diferenciales a los que sustituye, pero sin embargo, en la otra mitad, (MB), es mayor, con lo que se compensan las diferencias. Fig. 4 Apartamiento e incremento en longitud Teniendo en cuenta lo anterior, se podrá expresar: L = A seclm 8

9 En caso de que se quiera trabajar con exactitud, se usará la expresión: L = la tgr Para los signos se tendrán en cuenta los nombres y sentidos hacia el Norte, Sur, Este u Oeste de los valores de latitudes y longitudes. 2.5 ESTIMA CASO DIRECTO El problema directo de la estima consiste en calcular la situación de llegada teniendo como datos la posición de salida, el rumbo o rumbos navegados y la distancia o distancias navegadas a cada rumbo. La resolución de este problema puede hacerse sobre la carta o analíticamente. Sobre la carta el problema se resuelve situando el punto de salida y trazando los distintos rumbos y distancias navegadas sobre cada uno de ellos obteniendo un punto final que será la posición de llegada. Analíticamente se resolverá el problema usando las fórmulas de la estima siguiendo los pasos a continuación: Con la expresión l = D cos R se calcularán las diferencias en latitud que resultan de cada rumbo y distancia navegada. Convendrá trabajar con rumbos cuadrantales ya que dichos rumbos expresarán sin ninguna duda hacia donde se ha producido el incremento en latitud (hacia el Norte o hacia el Sur igual que el nombre del rumbo cuadrantal). Las diferencias en latitud a los distintos rumbos se sumarán algebraicamente, obteniendose una diferencia en latitud resultante que aplicada a la latitud de salida nos dará la de llegada. Con la expresión A = D senr se calcularán los apartamientos que resultan de cada rumbo y distancia navegada. Convendrá trabajar con rumbos cuadrantales ya que dichos rumbos expresarán sin ninguna duda hacia donde se ha producido el incremento en longitud (hacia el Este o hacia el Oeste igual que el nombre del rumbo cuadrantal). Los apartamientos a los distintos rumbos se sumarán algebraicamente, obteniendose un apartamiento resultante, hacia el Este o hacia el Oeste. Con la latitud de salida y la de llegada, hallada según el primer apartado, se calculará la latitud media (lm). Con la expresión L = A seclm se calcula el incremento en longitud, que tendrá el mismo nombre que el apartamiento resultante del apartado anterior. Dicho incremento en longitud se aplicará a la longitud de salida obteniendo una longitud de llegada. 9

10 Los rumbos de aguja se deberán pasar a rumbos verdaderos aplicándoles la corrección total. Si hay viento se deberá trabajar la estima con el rumbo superficial. Si hay corriente, su rumbo se introducirá en la estima como uno más, siendo la distancia navegada a ese rumbo igual a la intensidad horaria de la corriente multiplicada por el intervalo horario durante el cual afecta al buque. Cuando se produzcan incrementos en latitud superiores a 5º, o distancias navegadas superiores a 300 millas náuticas, para obtener una solución exacta convendrá trabajar la estima con latitudes aumentadas, aplicando las fórmulas exactas de la estima. Para evitar errores se recomienda trabajar el problema rellenando la siguiente tabla: Ra dm Rv/Rc Aº Rs D l A N S E W N20E +2º +º N23E +0º N33E 50 4, , S50W +2º 0º S52W - 5º S47W , ,9 N70E 6 5, , N S E W 47,4 20,4 42,2 2,9 N- S S- N E- W W- E ,3 En el cuadro anterior se ha representado un buque que navega a una velocidad de 0 nudos, a un Ra=N20E, durante 5 horas y al Ra=S50W, durante 3 horas. Le afecta una corriente de Rc=N70E y de Ih=2 millas. La declinación magnética y los desvíos a cada rumbo se expresan en dicha tabla, así como los abatimientos producidos por el viento. El resultado final de la tabla ofrece el incremento en latitud y el apartamiento total bajos las condiciones expuestas, así como los nombres de ambos, en este caso es un l = 27 N y un A = 20,3 E. Notar que los resultados vienen expresados en minutos. Si se tuviese que trabajar con latitudes aumentadas debido a que las distancias navegadas fuese mayores de 300 millas, los incrementos en longitud se hallarían igual que en el caso anterior y se aplicarían a la latitud de salida expresada como latitud aumentada, obteniendo una situación de llegada que se debe transformar 0

11 en grados, minutos y décimas de minuto. Para el cálculo de la longitud, sin embargo, se aplicará directamente la fórmula conocida L = la tgr. 2.6 ESTIMA CASO INVERSO El problema inverso de estima consiste en calcular el rumbo directo (Rd) y la distancia directa (Dd) entre dos puntos de los que se conocen sus coordenadas. La resolución de este problema puede hacerse sobre la carta o analíticamente. Sobre la carta el problema se resuelve situando el punto de salida y el de llegada y trazando el rumbo. La distancia navegada se medirá sobre la escala de latitudes de la carta, teniendo en cuenta lo que se dijo al respecto para el caso de las proyecciones mercatorianas. Analíticamente se resolverá el problema usando las fórmulas de la estima siguiendo los pasos a continuación: Se halla el incremento en latitud entre la latitud de salida (l ) y llegada (l 2 ): l = l 2 l. Dicho incremento en latitud se deberá expresar en minutos de arco. Se halla la latitud media entre la posición de salida y la de llegada: lm l + l 2 2 =. Se halla la diferencia en longitud entre la longitud de salida (L ) y la de L = L 2 L llegada (L 2 ):. Dicho incremento en latitud se deberá expresar en minutos de arco. Se halla el apartamiento mediante la fórmula: A = L coslm. El rumbo directo (Rd) entre la posición de salida y la de llegada se calcula mediante la expresión: tgrd A = l. Al valor de rumbo obtenido se le pondrán los nombres (N o S) del incremento en longitud y (E u W) del apartamiento. l La distancia directa (Dd) se obtendrá con la expresión: Dd = cos Rd En caso de tener que trabajar con exactitud debido a que la diferencia en latitud sea mayor de 5º, se deberán usar las fórmulas exactas de la estima. Para ello se transformarán las latitudes de salida y llegada en latitudes aumentadas y con éstas se hallará el la = la 2 la. Los datos de apartamiento e incremento en longitud deben estar expresados en minutos de arco.

12 El incremento en longitud se hallará de la misma forma que en el epígrafe anterior. Se aplicará la fórmula: L tgr =. la Para hallar la distancia, una vez conocido el rumbo, se trabajará de la misma forma que en el epígrafe anterior. 2.7 CASOS PARTICULARES Y NOTAS IMPORTANTES Cuando el rumbo a que se navega sea 000º ó 80º, es decir se navega por un meridiano, no existirá apartamiento dedicándose toda la distancia navegada a incremento en latitud. Cuando el rumbo a que se navega sean 090º ó 270º, es decir se navega por un paralelo o por el Ecuador, no existirá incremento en latitud dedicándose toda la distancia navegada a variar el apartamiento. El cuadrante del rumbo queda determinado por los nombres del incremento en latitud y del incremento en longitud. Si l>a, el rumbo será menor de 045º y si l<a, el rumbo estará comprendido entre 045º y 090º. Si l=a el rumbo será 045º. El rumbo que se obtiene es el rumbo verdadero si no existe ni viento ni corriente. Si existe viento se obtendrá el rumbo superficial y si además hay corriente, el rumbo será el efectivo. 2

Escuela Náutica ALAVELA: Curso Capitán de Yate / Derrota Ortodrómica ORTODROMICA

Escuela Náutica ALAVELA: Curso Capitán de Yate / Derrota Ortodrómica ORTODROMICA ORTODROMICA 1 DERROTA ORTODROMICA GENERALIDADES Cuando dos puntos se encuentran sobre una superficie esférica, la línea recta no es la distancia más corta entre ellos, debido a la imposibilidad de seguir

Más detalles

CY Teoría de Navegación Noviembre 2013 Valencia. 1: Cuáles son las coordenadas uranográficas ecuatoriales?

CY Teoría de Navegación Noviembre 2013 Valencia. 1: Cuáles son las coordenadas uranográficas ecuatoriales? CY Teoría de Navegación Noviembre 2013 Valencia ENUNCIADO 1: Cuáles son las coordenadas uranográficas ecuatoriales? A: azimut y declinación B: horario y declinación C: Ascensión recta y altura D: Ángulo

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA EJERCICIOS RESUELTOS DE TRIGONOMETRÍA 1. Escribir las razones trigonométricas del ángulo de 3456º en función de las de un ángulo positivo menor que 45º. Al representar el ángulo de 3456º en la circunferencia

Más detalles

CY Teoría de Navegación Noviembre 2012 Madrid Tipo A

CY Teoría de Navegación Noviembre 2012 Madrid Tipo A CY Teoría de Navegación Noviembre 2012 Madrid Tipo A ENUNCIADO 1. El Tiempo Universal es: - El tiempo que ha transcurrido desde que el sol medio paso por el meridiano inferior de Greenwich. - Corresponde

Más detalles

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj. Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II Como ya sabemos, uno de los objetivos es que, conocidas las razones trigonométricas (a partir de ahora RT) de unos pocos ángulos, obtener las RT de una gran cantidad

Más detalles

VIII. CIRCUNFERENCIA

VIII. CIRCUNFERENCIA VIII. IRUNFERENI 8.. L IRUNFERENI OMO LUGR GEOMÉTRIO Definición: Una circunferencia es el lugar geométrico de un punto ( ) P, cualquiera, que se mueve sobre el plano, de tal manera que su distancia a un

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

MATEMATICAS GRADO DECIMO

MATEMATICAS GRADO DECIMO MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de

Más detalles

UNIDAD IV. LEYES DE SENOS Y COSENOS.

UNIDAD IV. LEYES DE SENOS Y COSENOS. UNIDAD IV. LEYES DE SENOS Y COSENOS. OBJETIVO. El estudiante resolverá problemas leyes de senos y cosenos, teóricos o prácticos de distintos ámbitos, mediante la aplicación las leyes y propiedades de Senos

Más detalles

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES 2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES INDICE 2.1. Curvas planas y ecuaciones paramétricas...2 2.2. Ecuaciones paramétricas de algunas curvas y su representación grafica 3 2.3.

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas. ECUACIÓN DE LA RECTA. El punto (, 0) está situado: a) Sobre el eje de ordenadas. b) En el tercer cuadrante. c) Sobre el eje de abscisas. (Convocatoria junio 00. Examen tipo D) Dibujando los ejes de coordenadas

Más detalles

Apuntes Trigonometría. 4º ESO.

Apuntes Trigonometría. 4º ESO. Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente:

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente: altura En la vida cotidiana las rectas tangentes a una curva u objeto podrán observar de muy diferentes maneras, como son el punto de contacto de la rueda de un automóvil, patineta. El deslizamiento de

Más detalles

MAGNITUD VECTORIAL. Veamos un ejemplo sencillo: Es un segmento de línea recta orientada que sirve para representar a las magnitudes vectoriales.

MAGNITUD VECTORIAL. Veamos un ejemplo sencillo: Es un segmento de línea recta orientada que sirve para representar a las magnitudes vectoriales. Capítulo 3 VECTORES MGNITUD VECTORIL Es aquella magnitud que aparte de conocer su valor numérico y su unidad respectiva, es necesario conocer también la dirección y sentido para que así dicha magnitud

Más detalles

1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta:

1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta: 1 Calcula en la siguiente figura el elemento que falta: Calcula en la siguiente figura el elemento que falta: Calcula el valor de la diagonal de un ortoedro de aristas cm, 4 cm y 5 cm. 4 Comprueba la fórmula

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo Contenidos 1. La circunferencia. La circunferencia Elementos de la circunferencia. 2. Posiciones relativas. Punto y circunferencia. Recta y circunferencia. Dos circunferencias.

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.

Más detalles

RESUMEN DE TRIGONOMETRÍA

RESUMEN DE TRIGONOMETRÍA RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice.

Más detalles

Capítulo Nº 6 NAVEGACIÓN DE ESTIMA

Capítulo Nº 6 NAVEGACIÓN DE ESTIMA Navegación Costera VI - 1 Capítulo Nº 6 NAVEGACIÓN DE ESTIMA I.- DEFINICIONES Y ASPECTOS PRELIMINARES El primer objetivo al planificar una navegación, consiste en transformar las coordenadas de un lugar

Más detalles

Nota: Como norma general se usan tantos decimales como los que lleven los datos

Nota: Como norma general se usan tantos decimales como los que lleven los datos 1. Sea ABC un triángulo rectángulo en A, si sen B 1/3 y que el lado AC es igual a 10cm. Calcular los otros lados de este triángulo. Mediante la definición de sen Bˆ, se calcula el lado c. b b 10 sen Bˆ

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

PROBLEMAS RESUELTOS GEOMETRÍA

PROBLEMAS RESUELTOS GEOMETRÍA PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el

Más detalles

MATERIA : NAVEGACIÓN TEORIA Nº DE PREGUNTAS: 8.

MATERIA : NAVEGACIÓN TEORIA Nº DE PREGUNTAS: 8. MATERIA : NAVEGACIÓN TEORIA Nº DE PREGUNTAS: 8. NAVEGACIÓN TEORÍA 1. Una boya se encuentra a 4 cables A qué distancia estará? A. 740 m B. 185.2 m C. 7480 m D. 400 m 2. Si el Norte Magnético está a la derecha

Más detalles

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3 TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos

Más detalles

Ejercicio Cálculos Náuticos Capitán de Yate tipo Vigo para Almanaque Náutico 2010 Autor: Pablo González de Villaumbrosia García

Ejercicio Cálculos Náuticos Capitán de Yate tipo Vigo para Almanaque Náutico 2010 Autor: Pablo González de Villaumbrosia García Ejercicio Cálculos Náuticos Capitán de Yate tipo Vigo para Almanaque Náutico 2010 Autor: Pablo González de Villaumbrosia García 22.02.2014 El día 27 de Mayo de 2010, en el momento de la puesta del Sol,

Más detalles

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones: MATEMÁTICAS EJERCICIOS RESUELTOS DE TRIGONOMETRÍA Juan Jesús Pascual TRIGONOMETRÍA A. Introducción teórica A. Razones trigonométricas de un triángulo rectángulo. A.. Valores del seno, coseno tangente para

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría. Halla la altura de un edificio que proyecta una sombra de 56 m a la misma hora que un árbol de m proyecta una sombra de m.. En un mapa, la distancia entre La Coruña y Lugo

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

UNIDAD DIDÁCTICA 5: Geometría analítica del plano

UNIDAD DIDÁCTICA 5: Geometría analítica del plano UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

8.- GEOMETRÍA ANÁLITICA

8.- GEOMETRÍA ANÁLITICA 8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),

Más detalles

Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea?

Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea? 82 Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (2y - 6x + ) dy = 0 Será ésta una ecuación diferencial reducible a homogénea? Si observamos la ecuación diferencial, tenemos que 2x 4y = 0 2y 6x +

Más detalles

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la T.7: TRIGONOMETRÍA 7.1 Medidas de ángulos. El radián. Ángulo reducido. Las unidades más comunes que se utilizan para medir los ángulos son el grado sexagesimal y el radián: Grado sexageximal: es cada una

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

ALGUNAS PROPIEDADES DEL TRIÁNGULO

ALGUNAS PROPIEDADES DEL TRIÁNGULO CAPÍTULO III 13 ALGUNAS PROPIEDADES DEL TRIÁNGULO Conocimientos previos: - Suponemos conocido lo siguiente: a) El lugar geométrico de los puntos del plano que equidistan de dos puntos dados A y B, es una

Más detalles

T3: TRIGONOMETRÍA 1º BCT

T3: TRIGONOMETRÍA 1º BCT 1 RAZONES TRIGONOMÉTRICAS DE LA SUMA DE DOS ÁNGULOS Queremos calcular las razones trigonométricas de la suma de dos ángulos, α + β, a partir de las razones de los ángulos α y β. 1.1 SENO DE LA SUMA DE

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.

Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es. Materia: Matemática de Séptimo Tema: Área de Polígonos Qué pasa si te piden que encuentres la distancia del Pentágono en Arlington, VA? El Pentágono, que también alberga el Departamento de Defensa de EE.UU.,

Más detalles

Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO

Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO 1º.- Deducir razonadamente el valor del ángulo α marcado en la figura sabiendo que esta representa

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos. RELACIÓN DE ACTIVIDADES MATEMÁTICAS º ESO TEMA 7: RESOLUCIÓN DE TRIÁNGULOS Y TRIGONOMETRÍA Contesta razonadamente a las siguientes preguntas:. Halla la incógnita en los siguientes triángulos rectángulos:

Más detalles

La ecuación de segundo grado para resolver problemas.

La ecuación de segundo grado para resolver problemas. La ecuación de segundo grado para resolver problemas. Como bien sabemos, una técnica potente para modelizar y resolver algebraicamente los problemas verbales es el uso de letras para expresar cantidades

Más detalles

Capítulo N 1 COORDENADAS GEOGRÁFICAS

Capítulo N 1 COORDENADAS GEOGRÁFICAS Navegación Costera I - 1 Capítulo N 1 COORDENADAS GEOGRÁFICAS I.- CONCEPTOS PRELIMINARES A.- NAVEGACIÓN: Es la ciencia que enseña a determinar la posición de la nave en cualquier momento y a conducirla

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS APELLIDOS, NOMBRE: n o Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.008 Sea Oxyz un sistema de referencia ligado a un sólido S

Más detalles

IES LILA Curso 2011/12 DE QUÉ SIGNO ERES?

IES LILA Curso 2011/12 DE QUÉ SIGNO ERES? DOCUMENTO 1: ALGUNOS CONCEPTOS PREVIOS Hay ciertos fenómenos celestes cuya visión depende de nuestra posición en la Tierra: la medida de las horas, la altura que los astros alcanzan sobre el horizonte

Más detalles

MANUAL BÁSICO DE ORIENTACIÓN.

MANUAL BÁSICO DE ORIENTACIÓN. MANUAL BÁSICO DE ORIENTACIÓN. Desde antiguo, el hombre ha sabido orientarse sin necesidad de recurrir a sofisticados y costosos aparatos electrónicos. Este pequeño manual intenta orientar a aquellos que

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Unidad 2: Resolución de triángulos

Unidad 2: Resolución de triángulos Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

180º 36º 5. rad. rad 7. rad

180º 36º 5. rad. rad 7. rad ÁNGULOS: Usaremos dos unidades para expresar los ángulos: grados sexagesimales (MODE: DEG en la calculadora) y radianes (MODE: RAD en la calculadora). El radián es la unidad de ángulo plano en el Sistema

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Clase 8 Sistemas de ecuaciones no lineales

Clase 8 Sistemas de ecuaciones no lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

UNIDAD X - GEOMETRIA. Ejercitación

UNIDAD X - GEOMETRIA. Ejercitación UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.

Más detalles

94' = 1º 34' 66.14'' = 1' 6.14'' +

94' = 1º 34' 66.14'' = 1' 6.14'' + UNIDAD : Trigonometría I. INTRODUCCIÓN. SISTEMAS DE MEDIDAS DE ÁNGULOS Trigonometría proviene del griego: trigonos (triángulo) y metrón (medida). También a veces se usa el término Goniometría, que proviene

Más detalles

Vectores y Escalares

Vectores y Escalares Vectores y Escalares Suma Grafica y Analítica En física debemos distinguir entre vectores y escalares. Un vector es una cantidad orientada, tiene tanto magnitud como dirección. La velocidad, la fuerza

Más detalles

17. POLÍGONOS REGULARES

17. POLÍGONOS REGULARES 17. POLÍGONOS REGULARES 17.1. Características generales Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.

Más detalles

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes? . Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta

Más detalles

Dibujo Técnico Polígonos regulares

Dibujo Técnico Polígonos regulares 19. POLÍGONOS REGULARES 19.1. Características generales Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas...

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas... En el estudio de los conjuntos y las funciones es fundamental el sistema que se utilize para representar los puntos. Estamos acostumbrados a utilizar la estructura de afín o de vectorial de R n, utilizando

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS Al concluir la unidad, el alumno conocerá y aplicará las propiedades relacionadas con el lugar geométrico llamado circunferencia, determinando los distintos

Más detalles

NOMBRE... APELLIDOS.. D.N.I..

NOMBRE... APELLIDOS.. D.N.I.. TITULACIONES NÁUTICO DEPORTIVAS. MÓDULO DE NAVEGACIÓN. PATRÓN DE YATE. EXAMEN ENERO 2017 NOMBRE... APELLIDOS.. D.N.I.. TEORÍA DE NAVEGACIÓN 1.- La longitud: a) Da la altura en grados desde el Ecuador hasta

Más detalles

8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo

8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo 8. LA CIRCUNFERENCIA Y EL CÍRCULO 8.1. La Circunferencia. Una circunferencia es una línea curva, cerrada y plana, cuyos puntos están a la misma distancia de otro interior al que llamamos centro, es decir:

Más detalles

Apellidos Nombre DNI / NIE Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Apellidos Nombre DNI / NIE Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE DE 2012 Resolución de 27 de abril de 2012 (DOCM de 30 de abril) Instrucciones Generales PARTE COMÚN

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Matemática I - Problemas de Máximos y Mínimos

Matemática I - Problemas de Máximos y Mínimos Conceptos previos de la materia a considerar: Concepto de Función. Dominio, codominio, imagen. Formas de expresar una función: mediante tablas, mediante gráficas y analíticamente. Funciones crecientes

Más detalles

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

El proceso seguido hasta obtener la pendiente del terreno en cada punto de la región fue el siguiente :

El proceso seguido hasta obtener la pendiente del terreno en cada punto de la región fue el siguiente : V.4.4.1.2. PENDIENTE DEL TERRENO. Podríamos definir la pendiente del terreno en un punto dado como el ángulo que forma el plano horizontal con el plano tangente a la superficie del terreno en ese punto.

Más detalles

8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES

8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES 8. POLÍGONOS REGULARES 8.1. CARACTERÍSTICAS GENERALES Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.

Más detalles

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z CAPITULO 7 LUGARES GEOMETRICOS 7. INTRODUCCION Si tenemos elementos que pueden variar sus valores en un circuito, ya sea una resistencia una reactancia o la frecuencia de la señal de entrada, las respuestas

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

Trigonometría. 1. Ángulos

Trigonometría. 1. Ángulos Trigonometría Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, la medida de un ángulo está comprendida

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado Contenidos 1. Expresiones algebraicas Identidad y ecuación Solución de una ecuación. Ecuaciones de primer grado Definición Método de resolución Resolución de problemas 3. Ecuaciones

Más detalles