INTRODUCCIÓN DEL TEMA 4 PRODUCTO ESCALAR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTRODUCCIÓN DEL TEMA 4 PRODUCTO ESCALAR"

Transcripción

1 INTRODUCCIÓN DEL TEMA 4 PRODUCTO ESCALAR Una de las herramientas imprescindibles a la hora de trabajar con gráficos 3D es el uso de ángulos. Estos se usan en diferentes aspectos tales como: Construcciones de objetos que incluyen ángulos (polígonos regulares, pirámides, prismas u otros objetos más complejos) Prismas y pirámides con un número diferente de lados. Se necesitan ángulos para calcular las bases Giros para animar objetos Una flor sencilla con 7 pétalos. Se usan ángulos para calcular los pétalos Un quiosco con planta de 9 lados. Se necesitan ángulos tanto para calcular las bases de los postes como para el tejado La noria incluye ángulos en su construcción. Para moverla, tendríamos que saber girarla alrededor de su eje Una bandera que podría interesar girar alrededor de su mástil

2 Cálculo del ángulo entre dos vectores para calcular correctamente la iluminación de una cara de un objeto. Giros para hacer un movimiento en primera persona dentro de un mundo virtual Mover la cámara para mirar más hacia la izquierda o derecha o arriba o abajo requiere el uso de ángulos par indicar en qué dirección miramos CONSTRUCIONES: ÁNGULOS Y LONGITUDES Vamos a centrarnos en un problema sencillo. Queremos construir una flor de 12 pétalos. Para ello, empezamos por construir el tallo dando tres puntos y uniéndolos mediante líneas. Ponemos el primer punto del tallo en el origen, con lo que tenemos T1= (0,0,0). Ponemos el segundo sobre él a altura 4 y obtenemos un segundo punto del tallo T2 = (0,0,4). Para dar más realismo, queremos que el tallo esté algo torcido y ponemos el tercer punto a altura 2 sobre T3 y un poco a la derecha y adelante, obteniendo T3 = (1,1,6).

3 El tallo se vería así: Ahora viene el problema de construir los pétalos. Vamos a empezar por hacer un pétalo en el origen (ya sabemos cómo moverlo después). Hacemos un pétalo sencillo de largo 3, ancho 1 y altura.5 a base de construir los siguientes puntos P1 = O P2 = O + 3*ejex P3 = O + 2*ejex +.5*ejey P4 = O + 2*ejex.5*ejey P5 = O + 2*ejex +.5*ejez como se ve en el siguiente dibujo

4 y rellenar la figura como vimos en el Tema 2 Queremos repetir ese proceso, pero con dos condiciones: que queden perpendiculares al tallo de la flor. que tengamos 12 pétalos en vez de uno. El primer paso para resolver este problema es saber construir una base que sustituya la canónica, de forma que el último eje quede en la dirección del tallo y los otros dos sean perpendiculares al mismo. Además, para evitar deformaciones, nos interesa que esos vectores tengan la misma longitud que los de la base canónica. Es decir, es un problema de construir lo que llamaremos una base ortonormal. sea, Para ello partimos de una base dada por el vector que nos da el último segmento del tallo, o w = T3 T2 = (1,1,6) (0,0,4) = (1,1,2) lo completamos a una base añadiendo, por ejemplo, (1,0,0) y (0,1,0) Por supuesto, esta base no nos sirve porque los vectores no son perpendiculares entre sí ni tienen longitud 1.

5 En este tema veremos técnicas para conseguir enderezar esta base (el método de Gram Schmidt) y conseguir que tenga la longitud adecuada Aplicándolos obtendremos otra base: Poniéndolos en T3 (al final del tallo) tendremos: Basta repetir ahora la construcción del pétalo pero poniéndolo en T3 y construyendo respecto a u, v, w en vez de la base canónica para obtener un primer pétalo

6 Para construir el segundo pétalo, giramos el pétalo anterior pero, como siempre, es más simple girar la base usada para construir el pétalo y después repetir la construcción. Respecto a como girar la base, el vector w (el que indica la dirección del tallo) no lo queremos girar. Lo que vamos a hacer es girar u y v el ángulo adecuado. Como un círculo tiene 360º y queremos poner 12 pétalos, lo giraremos 360º/12. Para esto no necesitamos usar Álgebra sino Trigonometría para obtener que los nuevos vectores son: u' = cos(360º/12)*u + sen(360º/12)*v v' = sen(360º/12)*u + cos(360º/12)*v usando estos vectores, tendremos un segundo pétalo: Repitiendo el proceso 12 veces obtenemos Quitando los vectores y ajustando un poco el tamaño, obtenemos la flor

7 Ésta es una situación bastante corriente dentro de gráficos. Antes de poder aplicar cualquier técnica básica (en este caso el uso de las funciones coseno y seno) es necesario saber construir bases de forma que los vectores sean perpendiculares entre sí y de longitud 1 (bases ortonormales). La idea básica es construir una base sin preocuparnos de ángulos ni longitudes y, posteriormente, enderezar los vectores y controlar su longitud. El mismo tipo de idea se usa a la hora de construir los movimientos del plano y del espacio: hay una forma canónica de construirlos cuando el movimiento es respecto a los ejes (pensemos en el giro alrededor del eje Z, la proyección sobre el plano XY, etc.) y, caso de no ser así, un paso previo es construir una base adecuada que debe de ser ortonormal. ILUMINACIÓN DE OBJETOS Un segundo ejemplo interesante es la iluminación de un objeto. En términos generales, los objetos 3D que vemos en los juegos o películas suelen estar construidos a base de polígonos que se corresponden, en la mayoría de los casos, con triángulos. Saber ilumina (o sombrear, o aplicar texturas, etc) es lo mismo que saber hacerlo sobre cada triángulo (o polígono). Vamos a centrarnos, por simplicidad, en el problema de la iluminación. Una observación clara es que la iluminación de cada triángulo debe de depender de su orientación respecto a la fuente de iluminación (y, en modelos más complicados, de la distancia a la misma). Pensemos en que la fuente de iluminación es el sol, un triángulo que mira hacia el sol debe estar totalmente iluminada, mientras que la uno que mira en dirección contraria debe estar en sombra. Un triángulo orientado hacia la fuente de luz se ve totalmente iluminado Visto por detrás, el mismo triángulo se ve con una iluminación diferente La clave está en saber calcular el ángulo formado entre el triángulo y la fuente de luz,

8 concretamente, entre la perpendicular al triángulo y el vector que une la fuente de luz con el centro del triángulo: cuánto más próximo esté este ángulo a 0º, más directa será la luz que reciba. Pero, cómo calculamos esto? La respuesta está en saber calcular un vector perpendicular a un triángulo y, después, saber calcular el ángulo entre dos vectores. Una vez más nos encontramos con la necesidad de saber calcular perpendiculares y trabajar con ángulos. La herramienta claves es el producto escalar. MÍNIMOS CUADRADOS Y, para qué sirven estas técnicas en espacios distintos de R 3? Un ejemplo típico del uso del concepto de ángulos y distancias es la resolución de sistemas de ecuaciones que sean incompatibles. En principio, puede parecer absurdo intentar resolver un sistema incompatible dado que, por definición, éste es precisamente un sistema que no se puede resolver. Sin embargo, en la realidad puede pasar que un sistema sí tenga solución pero, por problemas de exactitud en las medidas o por errores de redondeo a la hora de representar los valores en el ordenador, nos encontremos con que el sistema (que sabemos que sí tiene solución) se nos presenta como incompatible. Veamos un ejemplo sencillo: Queremos hacer la cabeza de un dibujo que representa un jugador. Para ello cogemos una persona, le ponemos sensores y tomamos mediadas para que se parezca a la forma de su cabeza. Sabemos que su forma es esencialmente un elipsoide y tomamos sus medidas de forma que sus ejes correspondan a los ejes canónicos

9 Elipsoide con sus ejes Sabemos que la ecuación de este tipo de elipsoide es ax 2 + by 2 + cz 2 = 1 por lo que, para saber de qué elipsoide se trata, basta con saber cuánto valen a, b y c. Decidimos tomar cuatro medidas de la cabeza y obtenemos los puntos: (3.001,.505,.001) (.001,1.495,1) (.901,.001,3.009) (2.001,.490,2.236) Estos puntos deberían de cumplir la ecuación del elipsoide, por lo que tendríamos: esto nos da 4 ecuaciones para obtener a, b y c. a* b* c* =1 a*(.001) 2 +b* c*1 2 =1 a* b*.01 2,c* =1 a* b* c* =1 Al intentar resolver el sistema con un ordenador, nos encontramos con que no tiene solución. Esto puede deberse a varios motivos (o a todos ellos a la vez): La cabeza no es realmente un elipsoide. Los ejes no estarán totalmente alineados con la base canónica (la persona elegida como modelo puede haber ladeado ligeramente la cabeza). Los datos no son exactos porque el sistema para leer la posición de los sensores no es totalmente preciso. El ordenador puede haber cometido pequeños errores de redondeo a la hora de resolver el sistema. De todas formas, nosotros no queremos una solución perfecta, sólo queremos un elipsoide que se parezca lo más posible a las medidas obtenidas. Para eso, necesitamos tener una medida razonable de hasta qué punto se parecen dos elipsoides. Si un elipsoide viene dado por unos valores (a 1,b 1,c 1 ) y otro por (a 2,b 2,c 2 ), el parecido entre los elipsoides vendrá dado por el parecido entre (a 1,b 1,c 1 ) y (a 2,b 2,c 2 ). Es decir, el parecido entre objetos viene dado por el parecido entre vectores. Dicho parecido puede medirse por la

10 diferencia de longitud entre ellos y por el ángulo que forman. El método que veremos (resolución por mínimos cuadrados) lo que hace es calcular la solución que se parece más a la que debería de existir. Dicha técnica se basa en ser capaces de proyectar el vector de coeficientes sobre un subespacio, es decir, longitudes y ángulos de nuevo. En nuestro caso la solución es a = c = 0.1 b = 0.2 En el siguiente dibujo vemos el elipsoide y los puntos. Si bien no pasa exactamente por ellos, realmente se ajusta muy bien a las medidas tomadas: A primera vista parece que el elipsoide pasa por los puntos Si nos fijamos en el segundo de los puntos de la parte derecha veremos que está un poco dentro del elipsoide El punto más cercano está dentro del elipsoide A pesar de ello, cuando vemos el elipsoide, se parece mucho a la forma que queríamos obtener con los puntos tomados

11 Esta técnica permite encontrar buenas soluciones aproximadas de problemas que no podíamos resolver directamente. Observemos que en nuestro ejemplo había tres parámetros a determinar (los valores de a, b y c) pero podría ser que hubiera más. Pensemos en un elipsoide que no esté en la dirección de las ejes ni centrado en el origen, cuya ecuación es: ax 2 + by 2 + cz 2 + dxy + exz + fyz + gx + hy + kz = 1 Encontrar el elipsoide es encontrar los valores de a, b, c, d, e, f, g, k. Ser capaces de comparar dos elipsoides es lo mismo que comparar dos vectores de la forma (a,b,c,d,e,f,g,h,k) con 9 componentes. Para hacer esto, necesitamos poder calcular longitudes y ángulos para vectores de 9 componentes. En general, ser capaces de resolver sistemas de forma aproximada mediante mínimos cuadrados requiere ser capaces de trabajar con longitudes y vectores en un número cualquiera de dimensiones (la dimensión dependerá del número de incógnitas que tenga el sistema a resolver). Es decir, las técnicas geométricas que se desarrollan en R 3 pueden resultar muy útiles en otros espacios del tipo R n (con n>3) aún cuando no tengamos una referencia intuitiva claro de lo que significan ángulos o longitudes en ellos. Como hemos visto en nuestro ejemplo, esto es cierto incluso en espacios más abstractos (los elipsoides de un cierto tipo) siempre que sepamos trasladar el problema al correspondiente R n.

INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES

INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES Vamos a construir una serie de objetos sobre el plano z = 0. Al principio solamente tenemos dicho plano (en verde) Antes de empezar a construir algo, empezamos

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

Transformaciones en el plano y el espacio

Transformaciones en el plano y el espacio Transformaciones en el plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Transformaciones en el plano y el espacio 1 / 51 Transformaciones geométricas en R

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

Mínimos cuadrados. Mayo de Ejemplos de introducción. Observación preliminar

Mínimos cuadrados. Mayo de Ejemplos de introducción. Observación preliminar Mínimos cuadrados Mayo de 2015. Ejemplos de introducción Observación preliminar Sean dos matrices A y B, por ejemplo a b A =, B = c d x z y t Las columnas de A representan los vectores u = (a; c) y v =

Más detalles

POSICIONES RELATIVAS

POSICIONES RELATIVAS POSICIONES RELATIVAS En muchos problemas de Álgebra se pide estudiar la posición relativa en el espacio de dos rectas, dos planos, una recta y un plano, etc y suelen generar no pocos quebraderos de cabeza,

Más detalles

Un vector está representado por cuatro elementos: origen, dirección, sentido y módulo.

Un vector está representado por cuatro elementos: origen, dirección, sentido y módulo. CÁLCULO VECTORIAL Escalares y vectores. Al estudiar la Física nos encontramos con dos tipos diferentes de magnitudes físicas: magnitudes escalares y magnitudes vectoriales.son magnitudes escalares aquellas

Más detalles

es perpendicular al vector b ( 3, 2) módulo de a es 2 13, halla los valores de x y de y.

es perpendicular al vector b ( 3, 2) módulo de a es 2 13, halla los valores de x y de y. Nombre: Curso: 1º Bachillerato B Eamen II Fecha: 6 de febrero de 018 Segunda Evaluación Atención: La no eplicación clara y concisa de cada ejercicio implica una penalización del 5% de la nota 1.- ( puntos)

Más detalles

A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES

A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES RESUMEN DE GEOMETRÍA MATEMÁTICAS II A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES Un vector fijo de origen A y extremo B, siendo A y B puntos del espacio, es un segmento orientado caracterizado por:

Más detalles

+ 1. La función del tercer tramo es un polinomio (una constante) que tampoco da problemas en ningún punto.

+ 1. La función del tercer tramo es un polinomio (una constante) que tampoco da problemas en ningún punto. 1.- Considerad la función: x + 4 x para x 0 + 1 f(x) = 12x 36 x para 0 < x < 3 9 2 para x 3 a) Estudiar, en todos los puntos del dominio, la continuidad de f. b) Estudiar, en todos los puntos donde sea

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 23 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 2 Dic 2013-8 Dic 2013 Introducción La existencia de bases ortonormales es los espacios es muy útil

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

Materia: Matemática de 5to Tema: Producto Punto. Marco Teórico

Materia: Matemática de 5to Tema: Producto Punto. Marco Teórico Materia: Matemática de 5to Tema: Producto Punto Marco Teórico En términos comunes, el producto punto de dos vectores es un número que describe la cantidad de fuerza que dos vectores diferentes contribuyen

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA - Módulo: Es la longitud del segmento AB, se representa así:

TEMA 8 GEOMETRÍA ANALÍTICA - Módulo: Es la longitud del segmento AB, se representa así: MATEMÁTICAS ACADÉMICAS 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA - 1. MÓDULO, DIRECCIÓN Y SENTIDO DE UN VECTOR Módulo: Es la longitud del segmento AB, se representa así: Dirección: Es la dirección de la recta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Álgebra y Matemática Discreta Sesión de Prácticas 12

Álgebra y Matemática Discreta Sesión de Prácticas 12 Álgebra y Matemática Discreta Sesión de Prácticas 12 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 2 Dic 2013-8 Dic 2013 Giros en el Plano Matriz de Giro Si α es el ángulo que queremos girar,

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

Tarea 4. Geometría Analítica I

Tarea 4. Geometría Analítica I Tarea 4. Geometría Analítica I Jesús Rodríguez Viorato 21 de noviembre de 2006 1. Ejercicios de pensar 1.- Encuentre la ecuación cartesiana del lugar geométrico de los puntos P tales que las sumas de las

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

MATEMÁTICAS II. Apuntes

MATEMÁTICAS II. Apuntes MATEMÁTICAS II. Apuntes Curso preparatorio para el acceso a la universidad para mayores de 25 años Tema 4 Arturo de Pablo Elena Romera Open Course Ware, UCM http://ocw.ucm.es/matematicas 4 GEOMETRÍA Este

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades

Más detalles

Unidad 6 Geometría euclídea. Producto escalar

Unidad 6 Geometría euclídea. Producto escalar Unidad 6 Geometría euclídea Producto escalar PÁGINA 131 SOLUCIONES 1 La recta 4 x 3y + 6 = 0 tiene de pendiente 4 m = 3 4 Paralela: y 1 = ( x ) 4x 3y 5 = 0 3 4 Perpendicular: y 1 = ( x ) 3x + 4y 10 = 0

Más detalles

Solución de problemas I 1

Solución de problemas I 1 Universidad Autónoma de Madrid Álgebra II. Físicas. Curso 5 6 Solución de problemas I Álgebra II Curso 5-6. Proyecciones en el producto escalar estándar Ejercicio 7.7. (a) Dada la ecuación x + y z, dar

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Grado en Ingeniería agrícola y del medio rural Tema 3 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Resuelve los siguientes triángulos: a) 3 b) 1º 0º c) 15 0º 2) Desde lo alto de una torre de 0m se observa, cuando se mira hacia delante, un árbol. Cuando se mira

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido 1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB

Más detalles

Dibujar el desarrollo de la tolva (Se denomina tolva a un dispositivo destinado a depósito y canalización de materiales granulares o pulverulentos.

Dibujar el desarrollo de la tolva (Se denomina tolva a un dispositivo destinado a depósito y canalización de materiales granulares o pulverulentos. Tolva 1. 2007-2008 3'' '' 4'' 1'' 3'' 2' 3 1 6 2L82 42L22 2L12 1'' 8'' 7'' '' 7'' 6'' C LB 2 2 D LA 2 2 1' 3' 2' B 1 1 1 A 1 1' 8' 7' 2 1 8 1 3 1 4 1 6 1 1 3' ' 4' C 1 D 1 6' ' 7' Hoja 1/2 El problema

Más detalles

b) Halle el punto de corte del plano π con la recta que pasa por P y P.

b) Halle el punto de corte del plano π con la recta que pasa por P y P. GEOMETRÍA 1- Considere los puntos A(1,2,3) y O(0,0,0). a) Dé la ecuación de un plano π 1 que pase por A y O, y sea perpendicular a π 2 : 3x-5y+2z=11. b) Encuentre la distancia del punto medio de A y O

Más detalles

IES Fco Ayala de Granada ( Modelo 6) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada ( Modelo 6) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo 6 de 01 a 1+ si x 1 x- ['5 puntos] Se considera la función derivable f : R R definida por

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

Cuadratura. Cuadratura del Rectángulo

Cuadratura. Cuadratura del Rectángulo Denición 1. : en Geometría, determinación de un cuadrado equivalente en supercie a una gura geométrica dada. del Rectángulo Lema 1. el segmento CD de la gura es la media geométrica de AC y CB, es decir

Más detalles

Polígonos regulares, el triángulo de Sierpinski y teselados

Polígonos regulares, el triángulo de Sierpinski y teselados Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES

Más detalles

El vector que une el origen de coordenadas O con un punto P se llama vector de posición del punto P.

El vector que une el origen de coordenadas O con un punto P se llama vector de posición del punto P. Coordenadas de un vector en el plano Marco Teórico El vector que une el origen de coordenadas O con un punto P se llama vector de posición del punto P. Recordemos que la ecuación para un vector viene dada

Más detalles

GEOMETRÍ A ANALÍ TÍCA

GEOMETRÍ A ANALÍ TÍCA GEOMETRÍ A ANALÍ TÍCA En este tema estudiaremos vectores (definición, características, operaciones) de forma geométrica y analítica. Además veremos los conceptos de vector director, pendiente de una recta

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

Recordemos que la ecuación para un vector viene dada por

Recordemos que la ecuación para un vector viene dada por Materia: Matemáticas de 4to año Tema: Coordenadas de un vector en el plano Marco Teórico Recordemos que la ecuación para un vector viene dada por Donde P x, P y, y P z son las coordenadas x, y, y z las

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

Geometría analítica del plano

Geometría analítica del plano 8 Geometría analítica del plano Objetivos En esta quincena aprenderás a: Reconocer los elementos de un vector identificando cuando dos vectores son equipolentes. Hacer operaciones con vectores libres tanto

Más detalles

Cuadratura. Cuadratura del Rectángulo

Cuadratura. Cuadratura del Rectángulo Introducción 1 Cuadratura Denición 1. Cuadratura: en Geometría, determinación de un cuadrado equivalente en supercie a una gura geométrica dada. Cuadratura del Rectángulo Lema 1. el segmento CD de la gura

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2007 [2 5 puntos] Determina la función f : R R sabiendo que f (x) = x 2 1 y que la recta tangente a la gráfica de f en el punto de abscisa x = 0 es la recta y

Más detalles

CONSTRUCCIONES GEOMÉTRICAS FUNDAMENTALES 1

CONSTRUCCIONES GEOMÉTRICAS FUNDAMENTALES 1 Son procedimientos básicos necesarios para la construcción y resolución de la mayoría de los problemas y trazados geométricos. MEDIATRIZ de un segmento: Recta perpendicular al segmento y que pasa por su

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

Tema 4: Espacio vectorial euclídeo

Tema 4: Espacio vectorial euclídeo Tema 4: Espacio vectorial euclídeo 1. Definición de producto escalar Un producto escalar en un R-espacio vectorial es una operación en la que se operan vectores y el resultado es un número real, y que

Más detalles

3.1 El espacio afín R n

3.1 El espacio afín R n 3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2014 OPCIÓN A Ejercicio 1 a) (1 punto) Determinar el valor del parámetro para que los puntos A(1,2,0), B(5,-4,0)

Más detalles

ELEMENTOS DE GEOMETRIA ANALITICA

ELEMENTOS DE GEOMETRIA ANALITICA ELEMENTOS DE GEOMETRIA ANALITICA Derecho básico de aprendizaje: Explora y describe las propiedades de los lugares geométricos y de sus transformaciones a partir de diferentes representaciones. (ver DBA

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2015 2016) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

DEPARTAMENTO DE FISICA DOCENTE: ING. JOEL PACO S.

DEPARTAMENTO DE FISICA DOCENTE: ING. JOEL PACO S. .1.- INTRODUCION Las propiedades físicas en la mecánica deben expresarse por una magnitud y una cierta unidad que las permita medir y comparar entre si, sin embargo debido a que en algunos casos esa información

Más detalles

Un vector es un segmento orientado que consta de los siguientes elementos:

Un vector es un segmento orientado que consta de los siguientes elementos: El conjunto R 3 : Conjunto formado por todas las ternas de números reales. Un vector es un segmento orientado que consta de los siguientes elementos: - Módulo: Es la longitud del vector. - Dirección: es

Más detalles

= = 6. Ejemplo 2: Cuantos grados sexagesimales son rad. Tenemos que utilizar la misma regla de 3 que en el anterior ejemplo: =

= = 6. Ejemplo 2: Cuantos grados sexagesimales son rad. Tenemos que utilizar la misma regla de 3 que en el anterior ejemplo: = Para medir ángulos tenemos dos formas de medirlos: Los grados sexagesimales y los radianes. Veamos algún ejemplo de cómo vamos a pasar de una unidad a otra. Ejemplo : Cuantos radianes son 30? Para poder

Más detalles

UNIDAD 1 EXPRESIÓN GRÁFICA.

UNIDAD 1 EXPRESIÓN GRÁFICA. UNIDAD 1 EXPRESIÓN GRÁFICA. 1.1 Expresión gráfica. 1.2 El boceto y el croquis. 1.3 La escala de dibujo. 1.4 El sistema diédrico: vistas. 1.5 Perspectivas: isométrica y caballera. 1.6 Acotación y normalización.

Más detalles

Capítulo 8: Vectores

Capítulo 8: Vectores Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no

Más detalles

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2016 2017) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = {(1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 18 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 11 Nov 2013-17 Nov 2013 Ecuaciones Matriciales Ecuaciones Matriciales En muchas ocasiones, se plantean

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS.

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS. 30. SISTEMA DIÉDRICO.- CAMBIOS DE PLANO, GIROS Y ÁNGULOS. 30.1. Cambios de plano. Los cambios de planos de proyección consisten en tomar o elegir otros planos de proyección de forma que los elementos que

Más detalles

TEMA 4. TRANSFORMACIONES EN EL PLANO

TEMA 4. TRANSFORMACIONES EN EL PLANO TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2010 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Líneas y s en el Espacio Departamento de Matemáticas ITESM Líneas y s en el Espacio Álgebra Lineal - p. 1/34 Los conjuntos solución a un sistema de ecuaciones lineales cuando tienen

Más detalles

Unidad 5: Geometría Analítica

Unidad 5: Geometría Analítica Unidad 5 Geometría Analítica 5. Ecuaciones de una recta Los planos y las rectas son objetos geométricos que se pueden representar mediante ecuaciones. Encontraremos la ecuación vectorial de una recta r

Más detalles

1 Temas a manejar adecuadamente con vectores

1 Temas a manejar adecuadamente con vectores Geometría Analítica II Lectura 1 Ayudante: Guilmer González Día 14 de febrero, 2006 El día de hoy veremos: 0. Sobre cómo presentar los trabajos y cómo serán calificados. 1. Comentarios sobre vectores 2.

Más detalles

Unidad 7 Geometría analítica en el plano

Unidad 7 Geometría analítica en el plano Unidad 7 Geometría analítica en el plano PÁGINA 153 SOLUCIONES 1. La ecuación de la recta que pasa por A y B es: x+ y 9=. El punto C no pertenece a la recta pues no verifica la ecuación. Por tanto A, B

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos.

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos. MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos. 3.1 DISTANCIAS EN EL ESPACIO 3.1.1 Distancia entre dos puntos Dados los puntos A(x 0, y 0, z

Más detalles

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables.

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables. Empezaremos el curso introduciendo algunos conceptos básicos para el estudio de funciones de varias variables, que son el objetivo de la asignatura: Funciones escalares de dos y tres variables. Conjuntos

Más detalles

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8 I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Geometría analítica en R 3 * 1. Determina cuáles de las siguientes ternas de puntos son puntos alineados. Encuentra la ecuación de la recta que

Más detalles

Mosaicos regulares del plano

Mosaicos regulares del plano Mosaicos regulares del plano Máster Universitario de formación de Profesorado Especialidad Matemáticas Begoña Hernández Gómez 1 Begoña Soler de Dios 2 Beatriz Carbonell Pascual 3 1 behego@alumni.uv.es

Más detalles

A = b. h Área = base * altura El área de un rectángulo

A = b. h Área = base * altura El área de un rectángulo ECUACIONES LITERALES En la sección anterior, nos fijamos en estrategias de resolución de problemas usando fórmulas. Las fórmulas son ejemplos de ecuaciones literales y en este apartado, vamos a mirar las

Más detalles

Vectores equipolentes. Vector libre. Componentes de un vector

Vectores equipolentes. Vector libre. Componentes de un vector 1.- VECTORES. OPERACIONES Vector fijo Un vector fijo AB es un segmento orientado con origen en el punto A y extremo en B Todo vector fijo AB tiene tres elementos: Módulo: Es la longitud del segmento AB.

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

unidad 11 Transformaciones geométricas

unidad 11 Transformaciones geométricas unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso:

Más detalles

Cos tan 0 1. Pasa 270º a radianes Pasa 1 radian a º Pasa 345 a º. Pasa 3 pi radianes a º Pasa 0.5 radian a º Pasa 30º a º

Cos tan 0 1. Pasa 270º a radianes Pasa 1 radian a º Pasa 345 a º. Pasa 3 pi radianes a º Pasa 0.5 radian a º Pasa 30º a º TRIGONOMETRÍA Puntos clave: Unidades de medida de ángulos: Grados sexagesimales(posibilidad de que nos den las unidades en gradosminutos-segundos) Radianes Hay que saber convertir unas unidades en las

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA LONGITUDES Y ÁREAS. 1. Perímetro y área. 1.1. Medidas del rectángulo. 1.2. Medidas del cuadrado. 1.3. Medidas del rombo. 1.4. Medidas del romboide. 1.5. Medidas de un paralelogramo cualquiera. 1.6. Medidas

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Producto escalar. Bases ortonormales. Producto vectorial y producto mixto.

Producto escalar. Bases ortonormales. Producto vectorial y producto mixto. Capítulo Producto escalar. Bases ortonormales. Producto vectorial y producto mixto. DEFINICIÓN DE PRODUCTO ESCALAR Dados dos vectores x = (x 1 x 2...x n ) e y = (y 1 y 2...y n ) de R n definimos su producto

Más detalles

1. Considera la función definida por f(x) =. a. Descompón la función en fracciones simples. Recuerda que las posibles raíces enteras de un polinomio son los divisores del término independiente. b. Calcula

Más detalles

SISTEMAS DE REPRESENTACIÓN

SISTEMAS DE REPRESENTACIÓN 1 DEFINICIÓN Se llaman sistemas de representación a una serie de métodos que sirven para dibujar objetos reales, utilizando los conceptos y procedimientos de la geometría plana, (paralelas, perpendiculares,

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Cálculo II. 1 o Primer curso de ingeniería informática. Curso 2009/2010. Ejercicios resueltos. Hoja 1

Cálculo II. 1 o Primer curso de ingeniería informática. Curso 2009/2010. Ejercicios resueltos. Hoja 1 Cálculo II. 1 o Primer curso de ingeniería informática. Curso 2009/2010. Ejercicios resueltos. Hoja 1 6. Dibujar las curvas de nivel y la gráfica de las siguientes funciones f : R 2 R. (e) f(x, y) = 1

Más detalles

Construcciones con regla y compás

Construcciones con regla y compás Universidad de Buenos Aires - CONICET Semana de la Matemática - 2009 Algunos ejemplos Vamos a hacer algunos dibujos usando un papel, un lápiz, un compás y una regla sin medidas marcadas. Algunos ejemplos

Más detalles

Recta en en el plano

Recta en en el plano Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática Recta en en el plano Autor: Dr. Francisco Vittone

Más detalles

Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la

Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la Geometría Analítica Preliminares Identidades Trigonométricas Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la recta, tal que, esto es Recta

Más detalles

1.2. Producto escalar, longitud y distancia

1.2. Producto escalar, longitud y distancia 22 Cálculo vectorial 27. Si PQR es un triángulo en el espacio y b > 0 es un número, existe un triángulo con lados paralelos a los de PQR y con longitudes b multiplicado por las longitudes de PQR. 28. Las

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

Matrices de rotaciones, simetrías y roto simetrías

Matrices de rotaciones, simetrías y roto simetrías Matrices de rotaciones, simetrías y roto simetrías María Jesús DE LA PUENTE Departamento de Álgebra Facultad de Matemáticas Universidad Complutense 28040 Madrid, Spain mpuente@ucm.es Dedication Resumen

Más detalles

El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados.

El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados. GEOMETRÍA ANALÍTICA: EL PLANO CARTESIANO: El plano cartesiano está formado por dos rectas numéricas perpendiculares, una horizontal y otra vertical que se cortan en un punto. La recta horizontal es llamada

Más detalles

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada.

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. LA RECTA Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. En geometría euclidiana, la recta o la línea recta, se extiende en una misma dirección, existe

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles